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A B S T R A C T   

Two-electron repulsion operator formulas for the second- and third-order Douglas–Kroll (DK2 and DK3) method 
were derived and implemented. The formulas were applied to helium-like ions with Z = 10, 20, …, 130, and to 
rare gas atoms. The energies obtained for the DK2 and DK3 two-electron operators showed differences from the 
four-component method that were one order of magnitude smaller than those of the nonrelativistic and DK1 two- 
electron operators. Approximation formulas for the small component-type two-electron integrals were also 
derived; they were applied to the helium-like ions with Z = 80 and 130 and were numerically confirmed to 
reproduce unapproximated values very accurately.   

1. Introduction 

A relativistic treatment is essential for the accurate description of 
electronic structures of molecules that include heavy atoms. This effect 
is taken into account most naturally via the Dirac equation, which is the 
basic equation in relativistic quantum mechanics. The Dirac equation 
provides four-component spinors as solutions that describe the electrons 
and their anti-particles, positrons. The method based on the Dirac 
equation is known as the four-component method, and is now widely 
used in quantum chemistry [1]. The two-component method is also 
widely used. The components of the four-component spinors can be 
classified into large and small parts, each of which is characterized by a 
large and a small contribution to the electronic solution. The two- 
component method uses only the degree of freedom of electrons 
decoupled from that of positrons. The two-component spinors used in 
this method are transformed spinors that are decoupled from the degrees 
of freedom of positrons and thus are not identical to any parts of the 
original four components. Today, there are several versions of the two- 
component method depending on the transformation: the Breit–Pauli 
approximation (BPA) [2], the zeroth-order regular approximation 
(ZORA) [3], the infinite-order regular approximation (IORA) [4], the 
relativistic scheme for eliminating small components (RESC) [5], the 
Douglas–Kroll (DK) method [6–12], the infinite-order two-component 
(IOTC) method [13], and the exact-two-component (X2C) method 
[14–16]. These methods are now included in various program packages 
and are commonly used in research in this field. 

In the many-body problem in relativistic theory, the way of defining 
the many-body Hamiltonian is a very important issue. In the most 
common formulation, for the one-particle part, the sum of the Dirac one- 
particle Hamiltonian is used. By contrast, to satisfy the Lorentz and 
gauge invariances, the electron interaction effect is formulated through 
a perturbation calculation using quantum electrodynamics (QED). 
However, because the effects at high perturbation orders are known to 
be usually very small, in relativistic quantum chemistry, the Dir
ac–Coulomb (DC) or the Dirac–Coulomb–Breit (DCB) Hamiltonians [17] 
truncated at the zeroth or second order, respectively, are commonly 
used. Of these two, the DCB Hamiltonian approximately includes the 
effect of the quantized electromagnetic field in the QED. Thus, the DCB 
Hamiltonian is a better approximation of the QED than the DC Hamil
tonian, but is more complicated. Under these circumstances, the DC 
Hamiltonian is mainly used as the many-body Hamiltonian in electronic 
structure calculations in current relativistic quantum chemistry. How
ever, in approximating the four-component method into a two- 
component method, the DC Hamiltonian designed according to each 
two-component method needs to be transformed. Such transformed DC 
Hamiltonians have been derived for the BP, IOTC [18], DK1 [19–21], 
and NESC [22] approximations, but the expressions for orders higher 
than the first-order DK approximation have not been explicitly given. 

In the present Letter, we derive explicit expressions for the DK2 and 
DK3 two-electron operators and, using the derived formulas, we 
numerically assess the accuracy of several two-electron Hamiltonians, 
including DK2 and DK3. In addition, to evaluate the value of the two- 
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component transformed two-electron operator, the two-electron in
tegrals that are not used in the calculation of the nonrelativistic mo
lecular orbital calculation (small component-type two-electron 
integrals) need to be calculated. Such a two-electron integral demands a 
larger calculation cost than the ordinary two-electron integral of the 
nonrelativistic theory, which is not much different from that of the four- 
component method. To develop a two-component method with a 
computational cost that is sufficiently cheaper than the conventional 
four-component method, the computational method for the small 
component-type two-electron integrals is important. Low-cost methods 
have been proposed to incorporating a part of the electron–electron 
interaction described by small-component type two-electron integrals 
into the one-electron Hamiltonian or the Fock operator as effective 
electron repulsion [23,24]. While these are useful methods, a direct 
approximation for the small component type two-electron integrals is 
also effective in performing post-Hartree–Fock methods and systemati
cally improving their accuracy. 

2. Theory 

2.1. Two-electron repulsion operator formulas for the second- and third- 
order DK method 

Let U be a unitary transformation that transforms the Dirac spinor 
Ψ(1) as U(1)Ψ(1). The transformation for an arbitrary one-electron 
operator Ô(1) is given by 

U(1)Ô(1)U†(1) . (2.1)  

It is useful to introduce a notation in which the upper and the lower two 
components of the four components are described separately: 

Ψ(1) =
[

ΨL(1)
ΨS(1)

]

,U(1) =
[

ULL(1) ULS(1)
USL(1) USS(1)

]

(2.2)  

Because we consider U to be a transformation from the Dirac Hamilto
nian to a two-component effective Hamiltonian, the corresponding 
operator in the two-component method is obtained from the upper-left 
part (LL) of the 2 × 2 blocks of Eq. (2.1) as: 

Ô
2c
=

(
UÔU†

)LL
. (2.3) 

The two-electron operator of the DC Hamiltonian, namely the 
Coulomb repulsion operator, is expressed in the four-component method 
as: 

g4c(1, 2) =
14(1)14(2)

r12
(2.4)  

By sequentially performing a two-component transformation on elec
trons 1 and 2, we obtain the Coulomb repulsion operator in the two- 
component method as: 

g2c(1, 2) =

[

U(2)
[

U(1)
14(1)

r12
U†(1)

]LL

14(2)U†(2)

]LL

, (2.5)  

where the “LL” marks on the inner and outer parentheses in the right- 
hand side (rhs) represent the upper-left part of the matrix (see eq. 

(2.2)) for electrons 1 and 2, respectively. Defining V̂
2e
(1; 2) and 

V̂
2e′

(2;1) as a shorthand notation: 

V̂
2e
(1; 2) = 1

r12
,

V̂
2e’

(2; 1) =

[

U(1) 14(1)
r12

U†(1)
]LL

,

(2.6)  

it becomes clear that eq. (2.5) requires two matrix operations, 

U(1)V̂
2e
(1;2)14(1)U†(1) and U(2)V̂

2e′

(2; 1)14(2)U†(2), which are 
formally identical transformations that do not depend on the electron 

variables. Hence, we only need an expression for UV̂
2e

14U†. 
Let us explicitly show the process by using the DK1 example instead 

of DK2 and DK3, although the DK1 formula is already known [21], 
because the intermediate expressions in the derivation of the two- 
electron repulsion operators for DK2 and DK3 are quite lengthy. DK1 
is equivalent to the free-particle Foldy–Wouthuysen (fpFW) trans
formation, which ignores the external field Vext.. 

U0 =

[
A Aκ

− Aκ A

]

(2.7)  

Here, A and κ are given by 

A =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ep + c2

2Ep

√

and  κ =
cσ⋅p

Ep + c2, (2.8)  

respectively, where Ep =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p2c2 + c4

√
is the relativistic kinetic energy. 

Applying the fpFW transformation to the pseudo one-electron operator 

V̂
2e 

(eq. (2.6)), we obtain 
[

A Aκ
− Aκ A

][

V̂
2e

0
0 V̂

2e

][
A − κA
κA A

]

=

[

AV̂
2e

A + AκV̂
2e

κA − AV̂
2e

κA + AκV̂
2e

A
AV̂

2e
κA − AκV̂

2e
A AV̂

2e
A + AκV̂

2e
κA

] (2.9)  

We can obtain the coefficients of the two-electron repulsion operator 1/
r12 from the upper-left block of the rhs. The relativistic two-electron 
operators in the DK2 and DK3 can be derived in the same manner 
using the transformation matrices U1U0, and U2U1U0, respectively, 
instead of U0. For simplicity, we use the following exponential-type [9] 
operators among several variants of the DK transformation matrices U1, 
U2, …, 

Ui = exp(Wi), (2.10)  

where Wi is an anti-Hermitian operator of the i-th order with respect to 
the external field. Therefore, the terms in the second- and higher-order 
terms with respect to W1 are cut off to ensure the consistency with the 

one-electron term of DK2 because V̂
2e 

is regarded as a first-order term. 

U1U0 V̂
2e

14U†

0U†

1

=
(
14 + W1 + o

(
W2

1

) )
U0 V̂

2e
14U†

0
(
14 − W1 + o

(
W2

1

) )

≃ U0 V̂
2e

14U†

0 + W1U0 V̂
2e

14U†

0 − U0 V̂
2e

14U†

0W1

(2.11)  

The terms W1,W2,… that generate U1,U2,… are determined order-by- 
order from a one-electron DK transformation. 

W1 =

[
0 o1
o1 0

]

,

o1 = Aκ Vext.(p,p’)
Ep+Ep’

A − A Vext.(p,p’)
Ep+Ep’

κA
(2.12)  

W2 =

[
0 [o1,E1]

/(
Ep + Ep’

)

− [o1,E1]
/(

Ep + Ep’
)

0

]

,

E1 = AVext.A + AκVext.κA
(2.13)  

Using these quantities, we obtain the DK2 and DK3 two-electron 
repulsion operators gDK2(1,2) and gDK3(1,2) 
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gDK2(1, 2) =
∑1

i=0

∑1

j=0
NL

i (1)N
L
j (2)

1
r12

(
NL

1− i(1)
)†
(

NL
1− j(2)

)†

+
∑1

i=0

∑1

j=0
NL

i (1)N
S
j (2)κ(2)

1
r12

κ(2)
(
NL

1− i(1)
)†
(

NS
1− j(2)

)†

+
∑1

i=0

∑1

j=0
NS

i (1)N
L
j (2)κ(1)

1
r12

κ(1)
(
NS

1− i(1)
)†
(

NL
1− j(2)

)†

+
∑1

i=0

∑1

j=0
NS

i (1)N
S
j (2)κ(1)κ(2)

1
r12

κ(1)κ(2)
(
NS

1− i(1)
)†
(

NS
1− j(2)

)†

, (2.14)  

gDK3(1, 2) =
∑2

i=0

∑2

j=0
LL

i (1)L
L
j (2)

1
r12

(
LL

2− i(1)
)†
(

LL
2− j(2)

)†

+
∑2

i=0

∑2

j=0
LL

i (1)L
S
j (2)κ(2)

1
r12

κ(2)
(
LL

2− i(1)
)†
(

LS
2− j(2)

)†

+
∑2

i=0

∑2

j=0
LS

i (1)L
L
j (2)κ(1)

1
r12

κ(1)
(
LS

2− i(1)
)†
(

LL
2− j(2)

)†

+
∑2

i=0

∑2

j=0
LS

i (1)L
S
j (2)κ(1)κ(2)

1
r12

κ(1)κ(2)
(
LS

2− i(1)
)†
(

LS
2− j(2)

)†

, (2.15)  

where the operators NX
i and LX

i are defined by 

NL
0 = NS

0 = LL
0 = LS

0 = A, (2.16)  

NL
1 =

(
1
2
+ AνAR2p2 − ARωRA

)

A

NS
1 =

(
1
2
+ ARωRAR− 2p− 2 − AνA

)

A,

(2.17)  

LL
1 =

(
AνAR2p2 − ARωRA

)
A

LS
1 =

(
AνA − ARωRAR− 2p− 2)A

LL
2 =

{
1
2
+ AνAR2p2 − ARωRA +

1
2
W2

1 +
(E1o1κ)
Ep + Ep’

−
(o1E1κ)
Ep + Ep’

}

A

LS
2 =

{
1
2
+ ARωRAR− 2p− 2 − AνA +

1
2
W2

1 −
(E1o1κ− 1)

Ep + Ep’
+
(o1E1κ− 1)

Ep + Ep’

}

A.

(2.18)  

Here, E1o1κ, o1E1κ, E1o1κ− 1, o1E1κ− 1, R, ν, and ω are given by 

E1o1κ = (AVext.A + ARΩRA)
(
ARωRA − AνAR2p2),

o1E1κ =
(
ARωRAR− 2p− 2 − AνA

)(
ARΩRA + p2R2AVext.AR2p2),

E1o1κ− 1 = (AVext.A + ARΩRA)
(
ARωRAR− 2p− 2 − AνA

)
,

o1E1κ− 1 =
(
ARωRAR− 2p− 2 − AνA

)(
ARΩRAR− 2p− 2 + p2R2AVext.A

)
,

(2.19)  

R =
c

Ep + c2, ν(p, p’) =
Vext.(p, p’)

Ep + Ep’

and ω(p, p’) =
Ω(p,p’)
Ep+Ep’

(2.20)  

with 

Ω(p, p′

) = σ⋅pVext.(p, p
′

)σ⋅p.

The transformations for the two-electron operators used here are 
determined only for the one-electron operator. Therefore, for many- 
electron systems, there remains some difference from the four- 
component method. If the transformation is determined using the two- 
electron repulsion energy, this difference is eliminated. However, the 
transformation must be repeated for each self-consistent field step in a 

Hartree–Fock calculation. Such a transformation for the DK method has 
already been reported by Nakajima et al. [21]. In their method, the 
entire Fock operator is transformed and only the Coulomb and exchange 
integrals of DK2 or DK3 are obtained. In contrast, because all the two- 
electron integrals are obtained explicitly, the formula derived here 
enabled us to perform electron correlation calculations directly. 

2.2. Approximate formula for the small component-type two-electron 
integrals 

The four components of the Dirac spinor can be divided into two: 
upper (large) and lower (small) components. When the small compo
nents are expanded using the set 

{
p− 1σ⋅p|φL〉 } (strict kinetic balance), 

the execution using the Dirac–Hartree–Fock method requires the 
calculation of the following two-electron integrals. 

[(σ⋅pμ)(σ⋅pν)|κλ], [(σ⋅pμ)(σ⋅pν)|(σ⋅pκ)(σ⋅pλ)] (2.21)  

Here, 
{⃒
⃒φL〉 } is the basis set used to expand the large component. We 

refer to the former and latter integrals as (SS|LL)- and (SS|SS)-type, 
respectively. In the two-electron operator of DK2 and DK3, the second 
and third terms on the rhs of eqs. (2.14) and (2.15) correspond to (SS| 
LL)-type integrals and the fourth terms on the rhs of eqs. (2.14) and 
(2.15) correspond to (SS|SS)-type integrals. Thus, to compute the rela
tivistic two-electron repulsion integrals in the four-component, IOTC, 
and DK methods, it is necessary to evaluate the two-electron integrals 
with a base function composed of a small component of the Dirac 
equation. Compared with the nonrelativistic two-electron integrals, 
more computational time and three times the amount of storage are 
necessary even under the spin-free approximation. However, as previ
ously shown by Filatov and Cremer [22], it is possible to approximate 
the spin-free (SS|LL)- or (SS|SS)-type integrals by integrals used in 
nonrelativistic methods ((LL|LL)-type two-electron integrals and 
nonrelativistic kinetic energy integrals). As a part of this approximation, 
a term is neglected as being of small value. In Ref. [22], the (SS|LL)-type 
two-electron integral is first approximated by 

[(pμ)⋅(pν)|κλ] =
∑

ρ
{[μρ|κλ]Yρν + Yρμ[ρν|κλ] } +

1
2

[

μν|∇2
1

1
r12

|κλ
]

. (2.22)  

and then the second rhs term is dropped as negligible. Here, Y = S− 1T, 
where T is the nonrelativistic kinetic energy and S− 1 is the inverse 
matrix of the overlap matrix. However, the value is not necessarily so 
small (see next section). To compensate the term, a more accurate 
approximation is necessary. Note that the left and right sides of eq. 
(2.22) are exactly equal only for a complete basis set. In the practical 
calculations, the intermediate sum for ρ requires a sufficiently large 
basis set such as primitive basis sets. The same is true for the sums in the 
following resolution of identities (RI). 

Here, we take both the terms of eq. (2.22) into consideration without 
dropping the second. The second derivative of the Coulomb potential 
gives a delta function, and a set of two-electron integrals with a delta 
function potential is identical to four-center overlap integrals. Further
more, the four-center overlap integrals 〈μνκλ〉 can be decomposed into 
three-center overlap integrals 〈μνρ〉 using the RI technique. 

1
2

[

μν|∇2
1

1
r12

|κλ
]

= − 2π〈μνκλ〉 = − 2π
∑

ρσ
〈μνρ〉S− 1

ρσ 〈σκλ〉 (2.23)  

Thus, all the terms in the (SS|LL)-type two-electron integral are 
approximated by the formula 

[(pμ)⋅(pν)|κλ] =
∑

ρ
{[μρ|κλ]Yρν + Yρμ[ρν|κλ] } − 2π

∑

ρσ
〈μνρ〉S− 1

ρσ 〈σκλ〉

(2.24)  

We refer to the terms that include the two-electron integrals on the rhs as 
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ERISL (where ERI stands for electron repulsion integral) and the terms 
that include the three-center overlap integrals as DWSL.ERI (where DW 
stands for Darwin). The ERISL term corresponds to the approximation of 
the paper by Filatov and Cremer [22]. 

We also consider an approximation for (SS|SS)-type two-electron 
integrals. These are of the c− 4 order and hence smaller than the (SS| 
LL)-type by the c− 2 order, but the next section will show that they are 
important for an accurate approximation. The procedure of approxi
mation is the same as for the (SS|LL)-type integrals. The approximate 
formula is given by 

[(pμ)⋅(pν)|(pκ)⋅(pλ)]

=
∑

ρσ
{[μρ|κσ]YρνYσλ + Yρμ[ρν|κσ]Yσλ

+Yσκ[μρ|σλ]Yρν + YρμYσκ [ρν|σλ]}

− 2π
∑

ρητ

{
〈μρη〉S− 1

ητ 〈τκλ〉Yρν + Yρμ〈ρνη〉S− 1
ητ 〈τκλ〉

+Yρκ〈μνη〉S− 1
ητ 〈τρλ〉 + 〈μνη〉S− 1

ητ 〈τκρ〉Yρλ,

− 〈μνη〉S− 1
ητ Yρτ〈ρκλ〉

}

(2.25)  

We refer to the terms that include the two-electron integrals as ERISS 
and those that include the three-center overlap integrals as DWSS. Here, 
three-center overlap integrals including derivatives that appeared dur
ing the derivation of eq. (2.25) are deformed as: 

〈τ(∇κ)⋅(∇λ)〉 = −
1
2
〈
τ(∇2κ)λ

〉
−

1
2
〈
τκ(∇2λ)

〉
+

1
2
〈(
∇2τ)κλ

〉

=
∑

ρ
{Yρκ〈τρλ〉 + 〈τκρ〉Yρλ − Yρτ〈ρκλ〉 }

(2.26) 

Although eqs. (2.24) and (2.25) can be also used in the four- 
component method, these formulas are more suitable for use in the 
two-component methods, because the coefficients 1/r12 in the two- 
electron operator of DK1 [21], eqs. (2.14) and (2.15) and the co
efficients Y in eqs. (2.24) and (2.25) can be multiplied simultaneously. 

Note that the present method reduces the computational cost for the 
small-component type two-electron integrals, but does not change the 
scaling of the electronic structure calculations. The advantage of the 
present method is rather in implementation cost, which is easily 
implemented by modifying programs of nonrelativistic or relativistic 
two-component methods. 

3. Results and discussion 

3.1. Helium-like ions 

To illustrate the performance of the two-electron repulsion opera
tors, gDK2(1,2) and gDK3(1,2), we performed Hartree–Fock (HF) calcu
lations for the simplest multielectron systems, namely the helium-like 
ions (Z = 10, 20, 30, …, 130). The basis sets used were even-tempered 

Gaussian functions with their exponents given by {ζ = 0.01(Z/ 
45)3(2.0)n− 1, n = 1, 2, …, 45}. The speed of light used was 137.0359895 
a.u. 

The results are shown in Table 1. In the table, we use the abbrevia
tion A/B, which means that the one- and two-electron Hamiltonians 
were transformed by methods A and B, respectively. The difference in 
energy of each two-component method from that of the four-component 
method increases with the increase in Z. First, let us consider the case of 
transforming the one-electron Hamiltonian at the infinite order (IOTC). 
This case exclusively extracts the effect of the two-electron Hamiltonian 
approximation. The energy differences of IOTC/DK2, IOTC/DK3, and 
IOTC/IOTC from the four-component method are 1.8119, 2.0358, and 
¡0.0210 a.u., respectively, for Z = 130, where the difference is largest. 
These differences are one order of magnitude smaller than the values 
calculated by IOTC/NR (51.7365 a.u.) and IOTC/DK1 (14.7670 a.u.) 
methods, where NR denotes for “nonrelativistic”. Similarly, for Z = 80, 
with the typical atomic number of heavy atoms, the energy differences 
of IOTC/NR, IOTC/DK1, IOTC/DK2, IOTC/DK3, and IOTC/IOTC 
methods from the four-component method are 4.2906, 0.7894, 0.0150, 
0.0169, and ¡0.0014 a.u., respectively. These results indicate that the 
transformation of the two-electron Hamiltonian, in particular the DK 
transformation at the second order or higher, is important. Even IOTC/ 
IOTC, which is the most accurate two-component method used in the 
present paper, still presents some differences from the four-component 
method, because the IOTC transformation is determined by using only 
the one-electron Hamiltonian. However, this difference is only about 
0.02 a.u. even for Z = 130. Therefore, for the helium-like ions, deter
mining the two-component transformation using only the one-electron 
Hamiltonian is appropriate. The difference between IOTC/DK3 and 
the four-component method (2.0358 a.u.) is larger than that between 
IOTC/DK2 and the four-component method (1.8119 a.u.). This strange 
result, which does not obey the order of the DK method, is due to the 
cancellations caused by the different transformations for one- and two- 
electron Hamiltonians. To avoid such behavior, it is desirable to use the 
same transformation for the one- and two-electron Hamiltonians, such 
as DK3/DK3 or DK2/DK2. However, the results show that in the latter 
cases, the difference due to the one-electron Hamiltonian is not small. 

3.2. Noble gases 

As a second illustration of the performance of gDK2(1,2) and 
gDK3(1,2), we performed HF calculations for the atoms of noble gases 
(He, Ne, Ar, Kr, Xe, Rn, and Og). The basis sets used were taken from 
Ref. [25] for He, Ne, Ar, Kr, and Xe, Ref. [26] for Rn, and Ref. [27] for 
Og. The calculated total energies are shown in Table 2. As with the 
helium-like ions, the difference in energy of each two-component 
method from that of the four-component method increases with in
crease in Z. The tendency observed for the helium-like ions is also 
observed for the noble gases. In Og, which has the largest atomic 
number, the energy differences of IOTC/DK2, IOTC/DK3, and IOTC/ 

Table 1 
Total energy of helium-like ions calculated using the two- and four-component methods (in a.u.)  

Z IOTC/NR IOTC/DK1 IOTC/DK2 IOTC/DK3 IOTC/IOTC 4-comp. DK2/DK2 DK3/DK3 

10  − 93.9767  − 93.9827  − 93.9828  − 93.9828  − 93.9828  − 93.9828  − 93.9827  − 93.9828 
20  − 389.6154  − 389.6652  − 389.6668  − 389.6668  − 389.6668  − 389.6668  − 389.6591  − 389.6670 
30  − 891.8956  − 892.0643  − 892.0743  − 892.0743  − 892.0743  − 892.0743  − 891.9982  − 892.0782 
40  − 1609.4690  − 1609.8687  − 1609.9053  − 1609.9053  − 1609.9054  − 1609.9053  − 1609.5280  − 1609.9301 
50  − 2555.5699  − 2556.3545  − 2556.4523  − 2556.4522  − 2556.4528  − 2556.4525  − 2555.1597  − 2556.5547 
60  − 3749.3822  − 3750.7577  − 3750.9745  − 3750.9743  − 3750.9764  − 3750.9759  − 3747.4439  − 3751.2945 
70  − 5218.3442  − 5220.5889  − 5221.0152  − 5221.0146  − 5221.0212  − 5221.0204  − 5212.7176  − 5221.8406 
80  − 7002.1561  − 7005.6573  − 7006.4317  − 7006.4298  − 7006.4481  − 7006.4467  − 6988.8477  − 7008.2726 
90  − 9160.1841  − 9165.5073  − 9166.8434  − 9166.8390  − 9166.8848  − 9166.8826  − 9132.1356  − 9170.4769 
100  − 11786.4871  − 11794.5177  − 11796.7599  − 11796.7498  − 11796.8598  − 11796.8563  − 11731.2516  − 11803.0762 
110  − 15044.9287  − 15057.2089  − 15060.9606  − 15060.9371  − 15061.1995  − 15061.1937  − 14939.4470  − 15069.8987 
120  − 19272.0528  − 19291.7930  − 19298.2987  − 19298.2366  − 19298.8974  − 19298.8874  − 19067.1056  − 19302.9923 
130  − 25440.8934  − 25477.8629  − 25490.8180  − 25490.5941  − 25492.6509  − 25492.6299  − 24981.6403  − 25432.2375  
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IOTC from the four-component method are 0.4156, 0.9688, and 
¡0.1789 a.u., respectively. The differences are one order of magnitude 
smaller than the values calculated by the IOTC/NR (40.8445 a.u.) and 
IOTC/DK1 (19.6698 a.u.) methods. As observed for the helium-like ions, 
the IOTC/DK2 difference is smaller than the IOTC/DK3 difference. For 
Rn, which is in the same sixth period as typical heavy elements such as 
Au and Pb, the energy differences of IOTC/NR, IOTC/DK1, IOTC/DK2, 
IOTC/DK3, and IOTC/IOTC from the four-component method were 
9.9996, 2.7235, − 0.0048, 0.0258, and − 0.0299 a.u., respectively. These 
results suggest the importance of transforming the two-electron 
Hamiltonian, as well as the one-electron Hamiltonian in multielectron 
systems, as in the case of helium-like ions. 

Tables 3 and 4 show the orbital energies of Rn and Og, respectively. 
The accuracy of the approximation in orbital energy is similar to the 
total energy. For Rn in Table 3, the differences in 1s orbital energy from 
the four-component method of IOTC/IOTC, IOTC/DK3, IOTC/DK2, 
IOTC/DK1, and IOTC/NR are ¡0.014, 0.028, 0.015, 1.609, and 6.294 a. 
u., respectively, and the differences in spin-splitting energy of 2p are 
0.002, ¡0.002, 0.007, ¡0.187, and 2.869 a.u., respectively. The former 
three methods have clearly a smaller difference than the latter two. For 
the spin–orbit splitting of 4f orbitals, the values of IOTC/IOTC, IOTC/ 
DK3, IOTC/DK2, and DK3/DK3 are very close to the four-component 
value of 0.2657 a.u., while the value of IOTC/NR is 0.3998 a.u., 

which is rather different. IOTC/DK1 shows almost the same spin–orbit 
splitting, but the orbital energies themselves of 4f5/2 and 4f7/2 are 
different from the four-component method. A similar trend is seen for Og 
in Table 4. The differences in 1s orbital energy from the four-component 
method of IOTC/IOTC, IOTC/DK3, IOTC/DK2, IOTC/DK1, and IOTC/ 
NR are ¡0.079, 0.692, 0.461, 10.422, and 26.553 a.u., respectively, and 
the differences in the spin-splitting energy of 2p are 0.023, ¡0.136, 
0.033, ¡2.683, and 10.410 a.u., respectively. The trend of the 5f orbital 
energies is the same as that of the 4f orbitals in Rn. Thus, the results for 
orbital energy also indicate that the transformation of the two-electron 
Hamiltonian at the second- or higher-order DK transformation is 
important. In particular, the spin–orbit splitting of the highest angular 
momentum electrons such as 4f and 5f electrons shows that to estimate 
the two-electron operators with DK2 or higher is important. 

3.3. Approximation of (SS|LL)- and (SS|SS)-type ERIs 

To assess the accuracy of the approximate formulas for (SS|LL)- and 
(SS|SS)-type ERIs eqs. (2.24) and (2.25), we performed HF calculations 
for the helium-like ions Z = 80 and 130. The HF energies calculated 
using the four-component, IOTC/IOTC, DK2/DK2, and DK3/DK3 
methods are shown in Table 5. In the column of the method in the table, 
among the ERISL, DWSL, ERISS, and DWSS, the terms not shown were 

Table 2 
Total energy of noble gas atoms calculated using the two- and four-component methods (in a.u.)   

He Ne Ar Kr Xe Rn Og 

4-comp.  − 2.8613  − 128.6912  − 528.6832  − 2788.8791  − 7447.1272  − 23610.2167  − 55023.8229 
IOTC/IOTC  − 2.8613  − 128.6912  − 528.6832  − 2788.8795  − 7447.1302  − 23610.2466  − 55024.0018 
IOTC/DK3  − 2.8613  − 128.6912  − 528.6832  − 2788.8794  − 7447.1288  − 23610.1909  − 55022.8541 
IOTC/DK2  − 2.8613  − 128.6912  − 528.6832  − 2788.8795  − 7447.1295  − 23610.2215  − 55023.4073 
IOTC/DK1  − 2.8613  − 128.6912  − 528.6819  − 2788.8422  − 7446.8666  − 23607.4932  − 55004.1531 
IOTC/NR  − 2.8613  − 128.6841  − 528.6324  − 2788.3812  − 7445.1893  − 23600.2171  − 54982.9784 
DK3/DK3  − 2.8613  − 128.6912  − 528.6833  − 2788.8931  − 7447.3171  − 23613.7313  − 55045.5417 
DK2/DK2  − 2.8613  − 128.6911  − 528.6789  − 2788.6477  − 7444.8844  − 23578.0562  − 54770.4997  

Table 3 
Orbital energies of the Rn atom calculated using the two- and four-component methods (in a.u.)  

Rn 4-comp. IOTC/IOTC IOTC/DK3 IOTC/DK2 IOTC/DK1 IOTC/NR DK3/DK3 DK2/DK2 

1s1/2  − 3644.4297  − 3644.4432  − 3644.4017  − 3644.4152  − 3642.8206  − 3638.1357  − 3645.7655  − 3631.6603 
2s1/2  − 669.3239  − 669.3271  − 669.3237  − 669.3256  − 669.1483  − 668.3869  − 669.5126  − 667.8446 
3s1/2  − 166.9501  − 166.9508  − 166.9501  − 166.9505  − 166.9151  − 166.7452  − 166.9931  − 166.6223 
4s1/2  − 41.3416  − 41.3417  − 41.3415  − 41.3416  − 41.3333  − 41.2923  − 41.3526  − 41.2576 
5s1/2  − 8.4126  − 8.4126  − 8.4125  − 8.4126  − 8.4110  − 8.4032  − 8.4149  − 8.3945 
6s1/2  − 1.0695  − 1.0695  − 1.0695  − 1.0695  − 1.0694  − 1.0685  − 1.0699  − 1.0668  

2p1/2  − 642.3424  − 642.3478  − 642.3432  − 642.3524  − 642.0571  − 643.9135  − 642.4221  − 641.6852 
3p1/2  − 154.8951  − 154.8961  − 154.8950  − 154.8971  − 154.8379  − 155.2882  − 154.9140  − 154.7363 
4p1/2  − 36.0165  − 36.0167  − 36.0164  − 36.0169  − 36.0030  − 36.1275  − 36.0211  − 35.9770 
5p1/2  − 6.4050  − 6.4051  − 6.4050  − 6.4051  − 6.4026  − 6.4318  − 6.4059  − 6.3977 
6p1/2  − 0.5362  − 0.5362  − 0.5362  − 0.5362  − 0.5359  − 0.5398  − 0.5362  − 0.5354  

2p3/2  − 541.0802  − 541.0836  − 541.0832  − 541.0831  − 540.9815  − 539.7824  − 541.0745  − 541.1448 
3p3/2  − 131.7218  − 131.7224  − 131.7223  − 131.7223  − 131.7036  − 131.4252  − 131.7197  − 131.7415 
4p3/2  − 30.1153  − 30.1154  − 30.1154  − 30.1153  − 30.1116  − 30.0422  − 30.1145  − 30.1220 
5p3/2  − 5.1717  − 5.1717  − 5.1717  − 5.1717  − 5.1713  − 5.1575  − 5.1714  − 5.1741 
6p3/2  − 0.3813  − 0.3813  − 0.3813  − 0.3813  − 0.3814  − 0.3800  − 0.3813  − 0.3819  

3d3/2  − 112.5581  − 112.5586  − 112.5587  − 112.5586  − 112.5571  − 112.9610  − 112.5561  − 112.5796 
4d3/2  − 21.5430  − 21.5431  − 21.5431  − 21.5431  − 21.5436  − 21.6465  − 21.5423  − 21.5497 
5d3/2  − 2.1858  − 2.1858  − 2.1858  − 2.1858  − 2.1862  − 2.2045  − 2.1855  − 2.1877  

3d5/2  − 107.7506  − 107.7511  − 107.7511  − 107.7510  − 107.7512  − 107.4443  − 107.7486  − 107.7709 
4d5/2  − 20.4338  − 20.4338  − 20.4339  − 20.4338  − 20.4347  − 20.3646  − 20.4331  − 20.4401 
5d5/2  − 2.0128  − 2.0128  − 2.0128  − 2.0128  − 2.0132  − 2.0027  − 2.0125  − 2.0146                   

4f5/2  − 9.1892  − 9.1891  − 9.1892  − 9.1891  − 9.1910  − 9.2715  − 9.1885  − 9.1941  

4f7/2  − 8.9235  − 8.9235  − 8.9235  − 8.9235  − 8.9253  − 8.8717  − 8.9229  − 8.9283  
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ignored, i.e., were treated as zero. For example, (ERISL + DWSL) means 
that only ERISL and DWSL are approximated, whereas ERISS and DWSS 
are ignored. Let us take for example the DK3/DK3 results of Z = 80. The 
difference of DK3/NR from exact DK3/DK3 is 4.27556970876 a.u. When 
the ERISL term is included (see Table 5), this difference decreases to 
3.692405 a.u. The ERISL formula derived by Filatov and Cremer [22] 

surely improves the HF energy from NR. When the DWSL term is further 
included (ERISL + DWSL), the difference becomes − 0.502226 a.u. That 
is, the DWSL term makes a significant contribution to energy and greatly 
improves total energy. In Ref. [22], the DWSL term is neglected as being 
quite small together with the (SS|SS) integrals, but in fact we can see 
that neglecting the DWSL term is not necessarily a proper 

Table 4 
Orbital energies of the Og atom calculated using the two- and four-component methods (in a.u.)  

Og 4-comp. IOTC/IOTC IOTC/DK3 IOTC/DK2 IOTC/DK1 IOTC/NR DK3/DK3 DK2/DK2 

1s1/2  − 8286.9765  − 8287.0558  − 8286.2850  − 8286.5158  − 8276.5542  − 8260.4232  − 8292.7379  − 8195.5597 
2s1/2  − 1742.9125  − 1742.9354  − 1742.8625  − 1742.9140  − 1741.3902  − 1737.6783  − 1745.1251  − 1730.4992 
3s1/2  − 477.3242  − 477.3296  − 477.3128  − 477.3244  − 477.0035  − 476.1024  − 477.8730  − 474.5099 
4s1/2  − 142.8125  − 142.8138  − 142.8090  − 142.8123  − 142.7264  − 142.4752  − 142.9728  − 142.0096 
5s1/2  − 40.4472  − 40.4475  − 40.4461  − 40.4471  − 40.4230  − 40.3531  − 40.4957  − 40.2070 
6s1/2  − 9.1357  − 9.1358  − 9.1354  − 9.1356  − 9.1297  − 9.1130  − 9.1490  − 9.0703 
7s1/2  − 1.3207  − 1.3207  − 1.3206  − 1.3206  − 1.3197  − 1.3177  − 1.3233  − 1.3076  

2p1/2  − 1664.3075  − 1664.3464  − 1664.1846  − 1664.3537  − 1661.1143  − 1670.4484  − 1665.2458  − 1653.2733 
3p1/2  − 446.9688  − 446.9768  − 446.9422  − 446.9731  − 446.3290  − 448.5048  − 447.1694  − 444.5148 
4p1/2  − 129.6226  − 129.6246  − 129.6150  − 129.6232  − 129.4503  − 130.1050  − 129.6771  − 128.9394 
5p1/2  − 34.7632  − 34.7637  − 34.7609  − 34.7633  − 34.7147  − 34.9217  − 34.7784  − 34.5672 
6p1/2  − 6.9583  − 6.9584  − 6.9577  − 6.9583  − 6.9466  − 7.0027  − 6.9620  − 6.9095 
7p1/2  − 0.7127  − 0.7127  − 0.7126  − 0.7127  − 0.7109  − 0.7205  − 0.7133  − 0.7046  

2p3/2  − 1138.7331  − 1138.7495  − 1138.7460  − 1138.7466  − 1138.2224  − 1134.4643  − 1138.6846  − 1139.1086 
3p3/2  − 318.4664  − 318.4701  − 318.4693  − 318.4690  − 318.3646  − 317.3890  − 318.4483  − 318.5992 
4p3/2  − 92.0724  − 92.0733  − 92.0731  − 92.0729  − 92.0477  − 91.7612  − 92.0652  − 92.1236 
5p3/2  − 23.6726  − 23.6728  − 23.6728  − 23.6727  − 23.6672  − 23.5842  − 23.6697  − 23.6930 
6p3/2  − 4.2101  − 4.2101  − 4.2102  − 4.2101  − 4.2097  − 4.1916  − 4.2090  − 4.2179 
7p3/2  − 0.3003  − 0.3003  − 0.3003  − 0.3003  − 0.3004  − 0.2989  − 0.3000  − 0.3019  

3d3/2  − 286.7835  − 286.7869  − 286.7884  − 286.7876  − 286.7622  − 288.1419  − 286.7666  − 286.9310 
4d3/2  − 76.3205  − 76.3212  − 76.3217  − 76.3214  − 76.3191  − 76.7337  − 76.3139  − 76.3727 
5d3/2  − 16.6729  − 16.6730  − 16.6732  − 16.6731  − 16.6743  − 16.7955  − 16.6704  − 16.6918 
6d3/2  − 1.7581  − 1.7581  − 1.7582  − 1.7581  − 1.7591  − 1.7826  − 1.7574  − 1.7638  

3d5/2  − 265.8142  − 265.8167  − 265.8181  − 265.8171  − 265.8123  − 264.8006  − 265.7986  − 265.9479 
4d5/2  − 70.4015  − 70.4019  − 70.4024  − 70.4021  − 70.4055  − 70.1210  − 70.3954  − 70.4495 
5d5/2  − 15.0790  − 15.0791  − 15.0793  − 15.0791  − 15.0817  − 15.0064  − 15.0767  − 15.0964 
6d5/2  − 1.4865  − 1.4865  − 1.4865  − 1.4865  − 1.4876  − 1.4760  − 1.4858  − 1.4915  

4f5/2  − 49.6647  − 49.6648  − 49.6653  − 49.6649  − 49.6757  − 50.0147  − 49.6592  − 49.7058 
5f5/2  − 6.4654  − 6.4654  − 6.4656  − 6.4654  − 6.4693  − 6.5495  − 6.4637  − 6.4783  

4f7/2  − 47.9791  − 47.9792  − 47.9796  − 47.9793  − 47.9902  − 47.7428  − 47.9738  − 48.0186 
5f7/2  − 6.1131  − 6.1131  − 6.1132  − 6.1131  − 6.1170  − 6.0657  − 6.1114  − 6.1255  

Table 5 
Total energy of helium-like ions calculated using the (SS|LL)- and (SS|SS)-type ERI approximation formulas (in a.u.) (The numbers are the differences from the energies 
calculated using exact ERIs.)  

Method 4-comp. IOTC/IOTC DK3/DK3 DK2/DK2 

Z ¼ 80     

Exact ERI − 7006.446732 − 7006.448075 − 7008.272602 − 6988.847659 

NRa n/a 4.292012 4.275570 4.246199 
ERISLb 3.694689 3.694782 3.692405 3.639315 
ERISL + DWSL − 0.503793 − 0.504516 − 0.502226 − 0.484536 
ERISL + ERISS 5.062748 5.062623 5.053403 4.959310 
ERISL + DWSL + ERISS 0.867072 0.867815 0.863229 0.839731 
ERISL + DWSL + ERISS + DWSS < 10− 8 < 10− 8 < 10− 8 < 10− 8 

Z ¼ 130     

Exact ERI − 25492.629941 − 25492.650861 − 25432.237501 − 24981.640255 

NRa n/a 51.757433 48.962468 47.027483 
ERISLb 22.987116 22.956290 23.915805 21.326244 
ERISL + DWSL − 19.265127 − 19.300015 − 18.040075 − 16.951297 
ERISL + ERISS 85.148199 85.104456 81.708043 76.293713 
ERISL + DWSL + ERISS 43.306775 43.308100 40.181257 38.396141 
ERISL + DWSL + ERISS + DWSS 0.000002 0.000002 0.000001 0.000002  

a NR denotes DK2/NR, DK3/NR, or IOTC/NR. 
b Ref. [22]. 
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approximation. By contrast, when the ERISS term is further included 
instead of the DWSL term to ERISL (ERISL + ERISS) the difference from 
the exact ERI rather increases to 5.053403 a.u. Thus, the DWSL term is 
more important than ERISS. The difference when using the ERISL, 
DWSL, and ERISS terms (ERISL + DWSL + ERISS) is 0.863229 a.u., and 
the absolute value of the difference becomes larger than when only the 
ERISL and DWSL terms are used. However, further including the DWSS 
term gives a value very close to the exact ERI, and much smaller 
than10− 8 a.u. These trends are the same for the four-component method, 
IOTC/IOTC, and DK2/DK2. Even in the cases of Z = 130, the differences 
from exact have the almost same tendency. Although there is an 
approximation error in ERISL + DWSL + ERISS + DWSS, it is very small. 
From these results, we can conclude that the DWSL term in eq. (2.24) is 
very important and that the use of both eqs. (2.24) and (2.25) (ERISL +
DWSL + ERISS + DWSS) provides a fairly good approximation. 

4. Conclusions 

We have derived and implemented the explicit formulas for the two- 
electron operator of the second- and third-order DK method. Using these 
formulas, we performed a range of numerical verifications to the 
helium-like ion (Z = 10, 20, 30, …, 130) and all noble gas atoms. In the 
comparison using the fixed one-electron Hamiltonian transformation 
(IOTC), the energies obtained for the DK2 and DK3 two-electron oper
ators showed differences from the four-component method that were 
one order of magnitude smaller than those of the nonrelativistic and DK1 
two-electron operators. These results showed that for the transformation 
of the two-electron Hamiltonian, in particular, the DK transformation at 
the second order or higher is important. We also found that in some 
cases, the DK2 two-electron Hamiltonian gives better results than the 
DK3 two-electron Hamiltonian, which is due to the error cancellation 
with the one-electron Hamiltonian. 

We have also derived approximation formulas for the small 
component-type two-electron integrals. These formulas were applied to 
the helium-like ions with Z = 80 and 130 and were numerically 
confirmed to reproduce unapproximated values very accurately. We 
expect that the formulas can achieve high-accuracy calculations that are 
comparable with the four-component method, using only two- 
component methods without the implementation of any small 
component-type two-electron integrals. 
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