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ABSTRACT: A new, efficient parallel algorithm for four-component relativistic generalized multiconfigurational quasidegenerate
perturbation theory (GMC-QDPT) introducing Kramers symmetry is implemented. Because it utilizes the independence of the
terms in the matrix element computations, this algorithm both speeds up the calculation and reduces the computational resources
required for each node. In addition, the amount of memory for two-electron integrals is reduced to three-eigths by Kramers
restriction. The algorithm is applied to the d�d excitation energies of the platinum halide complexes, [PtCl4]

2�, [PtBr4]
2�, and

[PtCl6]
2� and to the 6p�7s and 6p�7p excitation energies of the radon atom. It is shown to provide high parallelization efficiency

and accurate excitation energies that agree well with experimental data.

1. INTRODUCTION

In electronic structure calculations for systems that con-
tain heavy elements, the inclusion of both the electron
correlation and relativistic effects is essential for high accu-
racy. Thus, many electron correlation methods have been
extended to four-component relativistic versions, including
Møller�Plesset perturbation,1�5 configuration interaction
(CI),6,7 and coupled cluster methods,8,9 which are based on
the Dirac�Hartree�Fock (DHF) reference wave function.
In addition, four-component multireference (MR) CI10�12

and coupled cluster13 methods that provide highly accurate
molecular electronic structures are also now available. How-
ever, the four-component MR methods are computationally
expensive, and their applications are therefore limited to
small molecules.

Among the MR methods, multireference perturbation theory
(MRPT) is efficient and accurate and thus is regarded as a
practical tool that takes account of both static and dynamic
electron correlations. Recently, we developed a MRPT using the
general multiconfigurational functions called GMC-QDPT or
GMC-PT.14 GMC-QDPT is applicable to any multiconfigura-
tional reference wave functions and allows the use of only
necessary configurations according to the character of the system
of interest. Because of its generality and flexibility, GMC-QDPT
enjoys both high computational accuracy and efficiency. How-
ever, it is still not easy to calculate heavy atom compounds with
many electrons efficiently using relativistic GMC-QDPT.15

Therefore, there is a need for computational schemes for
relativistic GMC-QDPT that are more efficient than the
existing one.

Previously, we proposed a new efficient calculation scheme
for the effective Hamiltonian based on matrix elements
between the reference and ionized functions and succeeded
in reducing computation time relative to the previous
scheme.16 In the present work, we developed a parallel

algorithm based on Kramers symmetry. For the nonrelati-
vistic MC-QDPT, Umeda and co-workers have presented a
parallel algorithm.17 This algorithm was based on the pre-
vious scheme of ours using diagrams and thus has a dis-
advantage for the computation of one virtual terms (the
terms involving two-electron integrals with one virtual and
three occupied orbital labels) of the effective Hamiltonian.16

In addition, we applied the new code accelerated by our
parallel algorithm to the calculations for the d�d excitation
energies of platinum halide complexes ([PtCl4]

2�, [PtBr4]
2�, and

[PtCl6]
2�) and the 6p�7s/6p�7p excitation energies of the

radon atom.
In Section 2, we review GMC-QDPT and describe our new

parallel algorithm and its implementation. We report the effi-
ciency of our new scheme and the accuracy of the excitation
energy calculation results in Section 3.

2. METHODS

2.1. Brief Review of GMC-QDPT. Before describing the new
computational scheme, we briefly review the GMC-QDPT for
readers’ convenience.
Let |μæ and Eμ

(0) be reference (zeroth-order) wave functions
and their zeroth-order energies:

jμæ ¼ ∑
A ∈ GCS

C μ
AjAæ, Eð0Þμ ¼ ∑

p
Æμja†PaPjμæεP ð1Þ

respectively. Here, the reference wave functions |μæ are
expanded by the determinants |Aæ in a general configuration
space (GCS); aP

† and aP are the creation and annihilation
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operators, respectively, for an electron in spinor P; and εP are
spinor energies. The effective Hamiltonian up to the second
order of GMC-QDPT14,15 is given as

ðHð0 � 2Þ
eff Þμν ¼ μjHjνæh

� 1
2 ∑

I ˇ GCS

ÆμjHjIæÆIjHjνæ
Eð0Þν � Eð0ÞI

þ ∑
I ˇ GCS

ÆμjHjIæÆIjHjνæ
Eð0Þμ � Eð0ÞI

( )

ð2Þ

where |Iæ is the determinant outside the GCS.
We define the corresponding complete active space (CCAS)

as the minimal CAS including the reference GCS. The summa-
tion over |Iæ can be divided into a summation outside the
CCAS and a summation inside the CCAS but outside the GCS.
Thus, the summation enclosed in curly brackets in eq 2 can be
written as

ðHð2Þ
eff Þμν

¼ ∑
I ˇ CCAS

ÆμjHjIæÆIjHjνæ
Eð0Þν � Eð0ÞI

þ ∑
I ∈ CCAS ∧ I ˇ GCS

ÆμjHjIæÆIjHjνæ
Eð0Þν � Eð0ÞI

ð3Þ

We call the terms in the first summation “the external terms”
and the terms in the second summation “the internal
terms”.14

The internal terms are computed through matrix opera-
tions for the Hamiltonian matrix. The length of the internal
term summation is generally much less than that of the
external term summation. Hence, the computational time
for the internal terms is small compared with that for the
external terms.
The external terms are computed using a matrix element

scheme.16 The intermediate states |Iæ can be written as a product
of determinants comprising M active spinors |BMæ and ioniza-
tion/excitation operators:

EPR ...TQS ...U ¼ a†Pa
†
R ... a†TaU ... aSaQ ð4Þ

(abbreviated as EX). Note that the numbers of creation and
annihilation operators are not necessarily equal.
Hence, the summation of the external terms is expressed as

ðHð2Þ
externalÞμν ¼ ∑

X
∑
BM

ÆμjHEX jBMæÆBMjE†XHjνæ
Eð0Þν � Eð0ÞXBM

ð5Þ

where EXBM
(0) are zeroth-order energies of EX|B

Mæ. In this
scheme, we calculate eq 5 as the summation of the product of
each matrix element Æμ|HEX|BMæ. There are five combina-
tions of EX and |BMæ that give nonzero Æμ|HEX|BMæ. Each
matrix element can be simplified through normal ordering of
creation and annihilation operators. These can be divided
into two categories based on the number of virtual spinor
labels. We define the terms with one or no virtual spinor label
as 1-virtual terms and other terms with two virtual spinor
labels as 2-virtual terms. For example, one of the 1-virtual

terms is

ÆμjHEEjBN � 1æ ¼ ∑
P
f corePE ÆμjEPjBN � 1æ

þ 1
2 ∑PRS

ðPE )RSÞÆμjEPRS jBN � 1æ

¼ ∑
P
∑
A
f corePE C μ�

A ÆAjEPjBN � 1æ

þ 1
2 ∑PRS ∑A

ðPE )RSÞC μ�
A ÆAjEPRS jBN � 1æ ð6Þ

and one of the 2-virtual terms is

ÆμjHEEFjBN � 2æ ¼ 1
2∑PR

ðPE )RFÞÆμjEPRjBN � 2æ

¼ 1
2∑PR∑A

ðPE )RFÞCμ�
A ÆAjEPRjBN � 2æ ð7Þ

where E and F are virtual spinor labels; I and J are core spinor
labels; P, Q, and R are active spinor labels; N is the number of
active electrons; fPE

core are the core Fock matrix elements;
(PQ )RS) are the antisymmetrized two-electron integrals; and
ÆA|EX|BMæ are the coupling coefficients (CCs).
2.2. Parallel Algorithm. A feature of the perturbation

method at the second order is that the energy or effective
Hamiltonian is expressed as a summation of many indepen-
dent terms. Neither diagonalization of large matrices nor
solution of large linear equations is necessary. Specifically,
the terms for determinant BM and ionization operator X in eq 5
are independent of each other. In addition, the matrix elements
used to obtain the terms in eq 5 are also simple sums of the
product of molecular integrals, CI coefficients, and CCs, as
seen in eqs 6 and 7.
The most straightforward method of parallelization is to use

the independency of the terms for the determinants BM in eq 5.
The summation for BM can be computed easily in parallel after
being divided and assigned to computational nodes. In fact, the
speedup by parallel computing was almost linear with the
number of computational nodes in our preliminary calculations.
However, in this parallelization, all molecular integrals are required
for each node, and thus no scalability is gained for integral storage,
which is a real problem in practice. Therefore, parallelization was
done utilizing the independency of the terms in the matrix element
computations of eqs 5 and 6.
In the serial algorithm, the Hamiltonian matrix elements and

their associated effective Hamiltonian matrix elements are calcu-
lated according to Schemes 1 and 2 for Æμ|HEE|BN�1æ and
Æμ|HEEF|BN�2æ, respectively. The algorithm is coupling coeffi-
cient driven. For each ionized determinant |BMæ, all nonzero
coupling coefficients ÆA|EX|BMæ (= þ1 or �1) are calculated first.
Then, being operated by an ionization operator EX, intermediate
determinants |Iæ = EX|B

Mæ are made, and the matrix elements
Æμ|HEX|BMæ are computed. Finally, the effective Hamiltonian
elements are computed.
The steps specific on the parallel algorithm are emphasized in

bold in Schemes 1 and 2. Consider Scheme 2 as an example to
explain the parallel algorithm. Usually, the computational cost of
the coupling coefficients ÆA|EX|BMæ is much smaller than that of
the matrix elements Æμ|HEX|BMæ. For each BN�2, the operation
count for ÆA|HEPR|BN�2æ isO(mact

2 ), wheremact is the number of
active spinors, while the operation count for Æμ|HEEF|BN�2æ is
O(mact

2 mvir
2 ), wheremvir is the number of virtual spinors. Thus, in
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the parallel algorithm, the coupling coefficients are computed
first in each computational node. Next, the E, F pairs are divided
and assigned to computational nodes. (In other words, the
ionization/excitation operators EX = EEF are distributed.) Then,
part of the effective Hamiltonian is calculated on each node for
the assigned E, F pairs. Finally, the effective Hamiltonians on
respective nodes are collected and summed to obtain the total
effectiveHamiltonian. The parallel algorithms for the other terms
are similar to Schemes 1 and 2.
The speedup by the parallel algorithm is roughly estimated as

SestimatedðnÞ ¼ TEH þ TCC

TEH=nþ TCC
ð8Þ

where n is the number of computational nodes, and TEH and
TCC are the computational times of the serial algorithm for

the perturbation summation and CCs, respectively. As long as TCC
is negligible compared with TEH/n (namely TEH/n . TCC),
parallelization is expected to speed up the calculation by a
factor of n.
The integral storage is also reduced by a factor n by parallelization.

For the 1-virtual terms in Scheme 1, label E and associated integrals
(PE||RS) is distributed to each computational node. Hence the
integral storage on a node is reduced to ([(mvir� 1)/n]þ 1)mvir

�1 of
the total, where the Gauss bracket [X] denotes the largest integer
less than or equal toX. For the 2-virtual terms in Scheme 2, since the
pair of labels (E,F) and associated integrals (PE||RF) (E < F) is
distributed, the integral storage on a node is reduced to ([{mvir(mvir

� 1)/2 � 1}/n] þ 1)(mvir(mvir � 1)/2)�1 of the total. These
values approach 1/n if mvir is sufficiently large compared with n.
2.3. Kramers Restriction (Kramers-Restricted GMC-QDPT

Formulas). The original GMC-QDPT was expressed in the

Scheme 2. Loop Structure for the Effective Hamiltonian Contributed From 2-Virtual Integralsa

aThe steps required in parallel algorithm are shown in bold.

Scheme 1. Loop Structure for the Effective Hamiltonian Contributed From 1-Virtual Integralsa

aThe steps required in parallel algorithm are shown in bold.
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Kramers-unrestricted form as in eqs 6 and 7 to allow for the
external magnetic field when needed. However, Kramers-re-
stricted formulas allow us to use only unique integrals in the
absence of an external magnetic field, such as the implementation
of Yanai et. al18 in a 4-spinor molecular Dirac�Fock SCF method.
In our implementation, we employ Kramers restriction to save
memory resources for GMC-QDPT calculation.
The time-reversed function φh = φ(�t) is written through the

time reversal operator K̂; as

K̂φ ¼ φh, K̂φh ¼ � φ ð9Þ
Using the relation

K̂ðpqjjrsÞ ¼ ð � 1ÞNðK̂pK̂qjjK̂rK̂sÞ� ð10Þ

where K̂p is a short expression for K̂φp, and N is the number of
barred spinors in {φp, φq, φr, φs} and the label symmetry:

ðpq ) rsÞ ¼ � ðrq ) psÞ ¼ � ðps ) rqÞ ¼ ðrs ) pqÞ ð11Þ

we can reduce the 16 (= 24) kinds of 1- and 2-virtual integrals
to 6:

ðpe )rsÞ ¼ ðpe )rsÞ�, ðpe )rsÞ ¼ � ðpe )rsÞ�

ðpe )rsÞ ¼ � ðpe )rsÞ�, ðpe )rsÞ ¼ ðpe )rsÞ�

ðpe )rsÞ ¼ � ðpe )rsÞ� ¼ � ðre )psÞ ¼ ðre )psÞ�

ðpe )rsÞ ¼ ðpe )rsÞ� ¼ � ðre )psÞ ¼ � ðre )psÞ� ð12Þ
for 1-virtual integrals, and

ðpe )rf Þ ¼ ðpe )rf Þ�, ðpe )rf Þ ¼ � ðpe )rf Þ�

ðpe )rf Þ ¼ � ðpe )rf Þ�, ðpe )rf Þ ¼ ðpe )rf Þ�

ðpe )rf Þ ¼ � ðpe )rf Þ� ¼ � ðre )pf Þ ¼ ðre )pf Þ�

ðpe )rf Þ ¼ ðpe )rf Þ� ¼ � ðre )pf Þ ¼ � ðre )pf Þ� ð13Þ

for 2-virtual integrals.
By reducing the integrals, we can obtain Kramers-restricted

formulas for the matrix elements as eqs 6 and 7. For example,
Æμ|HEEF|BN�2æ are rewritten as

ÆμjHEef jBN � 2æ ¼ 1
2∑pr ∑A

fðpe )rf ÞCμ�
A ÆAjEprjBN � 2æ

þ 2ðpe )rf ÞCμ�
A ÆAjEprjBN � 2æþðpe )rf ÞCμ�

A ÆAjEpr jBN � 2æg
ð14Þ

ÆμjHEef jBN � 2æ ¼ 1
2∑pr ∑A

fðpe )rf Þ�Cμ�
A ÆAjEpr jBN � 2æ

þ 2ðpejrf Þ�Cμ�
A ÆAjEprjBN � 2æ þ ðpe )rf Þ�Cμ�

A ÆAjEprjBN � 2æg
ð15Þ

ÆμjHEef jBN � 2æ ¼ 1
2∑pr ∑A

fðpe )rf ÞCμ�
A ÆAjEpr jBN � 2æ

þ 2ðpe )rf ÞCμ�
A ÆAjEprjBN � 2æþðpe )rf ÞCμ�

A ÆAjEprjBN � 2æg
ð16Þ

(Type Æμ|HEef|BN�2æ do not appear because of the restriction E
< F.) These formulas are actually used in the program.
In contrast to Kramers-unrestricted formulas, the length of the

summation for Kramers-pair labels p and r in eqs 14�16 is one-
fourth of that for spinor labels P and R in eq 7, whereas the
number of terms in the summation has increased from one to
three. Therefore, the operation count is hardly reduced. On the
other hand, however, we can reduce the amount of memory used
to store integrals to about three-eighths (= 6/16).

3. RESULTS AND DISCUSSION

We applied the present computational scheme to somemolec-
ular systems and measured CPU time (on 3.0 GHz Pentium D
930 processors) to evaluate its performance. We calculated the
d�d excitation energies for three platinum halide anions (d8-
complex [PtCl4]

2�, [PtBr4]
2�, and d6-complex [PtCl6]

2�), and
the 6p�7s and 6p�7p excitation energies of the Rn atom.

The spinors used in the perturbation calculations were deter-
mined using the four-component DHF method19 using the
REL4D program20 of UTChem.21 The basis set proposed by Koga,
Tatewaki, andMatsuoka (KTM)22 was employed for the platinum
halide complex calculations. For Cl, a d basis spinor (exponent
0.514) was added as a polarization function. For Rn, Dyall’s triple-
ζ23 basis set, which includes up to g-type polarization function,
augmented by single s, p, and d diffuse functions in an even-
tempered manner was employed. The molecular structures for the
platinum halide complexes were taken from experimental data.24,25

The zeroth-order wave functions were set according to the scheme
for nonrelativistic multireference multi state perturbation theory
implemented in Firefly.26

3.1. d�d Excitation Energies of Platinum Tetrachloride
Dianion [PtCl4]

2�. First, we calculated the d�d excitation
energies of [PtCl4]

2�. The target states were the 12 lowest
excited states resulting from d�d single excitations as well as the
ground state. The reference CI space was of a multireference
singles (MRS) type constructed from 20 electrons and 26 spinors,
which include 5d components of the platinum atom largely and
therefore necessary to describe the considered excitation states.
The determinants that spanned the reference CI space were
generated from 41 parent configurations (theDHF configuration
and the singly excited configurations constructed from the high-
est 20 occupied and the lowest 2 unoccupied spinors) and
selected according to their weights in the reference functions.
The determinants whose weights in the reference wave functions
were greater than 10�8 (i.e., |CI| > 10�4) were selected. The
lowest 108 spinors were frozen in the perturbation calculations.
Compared with previous papers,16 we used larger basis sets that
were specifically designed for four-component relativistic
calculations.
First, let us discuss the accuracy of the GMC-QDPT results.
The computed excitation energies are summarized in Table 1,

together with experimental data from Patterson27 and the two-
component time-dependent density functional theory (TDDFT)
results of Wang and Ziegler28 for comparison. For the states for
which experimental data are available (the 2A1g, 1B1g�2B1g,
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1B2g�2B2g, and 1Eg�4Eg states), the computed values showed
good agreement with experimental values. The maximum and
average deviations from the experiment were 0.16 and 0.08 eV,
respectively.
Table 1 includes the approximate weight that the reference

function occupied in the first-order perturbed wave function.15

GMC-QDPT enables us to include only configurations necessary
to construct the reference wave function, which greatly reduces
the computational time and resources needed compared with
complete active space self-consistent field (CASSCF) reference
perturbation theories. However, we must carefully investigate
whether we have considered enough configurations in our calcu-
lations, because we reduced a large number of configurations to
construct our reference wave function. To investigate our selec-
tion of the configurations, the weight of the reference function in
the first-order perturbed wave function was examined. This
weight is a measure of the quality of the reference wave functions;
if the weight is large enough, then we have included enough
configurations. By comparing the relative weight calculated for
different states, we can investigate the balance of the calculation;
if the weights for each state have similar values, then we have
included enough configurations to describe all states with the
same quality. The weights in Table 1 are close to each other. The
values are in the range 67.7�74.4% for the excited states and
75.5% for the ground state, which indicates that the calculations
were well balanced.
In comparison with the TDDFT results, the GMC-QDPT

excitation energies were smaller, especially in the lowest few
excited states. TDDFT calculation results showed a tendency to
overestimate the excitation energies, whereas GMC-QDPT
results agreed well with the experimental data for this system.
Now, let us discuss the efficiency of the parallel algorithm.
Table 2 summarizes the wall computational time and speedup

of the present scheme for the [PtCl4]
2� calculations, and Figure 1

is a plot of speedup ratios. Speedup is defined as S(n) = Tseq/T(n),
where Tseq is the wall clock time of a sequential execution, and T(n)
is the wall clock time of a parallel execution on n nodes.
As seen from Figure 1, the total speedup was approximately

proportional to the number of nodes n. The speedup values of
calculations for internal, 1-virtual, and 2-virtual terms showed
different behaviors. Speedup of the calculation for 2-virtual terms
was nearly proportional to the number of nodes; by contrast, the
calculation for internal terms showed almost no speedup for an

increase in the number of nodes. The calculation for 1-virtual
terms showed intermediate behavior: the speedup increased
more slowly as the number of nodes increased. Table 2 also
includes parallel efficiency, which is defined by E(n) = S(n)/n.
The parallel efficiency was high for 2�32 nodes, as implied by the
near proportionality of the speedup. The values were greater
than 0.80.
The behaviors seen in the calculation of 1- and 2-virtual terms

can be explainedmainly by the fraction of computational time for
the coupling coefficients ÆA|EX|BMæ occupying by the computation

Table 1. d�d Excitation Energies of [PtCl4]
2� (eV)

state ref-CI GMC-QDPT ref (%)a TDDFT band expt

1A1g 2.13 1.98 74.3 2.30

1A2g 2.20 2.06 74.4 2.34

1Eg 2.24 2.11 73.6 2.38 1 2.12

1B2g 2.31 2.40 67.7 2.49 2 2.24

1B1g 2.59 2.47 69.8 2.59 3 2.57

2Eg 2.63 2.56 70.8 2.69 3 2.57

2A1g 3.15 2.72 73.7 2.98 4 2.97

3Eg 3.19 2.94 70.1 3.03 4 2.97

2A2g 3.54 3.10 73.9 3.19

2B2g 3.49 3.38 71.5 3.43 5 3.23

4Eg 3.85 3.54 73.5 3.50 6 3.67

2B1g 3.89 3.82 71.0 3.53 6 3.67
aThe reference weight of the ground state was 75.5%.

Table 2. Wall Times and Parallel Efficiency of the [PtCl4]
2�

Calculationsa

wall time (s)

no. of

nodes

internal

part

1-virtual

part

2-virtual

part total speedup

parallel

efficiency

1 6.51 137.01 1324.93 1468.44 1.00 1.00

2 5.87 72.34 651.59 729.80 2.01 1.01

3 5.68 48.98 428.97 483.64 3.04 1.01

4 5.62 38.94 313.34 357.89 4.10 1.03

5 5.57 33.63 251.18 290.39 5.06 1.01

6 5.55 29.45 206.05 241.06 6.09 1.02

7 5.53 25.78 173.15 204.46 7.18 1.03

8 5.49 24.08 153.23 182.80 8.03 1.00

9 5.44 22.58 134.63 162.65 9.03 1.00

10 5.42 21.31 119.35 146.08 10.05 1.01

11 5.34 20.18 109.40 134.92 10.88 0.99

12 5.34 19.20 98.17 122.72 11.97 1.00

13 5.29 19.05 89.93 114.27 12.85 0.99

14 5.28 17.55 83.66 106.50 13.79 0.98

15 5.29 17.46 77.50 100.25 14.65 0.98

16 5.28 16.75 70.78 92.81 15.82 0.99

20 5.26 15.67 57.96 78.89 18.61 0.93

24 5.22 14.93 48.63 68.78 21.35 0.89

28 5.25 13.23 41.66 60.14 24.42 0.87

32 5.22 13.21 37.25 55.68 26.37 0.82
aThe wall times for the CC calculations were 5.08, 7.65, and 0.31 s for
the internal, 1-virtual, and 2-virtual parts, respectively.

Figure 1. Speedup of the [PtCl4]
2� calculations. Inverted triangles

(1): 1-virtual part; diamonds ((): 2-virtual part; triangles (2): internal
part; and squares (9): total.
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of each term. In the parallel algorithm explained in Section 2.2, the
computational time required for the coupling coefficients was
presumed to be small, and thus the coefficients are computed in
each node. The speedup can be roughly estimated according to eq 8.
For the 2-virtual term, this presumption was satisfactory. The
computational time for CCs was only 0.31 s and hence S(n) was
close to n. By contrast, for the 1-virtual part, the presumptionwas not
satisfactory. The computational time for CCs was 7.65 s, which
was 5.6% of the time required for the 1-virtual term on one node
(137.01 s) but 58%on 32 nodes (13.21 s). The computational times
of CCs were therefore not negligible in multiple-node calculations,
and as a result the S(n) curve behaved as seen in Figure 1.
3.2. d�d Excitation Energies of Platinum Tetrabromide

Dianion [PtBr4]
2�. The second example was [PtBr4]

2�. The
computational details were similar to those for [PtCl4]

2�. The
target excited states of [PtBr4]

2� were the 12 excited states
resulting from d�d single excitations. The reference space was of
MRS type constructed from 20 electrons and 28 spinors com-
prisingmostly d spinors of the platimum atom. The determinants
that spanned the reference space were prepared in the same
manner as in the [PtCl4]

2� calculation. The lowest 180 spinors
were frozen in the perturbation calculations.
The computed excitation energies are summarized in Table 3

together with the experimental data of Kroening and co-workers29

and the TDDFT results.28 For the states for which experimental
data are available (2A1g, 1A2g�2A2g, and 2Eg�4Eg states), the
computed values were in good agreement with the experimental
values, as in the case of [PtCl4]

2�. The maximum and average
deviations from the experiment were 0.26 and 0.19 eV, respec-
tively. The GMC-QDPT calculated values were close to the
TDDFT values of Wang and Ziegler. Both results were some-
what small compared with the experimental values.
Figure 2 is a plot of speedup ratios. The speedup and parallel

efficiency for [PtBr4]
2� showed similar trends to those found in

[PtCl4]
2�. The parallel efficiency was greater than 0.85 for n in

the range 2�32.
3.3. d�d Excitation Energies of Platinum Hexachloride

Dianion [PtCl6]
2�. The third example was [PtCl6]

2�, which is a
d6 octahedral complex. The target states were the lowest 10
excited states resulting from d�d single excitations as well as the
ground state. The reference space was of MRS type constructed
from 16 electrons and 24 spinors mostly comprising d spinors of
the platinum atom. The determinants that spanned the reference
space were generated from 65 parent configurations (the DHF
configuration and the singly excited configurations constructed
from the highest 16 occupied and the lowest 4 unoccupied
spinors) and then selected according to their weights in the
reference functions. The lowest 128 spinors were frozen in the
perturbation calculations.
The computed results are summarized in Table 4 together

with the experimental30,31 data and the TDDFT results.32 State
assignment in GMC-QDPT was done in Oh point group symme-
try, and calculations were done in D4h group symmetry. For this
system, a few experimental numbers (2.23, 2.64, and 3.51 eV) were
available, and these were computed to be 2.31, 2.76, and 3.47 eV
by GMC-QDPT. Compared with the [PtCl4]

2� and [PtBr4]
2�

cases, the referenceweights were slightly lower because the present
calculation involved more correlated electrons. For the same
reason, the differences between the reference CI and GMC-
QDPT excitation energies were larger: The average difference
was 0.18 eV in the [PtCl4]

2� case compared with 1.43 eV in the
[PtCl6]

2� case.
Figure 3 is a plot of speedup for [PtCl6]

2� calculations. Unlike
the previous cases, speedup of the 1-virtual term was almost
proportional to the number of nodes. The total computational
time for [PtCl6]

2� calculation was 7584.54 s and about five times
larger than the former two systems. Therefore, the computa-
tional time for the CCs (11.90 s) was negligible. As a result, the
total speedup and parallel efficiency for larger n was better than

Table 3. d�d Excitation Energies of [PtBr4]
2� (eV)

state ref-CI GMC-QDPT ref (%)a TDDFT band expt

1A1g 1.94 1.75 76.9 1.93

1A2g 1.99 1.81 76.9 1.97 1 2.11

1Eg 2.00 1.85 76.9 2.01 1 2.11

1B2g 2.04 2.01 77.4 2.11

1B1g 2.32 2.13 77.0 2.19

2Eg 2.36 2.23 77.0 2.29 2 2.37

2A1g 2.98 2.50 76.0 2.66 3 2.81

3Eg 2.98 2.60 76.5 2.67 3 2.81

2A2g 3.29 2.83 76.4 2.82 4 3.02

2B1g 3.23 2.99 76.0 2.72

4Eg 3.52 3.15 76.4 3.06 5 3.32

2B2g 3.57 3.37 76.2
aThe reference weight of the ground state was 78.2%.

Figure 2. Speedup of the [PtBr4]
2� calculations. Inverted triangles

(1): 1-virtual part; diamonds ((): 2-virtual part; triangles (2): internal
part; and squares (9): total.

Table 4. d�d Excitation Energies of [PtCl6]
2� Calculations

(eV)

state ref-CI GMC-QDPT ref (%)a TDDFT expt

1Eg 3.49 2.25 64.8 2.43

1T2g 3.57 2.31 64.8 2.50 2.23

1T1g 3.62 2.36 65.0 2.49

1A2g 4.16 2.68 65.0 2.63

2T1g 4.17 2.76 65.0 2.72 2.64

2Eg 4.42 2.93 64.5 2.74

2T2g 4.56 3.04 64.4 2.73

3T1g 4.53 3.05 64.7 2.79

2A2g 4.66 3.12 64.2 2.88

3T2g 5.05 3.47 64.5 2.87 3.51
aThe reference weight of the ground state was 68.5%.
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the previous cases. The parallel efficiency for n = 32 in the present
case was 0.95, which was better than in the [PtCl4]

2� (0.82) and
[PtBr4]

2� (0.89) cases.
3.4. 6p�7p and 6p�7s Excitation Energies of the Radon

Atom. The last example is the excitation energies of the radon
atom. The target states were the 14 excited states resulting from
6p�7s and 6p�7p single excitations as well as the ground state.
The reference space was of multireference singles and doubles
(MRSD) type constructed from six electrons and 14 spinors
(corresponding to 6p, 7s, and 7p orbitals). The determinants that
spanned the reference CI space were generated from the DHF
(6p)6(7s)0(7p)0 configuration and selected according to their
weights in the reference functions. All spinors were included in
the perturbation calculation.
The computed results are summarized in Table 5 together

with experimental values33 and TDDFT [statistical average of the
orbital model exchange�correlation potential (SAOP) and
ΔSCF] results34 for the 6p�7s excitations. For the lowest four
6p�7s excitations, experimental values of 6.77 eV (ΔJ = 2), 6.94 eV

(ΔJ = 1), 10.66 eV (ΔJ = 0), and 10.79 eV (ΔJ = 1) are available.
These excitation energies were computed to be 6.73, 6.93, 10.51,
and 10.52 eV, respectively. The former two values were in very
good agreement with the experimental values, whereas the latter
two had larger errors. For the latter two states, the reference
weights were relatively low, and the excitation energies at the
reference space CI level were too large, which indicates that the
reference functions were of low quality compared with those of
the other excited states. This was because themain characteristics
of these states were not well expressed using the MRSD-type
reference space generated from the DHF configuration. The
present results had better accuracy than the TDDFT results. The
TDDFT with SAOP underestimated 6p�7s excitation energies
by 0.68 eV at most, compared with the experimental values. In
addition, the computed values for the six lowest 6p�7p excited
states were also in good agreement with experimental data, and
the maximum deviation was 0.15 eV.
Figure 4 is a plot of speedup ratios for the internal, 1-virtual,

and 2-virtual terms. Speedup of the calculation for 2-virtual
terms, which is the bottleneck of the calculation, was nearly
proportional to the number of nodes. The parallel efficiency
value for n = 32 was 0.81, which was somewhat worse than those
for the [PtBr4]

2� and [PtCl6]
2� cases. The wall time for the

1-virtual terms (355.38 s) was close to that for the 2-virtual terms
(469.09 s), and it was not proportional to the number of nodes, as
in the previous cases. Consequently, the speedup and parallel
efficiency values were a little worse than the previous cases.

4. CONCLUSION

We have developed a new, efficient parallel algorithm for four-
component relativistic GMC-QDPT introducing Kramers sym-
metry. Our new algorithm has two advantages. The first advan-
tage is speeding up the calculation, which is expected to be linear
with the number of computational nodes n. The second is a
reduction in the memory resources required to 1/n compared
with single-node calculations. In addition, because of the Kra-
mers restriction, the amount of memory required to store two-
electron integrals, which are necessary for perturbation calcula-
tions, was reduced to three-eighths of the requirement for
conventional GMC-QDPT calculations.

We applied our new scheme to calculation of the d�d excita-
tion energies of the platinum halide complexes, [PtCl4]

2�,

Table 5. p�s and p�p Excitation Energies of the Rn Atom
(eV)

configuration term ΔJ

ref-

CI

GMC-

QDPT

ref

(%)a SAOP

ΔSCF

(LDA) expt

6p5(2P3/2
o )7s 2[3/2]o 2 7.08 6.73 82.9 6.54 6.56 6.77

1 7.26 6.93 83.4 6.74 6.72 6.94

6p5(2P3/2
o )7p 2[1/2] 1 8.30 8.22 83.4 8.21

0 8.71 8.79 85.8 8.64

6p5(2P3/2
o )7p 2[5/2] 2 8.37 8.30 83.6 8.26

3 8.53 8.50 84.0 8.43

6p5(2P3/2
o )7p 2[3/2] 1 8.58 8.55 83.9 8.46

2 8.63 8.63 84.4 8.52

6p5(2P1/2
o )7s 2[1/2]o 0 11.24 10.51 77.1 10.03 10.74 10.66

1 11.29 10.52 79.2 10.11 10.61 10.79

6p5(2P1/2
o )7p 2[1/2] 1 12.56 11.98 81.7

0 12.65 12.09 80.1

6p5(2P1/2
o )7p 2[3/2] 1 12.75 12.21 80.1

2 12.75 12.24 82.1
aThe reference weight of the ground state was 87.2%.

Figure 3. Speedup of the [PtCl6]
2� calculations. Inverted triangles

(1): 1-virtual part; diamonds ((): 2-virtual part; triangles (2): internal
part; and squares (9): total.

Figure 4. Speedup of the Rn atom calculations. Inverted triangles (1):
1-virtual part; diamonds ((): 2-virtual part; triangles (2): internal part;
and squares (9): total.



1005 dx.doi.org/10.1021/ct2000205 |J. Chem. Theory Comput. 2011, 7, 998–1005

Journal of Chemical Theory and Computation ARTICLE

[PtBr4]
2�, and [PtCl6]

2� and 6p�7s and 6p�7p excitation
energies of the Rn atom. The present parallel algorithm had high
efficiency, approximately proportional to the number of nodes.
In GMC-QDPT calculations, the main bottleneck is calculation
of the 2-virtual terms. Our new algorithm works linearly for these
terms. Overall, the present algorithm showed high performance.
In the case of platinum halide complexes, the calculated results
were in good agreement with experimental values. We ana-
lyzed the wave function to evaluate our selection of reference
functions. The reference weights were large enough for each
state, and their deviations were small. Thus, these calculations
have a good quality and balance. For the Rn atom, computa-
tional values of the two lower states of the 4 calculated 6p�7s
excited states showed good agreement with the experimental
values, while the computational values of 2 higher states had
larger errors, and the reference weights were slightly smaller
than for the lower two states.
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