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ABSTRACT: The effect of molecular orientational correlations on the
solvation free energy (SFE) of one-dimensional and three-dimensional
reference interaction site models (1D- and 3D-RISM) is investigated.
The repulsive bridge correction (RBC) and the partial wave (PW)
expansion are representative approaches for accounting for the orienta-
tional correlation partially lacking in original 1D- and 3D-RISM. The
SFEs of 1D- and 3D-RISM for a set of small organic molecules are
compared with the simulation results. Accordingly, the SFE expressions,
based on RBC and PW, provide more accurate results than those of the
uncorrected HNC or KH SFE expressions, which indicates that accounting
for molecular orientational dependencies significantly contributes to the
improvement of the SFE. The SFE component analysis indicates that the
nonpolar component mainly contributes to the correction. The
dependence of the error in the RISM SFE on the number of solute sites is examined. In addition, we discuss the differences
between 1D- and 3D-RISM through the effect of these corrections.

1. INTRODUCTION

The reference interaction site model (RISM) and its three-
dimensional variant (3D-RISM)1−5 are powerful tools for
investigating the solvation thermodynamics of molecules in
solution. (Hereinafter, we refer to the RISM theory as 1D-
RISM to differentiate from 3D-RISM.) These methods are
derived from the molecular Ornstein−Zernike integral
equation theory by applying the interaction site model for
the solute and solvent molecules in 1D-RISM and for the
solvent molecules in 3D-RISM. These methods provide
solvation structures with atomistic solute−solvent interactions
to enable the calculation of solvation free energy (SFE) at a
reasonable computational cost compared to those of molecular
simulations. This is because both thermodynamic and
configuration integrals upon solvation can be performed
analytically within the RISM framework. Due to these features,
1D- and 3D-RISM have been applied to various chemical
reactions in solution,6−11 molecular recognition,12−14 ion
permeation,12,15 and aggregation.16,17

To date, intensive efforts have been devoted to improving
the accuracy of RISM methods. Palmer et al. found that the
error in the SFE of 3D-RISM strongly correlates with the
partial molar volume (PMV) of solute molecules,18 and they
proposed the universal correction method using the PMV with
empirical parameters. Truchon et al. showed that the clear
source of errors in the SFE of 3D-RISM is the nonpolar

component of SFE that originates from the cavity formation,
while the electrostatic component exhibits good correlation
with molecular simulations.19 Several authors, thereafter, have
proposed other corrections,19−24 thereby significantly improv-
ing the accuracy of SFE for small molecules including ions
calculated using 1D- and 3D-RISM in aqueous solutions and
nonaqueous solution.25−32

In the RISM formalism, there are two sources of error in the
SFE: the approximations in closure relations and the use of the
interaction site model (ISM).
The hypernetted-chain (HNC)2 and the Kovalenko−Hirata

(KH)33 closures have been widely used in the literature. The
HNC closure for a simple liquid is derived ignoring the bridge
function, which is inherently nonzero, in the exact closure
equation. The site−site HNC closure is derived from the
analogy of the simple liquid case. Because the site−site HNC
closure is including improper diagrams, it is impossible to
define the bridge function in RISM as missing diagrams in the
HNC closure.34 The KH closure is obtained by partially
linearizing the HNC closure. The absence of bridge-type
contribution leads to a significant error for the thermodynamic
quantities of RISM.18,19,35−39 Miyata and Thapa assessed the

Received: April 20, 2019
Published: August 13, 2019

Article

pubs.acs.org/jcimCite This: J. Chem. Inf. Model. 2019, 59, 3770−3781

© 2019 American Chemical Society 3770 DOI: 10.1021/acs.jcim.9b00330
J. Chem. Inf. Model. 2019, 59, 3770−3781

pubs.acs.org/jcim
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.9b00330
http://dx.doi.org/10.1021/acs.jcim.9b00330


accuracy of the HNC and KH closures in terms of SFE for a
simple Lennard-Jones (LJ) solution.36

The use of the ISM is another major source of error in SFE.
We can address the following three issues introduced for the
formulation of RISM with ISM. First, the site−site total
correlation functions are defined as the integration of the six-
dimensional (6D) molecular pair correlation function over the
orientations of molecules. Second, a superposition approx-
imation is applied to the direct correlation function. In this
approximation, the molecular direct correlation function,
which is a 6D function, is approximated as a sum of spherically
symmetric site−site direct correlation functions. Third, the
HNC and KH closures from the theory of simple liquids are
used for each of the pairs of molecular sites separately, as if the
sites were free spherical particles not correlated to each other.
This means that the information related to the molecular
structure is not directly incorporated into the closure. These
approximations have significantly deteriorated the accuracy of
RISM, particularly for determining SFE.40−43

Several approaches to ameliorate the lack of orientational
correlation have been proposed. One is the repulsive bridge
correction (RBC) by Kovalenko and Hirata.44 They argued
that RISM/HNC underestimates the three-body correlation of
water sites near the hydrophobic solute, which results in the
overestimation of water ordering around the solute, leading to
the overestimation of the entropic component in the SFE
expression. To overcome this problem, they applied RBC to
the HNC closure to incorporate the solvent intramolecular
correlation. Several correction methods have been proposed
based on RBC.45,46 Another approach considering the
orientational correlation is the distributed partial wave (PW)
expansion by Ten-no and Iwata.40,41 In this approach, SFE was
calculated from the PW expansion form of the molecular OZ
(MOZ) equation using the correlation functions of RISM/
HNC. Chuev et al. proposed a combined PW and excluded
volume correction method.47 These approaches have signifi-
cantly improved the determination accuracy of SFE for several
organic molecules and rare gas atoms.40,44,48,49

In this study, we focus on the RBC and PW expansion
methods. Although a number of systematic surveys on the
propert ies of SFE express ions have been con-
ducted,19,36−40,48−52 as far as we know, no investigation from
the viewpoint of correction for molecular orientations has been
reported. It is expected that a detailed analysis of these two
approaches would facilitate a more sophisticated treatment of
integral equation theories. Therefore, we examine the test set
of small organic molecules, which is widely used for the
assessment of SFE.53 The SFEs evaluated by free energy
perturbation (FEP) are used as a reference. In addition, the
bulk solvent pressure expressions derived using the RBC and
PW methods are also discussed. The aim of our study is to
quantitatively compare the SFE expressions in 1D- and 3D-
RISM theories and investigate how the presence of site
correlation information in the SFE expressions affects the
accuracy of the SFE.

2. THEORY

In this section, we briefly describe the SFE expressions within
the framework of 1D- and 3D-RISM. The details of these
theories can be found in the literature.1,2,4,5

2.1. SFE in 1D- and 3D-RISM. The SFE can be generally
evaluated using the following Kirkwood charging formula

∫ ∫μ ρ λ λΔ = x x x xd dx dx u g( , ) ( , ; )
0

1

1 2 1 2 1 2 (1)

where u and g represent the intermolecular potential and
distribution function, respectively; λ, the charging parameter;
and x1 and x2 denote the full coordinates (position and
orientation) of molecules 1 and 2, respectively.2 λ = 0 and λ =
1 correspond to the unsolvated and solvated states,
respectively. ρ is the number density of the pure solvent.
The HNC-SFE expression, which is derived from eq 1
assuming the HNC closure, is the following
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which is known as the Singer−Chandler expression.54

Similarly, using the KH closure and 1D-RISM equation, the
SFE for the KH approximation is derived as
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where Θ(x) represents the Heaviside step function.2,33 Greek
subscripts, α, γ,···, refer to the interaction sites of the solute,
and Roman subscripts, i, j,···, denote those of the solvent
molecules. h and c represent the total and direct correlation
functions, respectively. β = 1/kBT is the inverse temperature,
where kB and T are the Boltzmann constant and absolute
temperature, respectively. We refer to the SFE expressions in
eqs 2 and 3 as 1D-HNC and 1D-KH, respectively. It is noted
that ΔμHNC and ΔμKH contain unphysical terms, {hαi(r)}

2 in
the integrand, the contribution of which increases monotoni-
cally with the number of auxiliary sites. In addition, the SFE
expression under the assumption of Gaussian fluctuation (GF)
of the solvent distribution, 1D-GF, is given as55
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Considering the 3D generalization of the Singer−Chandler
expression, the SFEs in 3D-RISM of HNC, KH, and GF are
given by33,44,55−57
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These expressions, eq 5−7, are denoted as 3D-HNC, 3D-
KH, and 3D-GF, respectively.

2.2. Repulsive Bridge Correction (RBC). RBC is a
correction method that introduces the intramolecular
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correlation function of the solvent as a bridge correction in the
closure equation.44 For 1D-RISM, the following bridge
correction is added to the HNC closure

∏ ω β{ } = [ * {− }]α α
≠

−
b r r u rexp ( ) ( ) exp ( )i

j i

n

ji j
R

(8)

where ω represents the intramolecular correlation function of
the solvent; n, the number of solvent interaction sites; uR, the
short-range core repulsion function; and ∗, a convolution
integral. In this study, we employed the repulsive term in the
LJ potential, uR. The SFE of the 1D-RISM/HNC+RBC closure
is obtained using the thermodynamic perturbation theory
(TPT), 1D-HNC+RBC, as
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where the correlation functions, hαi
HNC (r) and ΔμHNC, are

obtained in the absence of the bridge correction.
For 3D-RISM, the bridge function of RBC has the following

form
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We employed the repulsive term in the LJ potential as the
short-range core repulsion function, uR, as with the 1D-RISM
theory. The SFE expression of 3D-RISM/HNC+RBC, referred
to as 3D-HNC+RBC, is obtained by TPT, as in the 1D-RISM
case:
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where the correlation functions are taken for bi(r) = 0, and
ΔμHNC is obtained using eq 5.
The KH+RBC SFE expressions are obtained using the same

bridge correction to the KH closure, i.e., the RDF with KH
+RBC is

= { }α α α
+g r b r g r( ) exp ( ) ( )i i i

KH RBC KH
(12)

where gαi
KH is the RDF of the KH closure. The spatial

distribution function in 3D-RISM/KH+RBC is also given in a
similar manner. Using the TPT, the SFE expressions become
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for 1D-RISM, and
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for 3D-RISM. The correlation functions in eqs 13 and 14 are
obtained for bαi(r) = 0 and bi(r) = 0, respectively. The SFEs by
eqs 13 and 14 are denoted as 1D-KH+RBC and 3D-KH+RBC,
respectively. Details of the derivation of 1D-KH+RBC and 3D-
KH+RBC can be found in the Supporting Information (SI).

2.3. Distributed Partial Wave (PW) Expansion. The
SFE expression of the PW expansion in 1D-RISM correlation
functions, referred to as 1D-PW, has the following form:40
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and where ω represents the intramolecular correlation function
of the solute molecule; rα and ri, the relative positions of solute
site α and solvent site i, respectively; and hPW (r), the PW
component of the total correlation function.
We derive the 3D-RISM SFE variant of PW, 3D-PW, as
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The detail of the derivation of the SFE by the 3D-RISM
theory based on PW is provided in the SI.

3. COMPUTATIONAL DETAILS
We use 467 small organic molecules taken from the test set of
Rizzo et al.,58 subsequently augmented by Mobley et al.53 with
extensive FEP results (see Table S1 in the SI). It is noted that
the former study employed 504 molecules. However, our
RISM-HNC calculations did not converge for some of these
molecules, so they were excluded from the analysis. The
geometries of the solute molecules are optimized at Hartree−
Fock/6-31G(d) in vacuo. The LJ parameters for the solute
molecules are obtained from the general Amber force field
(GAFF) parameter set assigned by Antechamber.59 The
extended simple point charge (SPC/E) model60 is used for
the solvent water with modified hydrogen parameters (σH =
1.0 Å and εH = 0.046 kcal mol−1). The LJ parameters of the
hydroxy and protic hydrogens of solute molecules (alcohols,
phenols, and acetic acid) are set to σH = 1.0 Å and εH = 0.046
kcal mol−1 for the 1D-RISM adaptation. The Lorentz−
Berthelot combination rule is applied in the calculations of
the LJ parameters between different sites. The restraint
electrostatic potential (RESP) method has been used to
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determine the atomic partial charges on the solute sites.61 The
number density of the solvent water and temperature are
0.03334 molecules Å−3 and 298.0 K, respectively. The number
of grid points is 2048 with a grid spacing of 0.05 Å for the 1D-
RISM calculations. For the 3D-RISM calculations, the grid is
2563 with a spacing of 0.25 Å. The modified direct inversion in
the iterative subspace (MDIIS)62 is used to converge the 1D-
and 3D-RISM equations, where the convergence threshold is
10−8 with respect to the root-mean-square deviation (RMSD)
of the correlation functions. The correlation functions of 1D-
RISM/HNC or 3D-RISM/HNC are used for the GF, RBC-
TPT, and PW SFE expressions.
The above force field parameters for the solute and solvent

molecules differ from those of Mobley et al.53 Furthermore, we
performed SFE calculations with the same force field
parameters used by Mobley et al., and no significant difference
was found in the results. (The results for Mobley’s force field
are summarized in Figure S2 and Table S3 in the Supporting
Information.) In the present study, Mobley’s parameter sets
only converged for 450 molecules; therefore, we employed the
GAFF parameter set for further analysis.

The geometrical optimization, LJ parametrization, and RESP
calculations of the solute were performed using the Gaussian
09 Revision E.01 package.63 All 1D- and 3D-RISM calculations
were performed with an in-house RISM/3D-RISM code.64

4. RESULTS AND DISCUSSION
4.1. SFE Component Analysis. The SFE of 1D- and 3D-

RISM with various SFE expressions are compared with the
FEP result by Mobley et al.,53 as shown in Figure 1. The
vertical and horizontal axes represent the SFEs of RISM and
FEP, respectively. Normal distribution functions of the SFE
error are plotted in Figure 2, and the root-mean-squared error
(RMSE) from the FEP results and the coefficients of
determination (R2) from the linear regression fit are shown
in Table 1.
At first glance, the uncorrected HNC and KH closures show a

serious discrepancy from FEP with broad normal distributions.
(The maximum errors are about 75 and 40 kcal mol−1 for 1D
and 3D, respectively.) It can be seen that both RBC and PW
afford relatively accurate SFEs in both the 1D- and 3D-RISM
cases. Moreover, the normal distributions are significantly

Figure 1. Comparison of the RISM SFEs with the FEP results. The solid black line represents y = x; open circles are results of 3D-RISM
calculations; open triangles are results of 1D-RISM calculations.
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improved by RBC and PW application. These results clearly
show that the introduction of the orientational correlation
improves the SFE. The SFE expressions in 3D-RISM provide a
more accurate SFE than those in the 1D-RISM theory, except
for those based on PW. 3D-GF, 3D-HNC+RBC, and 3D-KH
+RBC provide SFEs nearly consistent with or slightly higher

than the FEP results. In particular, 3D-HNC+RBC is the most
accurate among the SFE expressions used in this study (RMSE
= 2.38 kcal mol−1). 1D-GF, 1D-HNC+RBC, and 1D-KH+RBC
provide SFEs that are significantly underestimated by 15−20
kcal mol−1. Although these corrections improve HNC and KH,
the result appears to be overcorrected. In contrast to that of
RBC, 1D-PW exhibits better RMSE and a normal distribution
compared to that of 3D-PW.
To clarify the origin of the errors, we evaluate the nonpolar,

Δμnp, and the electrostatic, Δμele, components of the SFE.
These components are computed individually in two steps:
Δμnp is obtained by setting the solute partial charges to zero
and subtracting Δμnp from Δμ for Δμele, i.e., Δμele = Δμ −
Δμnp.19 These components are compared with those of FEP53

in Figures 3 and 4. The RMSE and coefficients of
determination are summarized in Table 1.
First, we consider the nonpolar components, Δμnp, in Figure

3. The uncorrected HNC and KH results are significantly
deviated from FEP. The RMSEs of Δμnp are in an order
comparable to those of the total SFE for each SFE, indicating
that the main source of the error of RISM SFE is the imprecise
estimation of Δμnp as indicated by Truchon et al.19 GF
generally outperforms HNC and KH, although 1D-GF
provides slightly underestimated results.
Both RBC and PW significantly improve the accuracy of

Δμnp, and 3D-HNC+RBC is the most accurate in this study.
Notably, the behaviors of RBC and PW differ remarkably
between the 1D- and 3D-RISM cases. In what follows, we
closely discuss RBC and PW separately.
By introducing RBC, the Δμnp of 1D-HNC decreases

drastically by 8−81 kcal mol−1 and becomes lower than that of
FEP. For 3D-HNC+RBC, the Δμnp also decreases; however,
the magnitude of the correction is smaller than that in the 1D
case (range of correction is 6−26 kcal mol−1). Consequently,
3D-HNC+RBC shows good agreement with the FEP results.
The results of KH+RBC show a similar tendency with those of
HNC+RBC. For both 1D and 3D, the magnitudes of
correction by KH+RBC are almost the same as those by
HNC+RBC (i.e., 8−83 and 6−26 kcal mol−1 for 1D and 3D,
respectively). As KH exhibits higher values than HNC (see
Figure 3(a, b, g, and h)), 1D-KH+RBC and 3D-KH+RBC
exhibit higher values than 1D-HNC+RBC and 3D-HNC
+RBC, respectively. Although 3D-KH+RBC slightly underper-
forms 3D-HNC+RBC, the SFE of 3D-KH was significantly
improved by introducing RBC. These results indicate that 3D-
KH+RBC can provide the SFE with relatively good accuracy
while retaining the feature of stable numerical convergence of
the KH closure.
Introducing the PW also decreases Δμnp, although the

magnitude of the correction is slightly smaller than that of
RBC (the correction ranges in 3−67 kcal mol−1 for 1D and 1−
9 kcal mol−1 for 3D). In particular, 1D-PW exhibits excellent
consistency with the FEP results. These results highlight the
interesting feature of the PW expansion. The PW expansion
may effectively provide not only the correction for the errors
caused by ISM, but also the correction for the lack of the
bridge function because the RISM-SFE errors originate from
both of them. Conversely, relatively large errors remain in 3D-
PW. Since the PW expansion is applied to solvent only in 3D-
RISM, the errors due to the lack of the bridge function are not
correctable as in 1D-PW.
Next, we consider the results of the electrostatic components

of the SFEs, Δμele. In Figure 4, Δμele exhibits good correlation

Figure 2. Normal distribution functions of SFE errors by (a) 3D-
RISM and (b) 1D-RISM. Color code: light blue dashed lines, HNC;
yellow dash-dotted lines, KH; blue dotted lines, GF; red long dash-
two-dotted lines, HNC+RBC; purple long dash-dotted lines, KH
+RBC; and green solid lines, PW.

Table 1. RMSEs of RISM SFE from FEP and Coefficients of
Determination (R2) and Their Electrostatic and Nonpolar
Componentsa

RMSE (R2)

SFE expression Total Nonpolar Electrostatic

3D-HNC 16.80 (0.232) 17.34 (0.133) 1.25 (0.856)
3D-KH 21.66 (0.139) 22.10 (0.109) 1.19 (0.852)
3D-GF 3.07 (0.738) 3.80 (0.450) 2.68 (0.782)
3D-HNC+RBC 2.38 (0.671) 2.00 (0.423) 1.40 (0.853)
3D-KH+RBC 5.86 (0.433) 6.16 (0.243) 1.28 (0.849)
3D-PW 12.45 (0.311) 12.32 (0.179) 1.02 (0.851)
1D-HNC 34.52 (0.056) 36.41 (0.098) 2.43 (0.869)
1D-KH 37.41 (0.049) 39.35 (0.094) 2.47 (0.869)
1D-GF 5.24 (0.613) 3.62 (0.004) 2.34 (0.858)
1D-HNC+RBC 11.49 (0.789) 8.51 (0.283) 3.30 (0.829)
1D-KH+RBC 10.04 (0.797) 7.05 (0.330) 3.30 (0.826)
1D-PW 4.09 (0.705) 4.47 (0.031) 1.22 (0.833)

aThe R2 values are given in parentheses. The RMSEs are given in kcal
mol−1.
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with the FEP results, and the errors are small compared with
the case of Δμnp (RMSEs are 1−4 kcal mol−1). These results
are in good agreement with those reported by Truchon et al.
for 3D-KH.19 In particular, the accuracy of the 3D-RISM SFEs,
except for 3D-GF, is overall preferable. This is because 3D-
RISM considers the anisotropy of the solute molecule. 1D-
RISM SFEs are slightly underestimated with some discrepancy,
although 1D-PW exhibits good accuracy. The accuracy of Δμele
was deteriorated by applying RBC to both 1D- and 3D-RISM.
As reported previously,44 RBC is suitable for correcting the
hydrophobic repulsive interaction between solute and solvent
molecules but not for electrostatic interactions. In contrast,
1D-PW and 3D-PW improve the accuracy of Δμele, and 3D-
PW is the most accurate among the SFE expressions in this
study.
4.2. Assessment of Solute Site-Number Dependence

of SFE Errors. In the RISM framework, the errors in SFE are
known to increase monotonically with the number of solute
sites.40,41,46 Since these errors disappear in the extended atom
limit, the accuracy of SFE is considered to be crucial for the
description of chemical reactions and molecular assemblies. To

elucidate the site-number dependency of the SFE errors, we
evaluated the correlation between the number of solute sites
and the deviations of RISM SFE from the FEP results.53 In
Figure 5, the differences between the RISM SFE and the FEP,
ΔΔμ = ΔμRISM − ΔμFEP, are plotted against the number of
solute sites. The results of the linear fitting are also
superimposed in the figure.
For HNC and KH, ΔΔμ increases monotonically with the

number of solute sites, as reported in the literatures,40,41,46,48,49

and the degrees of the increase are somewhat reduced for 3D-
HNC and 3D-KH (gradients are 0.79 and 1.03, respectively)
compared with those for 1D-HNC and 1D-KH (gradients are
1.99 and 2.11, respectively). (It is noted that units for the
gradients in Figure 5 are given by kcal mol−1 (number of
sites)−1.) Therefore, the incorporation of the orientational
correlation by 3D treatment certainly contributes to the
correction of the site-number dependence of the SFE errors.
Furthermore, 1D-GF and 3D-GF exhibit a relatively weak
dependence. That is, the ΔΔμ values for 1D-GF monotoni-
cally increase negatively with the number of solute sites, and

Figure 3. Comparison of the nonpolar components of RISM SFEs with the FEP results. The solid black line represents y = x; open circles are
results of 3D-RISM; open triangles are results of 1D-RISM. (See also Figure S1 for close up views of panels (c), (d), (e), (f), (i), (j), (k), and (l)).
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those for 3D-GF increase positively (gradients are −0.37 and
0.21, respectively).
By introducing the RBC and PW, the degree of solute site-

number dependence significantly decreased. The trend of the
solute site-number dependence is clearly different between in
1D- and 3D-RISM. 1D-PW has almost no solute site-number
dependence of the SFE (gradient is only −0.06). Both 1D-
HNC+RBC and 1D-KH+RBC have weak dependencies
(gradients are −0.21, and −0.15, respectively). However, 3D-
HNC+RBC, 3D-KH+RBC, and 3D-PW clearly exhibit solute
site-number dependencies (gradients are 0.31, 0.55, and 0.60,
respectively), although these SFE expressions can somewhat
suppress the degree of increase in ΔΔμ compared with 3D-
HNC and 3D-KH.
As described in Section 4.1, RBC and the PW expansion

only introduce the orientational correlation of solvent part in
3D-RISM. Therefore, the defects in the solute part in 3D-
RISM affect the solute site-number dependence of ΔΔμ in 3D-
HNC+RBC, 3D-KH+RBC, and 3D-PW, unlike in the 1D
cases.

4.3. Relationship to Bulk Solvent Pressure with SFE.
The pressure correction (PC) method is one of the most
successful correction methods for 3D-RISM SFE. It is
suggested that the bulk solvent pressure based on 3D-RISM
is dramatically overestimated, and the PΔV term is well
correlated with the SFE error,23 where P and ΔV mean the
bulk solvent pressure and PMV of solute molecule,
respectively. In this subsection, we consider the relationship
between the bulk solvent pressure and SFE. The bulk solvent
pressure can be defined by the work (free energy change)
required to exclude the solvent from the macroscopic volume,
starting from a uniform density solvent. This work can be
evaluated by the SFE of solute molecules with a large repulsive
core. In the same manner as Sergiievskyi et al.,23 the bulk
solvent pressures for the corresponding SFE expression are
given as

∑ρ
β

ρ
β

= = − ̂ =‐ ‐P P c k
2 2

( 0)
ij

ij3D GF 1D GF

2
HNC

(19)

Figure 4. Comparison of the electrostatic components of RISM SFEs with FEP results. The solid black line represents y = x; open circles are results
of 3D-RISM; open triangles are results of 1D-RISM.
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where cîj
HNC and cîj

KH are the solvent−solvent direct correlation
functions in Fourier space obtained by RISM/HNC and
RISM/KH, respectively. nu and ns denote the numbers of
solute and solvent sites, respectively. The details of the
derivation of these expressions are given in Section S2 of the
Supporting Information. The 3D-HNC and 3D-RBC have the
same pressure expression, which has a dependence on solvent
site number, whereas the pressures for 1D-HNC and 1D-RBC
depend on both solute and solvent site numbers. The GF and
PW pressures have no site-number dependences, and they have
the same formulas in 1D and 3D cases. These site-number

Figure 5. Correlation plots of the differences between the RISM SFEs and the FEP values, ΔΔμ, and the number of solute sites. The solid black
line in each figure represents the linear regression fit; open circles are results of 3D-RISM; open triangles are results of 1D-RISM.
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dependences correspond to those of the SFE.40,41,48,49 This
means that the pressures determined by HNC, KH, and RBC-
TPT show unphysical behavior for the addition of “auxiliary”
sites. Therefore, the introduction of the orientational
correlation by the PW expansion improves the pressure
expression, whereas the RBC-TPT maintains the site-number
dependence.
Based on eqs 19−24, the pressure must be

= ≥ = ≥ =

> =
‐ ‐ ‐ ‐ ‐ ‐

‐ ‐

P P P P P P

P P
1D HNC 1D RBC 3D HNC 3D RBC 3D PW 1D PW

3D GF 1D GF (25)

where the equality between 1D-HNC/RBC and 3D-HNC/
RBC holds when nu = 1 and that between 3D-HNC/RBC and
3D/1D-PW holds when ns = 1. Similar trends to eq 25 can be
found for the SFE error in Figure 1 and Table 1, except for the
1D/3D-RBC. The RBC-TPT does not affect the pressure
expression; therefore, it achieves an improvement in the SFE
regardless of pressure. In Table S7, the bulk solvent pressures
evaluated by eqs 19−24 are summarized. It is worth noting
that the pressure expressions with unphysical site-number
dependence give significantly overestimated values.
From these pressure expressions, the PC terms can be

readily evaluated. The PC term is given by

μΔ = − ΔP VPC (26)

where ΔV is the PMV.65−67 Note that the PMVs of RBC and
PW are identical to that of HNC, as the PMV is determined
solely by the solute−solvent correlation functions. The
computed SFEs with the PC are compared with the FEP in
Figure 6 and Figure S6, and the RMSEs of SFEs with the PC
are summarized in Table 2. As reported by Sergiievskyi et al.,23

the SFEs by 3D-HNC and 3D-KH are drastically improved by
adding the PC. However, for most other cases, the SFEs are
worsened by adding the PC except 3D-PW. In particular, the
SFEs of RBC with the PC show larger deviations than those
without the PC. Since the RBC does not affect pressure, the
PC terms of 1D-HNC/RBC and 3D-HNC/RBC are identical
to those of 1D-HNC and 3D-HNC, respectively. As a result of
this fact, the PC terms are too large for the RBC SFEs. On the
other hand, the 3D-PW with the PC shows relatively good
performance as 3D-HNC with PC and 3D-KH with PC. This
may be because the PC terms corrected the error due to the
excluded volume of the solute that was not corrected by 3D-
PW.

5. CONCLUSIONS
We have examined the effect of the solute−solvent orienta-
tional correlation on SFE of 1D- and 3D-RISM. Therefore, we
used the RBC and PW expansion methods in conjunction with
the KH and HNC closures to examine 1D-HNC, 1D-KH, 1D-
GF, 1D-HNC+RBC, 1D-KH+RBC, 1D-PW, 3D-HNC, 3D-
KH, 3D-GF, 3D-HNC+RBC, 3D-KH+RBC, and 3D-PW
schemes, where 3D-PW was newly implemented in the present
study. We computed the SFEs of these schemes in aqueous
solutions for a set of small organic molecules. The results were
compared with the simulation results.
Apparently, RBC and PW provide accurate SFE, compared

to those of HNC and KH closures without corrections. These
results show that incorporating the molecular orientations
significantly contributes to improving the accuracy of SFE. In
addition, the SFE component analysis demonstrated that the
correction of the nonpolar component mainly contributes to

the overall correction of the SFE values, indicating that the
incorporation of the molecular orientations mainly affects the
nonpolar component of SFE.
Conversely, it was found that the results of RBC and PW

revealed different tendencies between 3D- and 1D-RISM. For
3D-RISM, RBC was more accurate than PW, while PW
outperformed RBC for 1D-RISM. In addition, the error in SFE
for 3D-HNC+RBC, 3D-KH+RBC, and 3D-PW increases as
the number of solute sites increases, while no significant
increase was found in the corresponding SFE expressions in
1D-RISM. Therefore, it appears that the corrections are
insufficient in the 3D-RISM case, and a more sophisticated
correction or closure equation is necessary.
The effects of the orientational correlation on the bulk

solvent pressure and their relation to SFE have also been
discussed. The PW expansion contributes to the improvement
of the pressure expression, which removes unphysical behavior

Figure 6. RISM SFEs with PC are compared with the FEP. The solid
black line represents y = x; open circles are results of 3D-RISM
calculations; open triangles are results of 1D-RISM calculations.
Figures for 1D-HNC, 1D-HNC+RBC, 1D-KH, and 1D-KH+RBC are
given in Figure S6.
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related to the site-number dependence, whereas the RBC has
no contribution to the pressure expression. In the present
study, we have not discussed the PMV, which is one of the
factors in the PC method. Because the same correlation
function from the HNC is employed for the GF, RBC-TPT,
and PW, there is no influence on the PMV from the viewpoint
of the Kirkwood−Buff theory.65,66 However, if a closure
equation corresponding to the PW is developed in the future,
the influence of the orientational correlation on the PMV will
also be considered.
All the cases examined in this study are for aqueous

solutions. The previous studies have shown that 1D-PW is
quantitatively accurate for the chloroform solution and the
partition coefficient between water and chloroform.48,49 In
contrast, the RBC for organic solvents behaves in a manner
significantly different from that of an aqueous solution.45

Therefore, further study on the orientational correlations for
nonaqueous solutions is needed for more general insights.
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