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Abstract

A combined method of the Dirac–Hartree–Fock (DHF) method and the reference

interaction-site model (RISM) theory is reported; this is the initial implementation of

the coupling of the four-component relativistic electronic structure theory and an

integral equation theory of molecular liquids. In the method, the DHF and RISM

equations are solved self-consistently, and therefore the electronic structure of the

solute, including relativistic effects, and the solvation structure are determined simul-

taneously. The formulation is constructed based on the variational principle with

respect to the Helmholtz energy, and analytic free energy gradients are also derived

using the variational property. The method is applied to the iodine ion (I�), methyl

iodide (CH3I), and hydrogen chalcogenide (H2X, where X = O–Po) in aqueous solu-

tions, and the electronic structures of the solutes, as well as the solvation free ener-

gies and their component analysis, solvent distributions, and solute–solvent

interactions, are discussed.
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1 | INTRODUCTION

The relativistic molecular orbital theory is now one of the essential

pieces in quantum chemical theory. Currently, it is well recognized

that the relativistic effects have an important role in the electronic

structure of molecules containing heavy elements. In particular, the

scalar and spin–orbit effect, which are classes of relativistic effects,

affect the geometries, properties, and reactions of molecules through

their effects on the shape of molecular orbitals and splitting of energy

levels. Such relativistic effects are most naturally taken into account

via the Dirac equation, which is the basic equation of relativistic quan-

tum mechanics.1 The Dirac equation gives four-component spinors as

solutions describing the electrons and their anti-particles, the posi-

trons. The methods based on the Dirac equation are called four-

component methods, and are now widely used in quantum chemistry,

along with the two-component methods. Nowadays, the relativistic

Hartree–Fock (HF),2–5 the density functional theory (DFT),6,7

Møller–Preset perturbation,8–10 configuration interaction (CI),11,12

and coupled-cluster (CC)13 methods have been developed and stan-

dardly used. In addition to the HF, DFT, and HF-based single refer-

ence methods, multiconfiguration methods, such as the

multiconfiguration self-consistent field (MCSCF) method,14,15 multire-

ference (MR) CI,16 MR perturbation,17–19 and MR CC20 methods,

were developed and are being used. Recently, the four-component

full CI Monte Carlo21 and density matrix renormalization group22

were formulated.

When considering chemical reactions in solution of molecules

containing heavy atoms, solvent effects must be considered simulta-

neously with relativistic effects. The methods for incorporating the

solvent effects on the four-component relativistic methods have been

fairly limited to date, and a methods combined with the polarizable

continuum model (PCM) has recently been proposed by Di Remigio
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et al.23 They formulated a four-component relativistic self-consistent

field (SCF) theory for a molecular solute described with the PCM for

solvation. In their study, the four-component Dirac–Hartree–Fock

and Kohn–Sham DFT methods were combined with the integral equa-

tion formalism (IEF) PCM24 to successfully determine the electronic

structure of the solute and the continuum model of the solvent in a

self-consistent manner. After being proposed, this method has been

applied to the calculations of electron paramagnetic resonance and

nuclear magnetic resonance (NMR) parameters, and so forth.25 The

four-component relativistic polarizable embedding was also presented

by Hedegård et al. in 2017.26

In the present article, we present the four-component Dirac–Har-

tree–Fock reference interaction-site model self-consistent field (DHF/

RISM-SCF) method, which combines the relativistic four-component

method with the reference interaction-site model (RISM), and its geo-

metrical derivative have been formulated and implemented. RISM27,28

is a statistical-mechanical integral equation theory for molecular liq-

uids, which is derived from the functional derivative of the grand

potential for solute–solvent molecular pair interactions with respect

to the density function. Features different from the PCM are that the

RISM theory can account for intermolecular interactions such as

hydrogen bond and that it can provide a solvation structure around

the solute molecule. Furthermore, an analytical solvation free energy

expression is known and can be evaluated based on a first-principles

approach. These advantages have led to its use in the analysis of vari-

ous chemical processes in solution.28 A hybrid method of quantum

chemical electronic structure and the RISM theories, called RISM-SCF

method, was proposed by Ten-no et al. in 1993.29,30 The coupled

equations of the Hartree–Fock and RISM equations derived by them

are solved self-consistently, and the electronic wave function of the

solute molecule and the solvent distribution can be determined simul-

taneously. Following their study, the combination of the theories has

been variously extended both in the electronic structure and integral

equation theories.31,32 Therefore, the RISM theory is also effective in

introducing solvent effects into the relativistic electronic structure

theory. The DHF/RISM-SCF method presented here, enables the

simultaneous description of the detailed solute electronic structure

based on the relativistic electronic structure theory and the solvation

structure based on molecular theory.

The present article is structured as follows: The DHF/RISM-

SCF method based on variational formalism as well as its analytical

energy gradient method is presented in Section 2; the

computational details are given in Section 3; the applications to

several systems (the iodine ion I�, methyl iodide CH3I, and hydro-

gen chalcogenides H2X (O–Po)) are discussed in Section 4; and con-

clusions are drawn in Section 5.

2 | METHOD

The RISM-SCF method is formulated as a variational problem for free

energy, which was initially proposed by Sato et al.31 for an MCSCF

wave function. Here, we consider a system in which a quantum

mechanical solute molecule is immersed in a solvent composed of

classical molecules at infinite dilution. In this formulation, the basic

equations are derived from the stationary conditions for the Helm-

holtz energy Lagrangian:

L C, ζU, c, h, t
� �¼ EU Cð ÞþΔμ C, c, h, tð ÞþζU�eU Cð Þ: ð1Þ

The first term of the right-hand side in Equation (1) represents the

electronic energy of the solute molecule and C is the set of the varia-

tional parameters in the wave function. The second term represents

the excess chemical potential of solvation, and c, h, and t are the

direct, total, and indirect correlation functions describing the solvent

structure around the solute molecule, respectively. The third term cor-

responds to constrains on the parameters (C) in the solute wave func-

tion; that is, the orthonormality of orbitals and/or the normalization of

the wave function. The symbols eU and ζU are the sets of constrains

and multipliers, respectively.

The solute energy EU Cð Þ depends on the electronic structure

method used, which will be discussed later. The form of the excess

chemical potential Δμ depends on the closure employed. Several clo-

sures have been proposed and used, and each has its own advantages.

Here, we use hypernetted chain (HNC) closures and its nth order par-

tial series expansion. Then, the excess chemical potential is rewritten

in Equations (2) and (3), as follows:

ΔμHNC
αs ¼ β�1ns

ð
dr

1
2
h2αs rð Þ� cαs rð Þ�1

2
hαs rð Þcαs rð Þ

� �
, ð3Þ

where Θ is the Heaviside function, β is the inverse temperature, ns is

the number density of site s, and ΔμHNC
αs is the excess chemical poten-

tial using the HNC closure. When n is set to 1 in Equation (2), Δμ cor-

responds to the Kovalenko–Hirata (KH) closure. bc, bh, bω, and bΧ denote

Δμ C, c, hð Þ ¼P
αs

ΔμHNC
αs �β�1ns

ð
drΘ hαs rð Þð Þ tαs rð Þ�βuαs C, ζ, rð Þð Þnþ1

nþ1ð Þ!

 !

¼ β�1P
αs
ns

ð
dr 1�Θ tαs rð Þ�βuαs rð Þð Þð Þ exp tαs rð Þ�βuαs rð Þð Þð ÞþΘ tαs r, λð Þ�βλuαs rð Þð Þ

Xn

i¼0

1
i!

tαs rð Þ�βuαs rð Þð Þi
� �

� tαs rð Þ�hαs rð Þtαs rð Þþ1
2
h2αs rð Þ

� �

� β�1

2πð Þ3
ð
dk

1
2

X
α,s,γ,t

bcαs kð Þbcγt kð Þbωαγ kð ÞbΧst kð Þ�
X

α,s
bcαs kð Þρsbhαs kð Þ

� �
,

ð2Þ
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the direct, total, intramolecular correlation functions and solvent sus-

ceptibility in Fourier space. uαs is an interaction potential between sol-

ute site α and solvent site s given as

uαs rð Þ¼4εαs
σαs
r

� 	12
� σαs

r

� 	6� �
þqαqs

r
, ð4Þ

where ε and σ are the Lennard-Jones potential parameters with con-

ventional meanings and qα and qs are the effective point charge on

solute site α and solvent site s, respectively.

Let us assume the HF method as the electronic structure method

used in the RISM-SCF. In the HF method, the molecular orbital

(MO) coefficients are the variational parameters, and the orthonorm-

ality of MOs is imposed as a constrain. The solute energy EU and the

constrains with the multipliers are

EU ¼ tr hcoreþFð ÞCC†
 �
¼ tr hcoreþFð ÞD½ �, ð5Þ

ζU�eU ¼
X
pq

ϵpq C†SC� I
� �

pq, ð6Þ

which are common regardless of the relativistic and nonrelativistic

cases. Here, matrix C stores the occupied MO coefficients, D is the

density matrix, and hcore and F are the core Hamiltonian and Fock

matrices, respectively. Thus, the total Lagrangian of DHF/RISM-SCF

can be rewritten as the sum of these terms, as follows.

Taking variations of the Lagrangian with respect to the correlation

functions cαs, hαs, and tαs and MO coefficients C, the stationary condi-

tions for RISM-SCF can be obtained. The resulting equations obtained

from the variations with respect to cαs, hαs, and tαs are the RISM equa-

tions: the relational equation between the total, direct, and indirect

correlation functions, and the closure equation. The equation

obtained from the variation with respect to C is the RISM-SCF equa-

tion describing the electronic structure of the solute molecule sur-

rounded by solvent:

∂L

∂C† ¼
δEU

δD
þδΔμ

δD

 !
δD

δC†�SCϵ¼ δEU

δD
þδΔμ

δD

 !
C�SCϵ¼0, ð8Þ

where, for later convenience, the variation is taken with respect to C†

instead of C. The variation of EU with respect to the density matrix

gives the Fock matrix in gas phase:

δEU

δD
¼Fgas ¼hcoreþ J�K, ð9Þ

Jμν ¼
X

lk
Dσλ μνjλσð Þ, ð10Þ

Kμν ¼
X

σλ
Dσλ μσjλνð Þ, ð11Þ

where J and K are the Coulomb and exchange integral matrices,

respectively. The variation of Δμ with respect to the density matrix D

can be rewritten via the potential uαs and the charges on the solute

site, α, qα:

δΔμ
δC† ¼

X
αs

δΔμ
δuαs

∂uαs
∂qα

δqα
δD

∂D

∂C† ¼
X

μαs
qs

ð
dr

hαs rð Þþ1
r

bνμ,αCμi

¼
X

αμ
Vαbνμ,αCμi , ð12Þ

Vα ¼
X

s

δΔμ
δuαs

∂uαs
∂qα

¼
X

s
qs

ð
dr
hαs rð Þþ1

r
, ð13Þ

where bμν,α is the matrix representation of the population operator for

the solute site α.

In the following, we use the relativistic four-component function

as the HF wave function and derive the specific RISM-SCF equation.

In the four-component method, MOs are expressed by large and small

component spinors:

ϕi ¼
ϕL
i

ϕS
i

 !
, ð14Þ

where each component is expanded by the χ basis spinors for each

component:

ϕL ¼
X

μ
cLμiχ

L
μ,ϕ

S ¼
X
μ

cSμiχ
S
μ : ð15Þ

The four-component matrices can be expressed as

L C, ζU , c, h, tð Þ ¼ tr hcoreþFð ÞD½ ��P
pq
ϵpq C†SC� I
� �

pq

þβ�1P
αsns

ð
dr 1�Θ tαs rð Þ�βuαs rð Þð Þð Þ exp tαs rð Þ�βuαs rð Þð Þð ÞþΘ tαs r, λð Þ�βλuαs rð Þð Þ

Xn

i¼0

1
i!

tαs rð Þ�βuαs rð Þð Þi
� �

� tαs rð Þ�hαs rð Þtαs rð Þþ1
2
h2αs rð Þ

� �

� β�1

2πð Þ3
ð
dk

1
2

X
α,s,γ,t

bcαs kð Þbcγt kð Þbωαγ kð ÞbΧst kð Þ�
X

α,s
bcαs kð Þρsbhαs kð Þ

� �
:

ð7Þ
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D¼ DLL DLS

DSL DSS

" #
, ð16Þ

DXY
μν ¼

X
i
CX
μi CY

νi

� 	�
, ð17Þ

hcore ¼ VLL ΠLS

ΠSL VSS�2c2SSS

" #
, ð18Þ

VXX
μν ¼ ⟨χXμ Vj jχXν ⟩, ð19Þ

ΠXY
μν ¼ ⟨χXμ cσ �pj jχYν ⟩, ð20Þ

SXXμν ¼ ⟨χXμ jχXν ⟩, ð21Þ

J¼ JLL 0

0 JSS

" #
, ð22Þ

JXXμν ¼
X

σλ
DLL
σλ χXμ χ

X
ν jχLλχLσ

� 	
þDSS

σλ χXμ χ
X
ν jχSλ χSσ

� 	
, ð23Þ

K¼ KLL KLS

KSL KSS

" #
, ð24Þ

KXY
μν ¼

X
σλ
DXY
σλ χXμ χ

X
σ jχYλ χYν

� 	
: ð25Þ

The charge qα on solute site α in Equation (12) is determined by the

electrostatic potential (ESP) method,33,34 so as to reproduce the elec-

trostatic potential due to the solute electron and nuclei.

The vector q storing the point charges qα as elements is then

given by

q¼Tr DLL a�1BLL�
1ta�1BLL�SLL
� 	

1ta�11
a�11

0
@

1
A

2
4

3
5

þTr DSS a�1BSS�
1ta�1BSS�SSS
� 	

1ta�11
a�11

0
@

1
A

2
4

3
5:

ð26Þ

aαβ ¼
ð
dr

1

r�Rαj j r�Rβ

�� �� , ð27Þ

BXX
μν ¼

ð
dr

1
r�Rαj j

ð
dr0χX�μ r0ð Þ 1

r� r0j j χ
X
ν r0ð Þ: ð28Þ

The variation of the site charge, Equation (26), with respect to the

density matrix gives the solvation potential matrix for solute site α:

δqα
δD

¼ bLLα 0

0 bSSα

" #
, ð29Þ

where

bXX ¼ a�1BXX�
1ta�1BXX�SXX
� 	

1ta�11
a�11: ð30Þ

The solvation Fock matrix is defined as the sum of the gas-phase Fock

matrix and solvation potential matrix:

Fsolv ¼ FLL,gasþVLL,solv FLS,gas

FSL,gas FSS,gasþVSS,solv

" #
, ð31Þ

where

VXX,solv ¼
X

α
Vαb

XX
α : ð32Þ

Thus, we finally obtain the DHF/RISM-SCF equation as an eigenvalue

problem:

FsolvC¼ SCϵ: ð33Þ

Due to the variational formalism, energy derivatives, in particular first-

order derivatives, can be concise, as shown by Sato et al.31 The first-

order derivative of the Helmholtz energy with respect to the solute

molecular coordinates Ra is expressed simply as

∂A
∂Ra

¼ ∂EU

∂Ra
þ 1

2β 2πð Þ3
X
αγst

ð
dkbcαs kð Þbcγt kð Þ ∂bωαγ kð Þ

∂RA

bΧst kð Þ

þ
X

α
Vαtr D

∂bα
∂RA

� �
: ð34Þ

TABLE 1 LJ parameters of solute and solvent sites used in the
reference interaction-site model self-consistent field (RISM-SCF)
calculations

σ (Å) ε (kcal/mol) q (e)a

I� and CH3I

C 3.3997 0.1094 –

H 2.4714 0.0157 –

I 3.8309 0.5 –

H2X (X = O–Po)

H (expect for H2Po) 1.0000 0.056 –

H (for H2Po) 2.886 0.325 –

O 3.166 0.1554 –

S 4.035 0.274 –

Se 4.205 0.291 –

Te 4.009 0.339 –

Po 4.709 0.325 –

Solvent water

O 3.166 0.1554 �0.8476

H 1.0000 0.056 0.4238

aThe partial charges on solute sites are determined as a result of the

RISM-SCF calculation.

8 KANEMARU ET AL.
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The first term of the right-hand side of Equation (34) corresponds to

the change in the solute electronic energy; the second term corre-

sponds to the change in the solute–solvent distribution function due

to the modification of the intramolecular correlation; and the last term

corresponds to the change in partial charge on solute sites. The ana-

lytical energy gradients for the four-component relativistic

DHF/RISM-SCF are obtained by replacing the nonrelativistic molecu-

lar integral with four-component ones.

It should be noted that, although not treated in the present paper,

it is straightforward to extend the method to the four-component

Dirac–Kohn–Sham (DKS) density functional method. The four-

component DKS/RISM-SCF equation can be obtained by replacing

the solute DHF energy expression with the DKS energy expression:

EU ¼ EDKS ¼ tr D hcoreþ J� γKð Þ½ �þeXC ρð Þ, ð35Þ

where γ is the parameter defining the weight of the Hartree–Fock

exchange, and eXC is an exchange-correlation functional. Thus, the

solvation Fock corresponding to the DKS/RISM-SCF is the sum of the

four-component Kohn–Sham matrix and the solvation potential matrix

multiplied by Vα.

3 | COMPUTATIONAL DETAILS

To demonstrate the present method, we applied it to the ground

states of the I� ion, to methyl iodide CH3I, and to hydrogen chalco-

genides H2X (X = O, S, Se, Te, and Po) in aqueous solution. The basis

sets used in the DHF calculations were the uncontracted correlation-

consistent valence triple zeta (cc-pVTZ) basis set for C, H, O,

and S,35,36 and the uncontracted Dyall's triple zeta plus polarization

(TZP) basis set for Se, Te, I, and Po.37 The geometries of CH3I and

H2X in the solution were optimized at the DHF/RISM-SCF level.

The parameters used in the RISM-SCF method were as follows:

The temperature and density of solvent water were 298 K and

0.03334 molecules/Å3, respectively. The LJ parameters σ and ε for

the solute and solvent sites are listed in Table 1.38 For H2Po, the LJ

parameters for the H of silane (H4Si) were used39 to ensure proper

charge polarization between H and Po. The transferable intermolecu-

lar potential with three points (TIP3P) parameter set40 for the geomet-

rical and potential parameters for solvent water was used with

modified H parameters. There were 2048 grid points with a spacing

of 0.05 Å for pair correlation functions in the RISM calculations.

PCM-SCF calculations were performed by DIRAC19.41,42

4 | APPLICATIONS

4.1 | The iodine ion (I�) and methyl iodide (CH3I)

The electronic structure and solvation structure of the iodine ion (I�)

and methyl iodide (CH3I) were evaluated by the relativistic and

TABLE 2 Helmholtz energy and
solvation free energy for I� and CH3I,
and their component decomposition

I� CH3I

Relativistic Nonrelativistic Relativistic Nonrelativistic

A (Hartree) �7116.25060 �6918.21333 �7155.65459 �6957.60014

EU �7116.11102 �6918.07374 �7155.67243 �6957.61794

Δμ �0.13959 �0.13959 0.01784 0.01780

Aslv (kcal/mol) �87.59 �87.59 11.96 12.00

ΔμNES 7.30 7.30 14.40 14.41

ΔμES �94.89 �94.89 �3.21 �3.24

Ereorg <10�3 <10�3 0.76 0.83

TABLE 3 Optimized geometrical parameters, z component of
electric dipole moment, and ESP charge for CH3I

Relativistic Nonrelativistic

GAS RISM GAS RISM

r(C–I) (Å) 2.143 2.155 2.144 2.157

r(C–H) (Å) 1.075 1.073 1.075 1.073

∠ICH (�) 107.5 106.6 107.7 106.7

DM(z) (a.u.) �0.763 �1.080 �0.821 �1.155

qI (e) �0.128 �0.185 �0.146 �0.210

qC (e) �0.402 �0.495 �0.344 �0.378

qH (e) 0.177 0.226 0.164 0.196

F IGURE 1 Radial distribution functions between the I atom and
solvent water
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nonrelativistic HF/RISM-SCF methods. In Table 2, the Helmholtz

energy and its components obtained by relativistic and nonrelativistic

method for I� and CH3I are compared.

The solvation free energy (SFE) Aslv in the RISM-SCF method is

defined as the difference between the Helmholtz energy in solution

phase A and the energy in gas phase Egas:

Aslv ¼A�Egas ¼ EU�EgasþΔμ: ð36Þ

The energy difference, EU�Egas, in the right-hand side can be

regarded as the electronic reorganization energy Ereorg due to the sol-

vation, and the excess chemical potential Δμ can be divided into the

electrostatic ΔμES and the nonelectrostatic ΔμNES components; hence,

Aslv is further rewritten as

Aslv ¼ EreorgþΔμESþΔμNES: ð37Þ

As shown in Table 2, I� is strongly stabilized due to the solvation

because of its ionic nature. The major contribution to this stabilization

is the electrostatic interaction with the solvent water. Since I� con-

sists of only one site, all the electron charges are assigned to the sin-

gle site. As a result, the solute–solvent interaction potential for the

RISM calculation is the same in both relativistic and nonrelativistic cal-

culations. Therefore, the SFE values are identical in both cases. By

contrast, the SFE of CH3I, a polyatomic molecule, is affected by the

relativistic effects. In the DHF/RISM-SCF framework, the relativistic

effects on electronic states of the solute molecule influence the

solute–solvent interactions through effective charges on solute

atoms. Moreover, the solvation structure changed by relativistic

effects also affects the electron reorganization energy of the solute

molecule. In the present calculation, the relativistic effects seem to

suppress the electrostatic interaction between solute and solvent mol-

ecules and therefore the magnitude of all the SFE components

becomes smaller than those of nonrelativistic results. Consequently,

the total SFE of the relativistic calculation, 11.96 kcal/mol, was

slightly lower than the nonrelativistic one, 12.00 kcal/mol. The opti-

mized molecular structure and electrical properties of solute CH3I are

summarized in Table 3. As can be seen in the table, the C–I distance

and the dipole moment of the solute CH3I become smaller due to the

relativistic effects. Such structural and electrostatic character weakens

the solute–solvent interactions.

The radial distribution functions (RDFs)27 between the I ion/atom

of the solute and the O and H atoms of the solvent by DHF/RISM-

SCF are shown in Figure 1. For I�, the RDF for I–O has a sharp high

peak at r = 3.4 Å and the RDF for I–H has a sharp high peak at

r = 2.15 Å and a relatively low peak at r = 4.15 Å. In CH3I, the RDF

for I–O has a high peak at r = 3.50 Å, and the RDF for I–H has a

shoulder around r = 2.70 Å and a peak at r = 4.20 Å. These peaks and

the shoulder correspond to water molecules in the first solvation shell.

F IGURE 2 Difference between the relativistic and nonrelativistic
radial distribution functions for CH3I

F IGURE 3 Energy levels of (A) 5p orbitals of I� and (B) 5p orbitals
of I in CH3I

TABLE 4 Optimized geometrical parameters for H2X (X = O–Po)

GAS RISM PCM

X r (Å) θ (�) r (Å) θ (�) r (Å) θ (�)

O 0.940 105.9 0.945 105.6 0.944 104.9

S 1.329 94.1 1.330 96.1 1.331 94.9

Se 1.451 92.9 1.449 95.2 1.452 93.7

Te 1.649 92.1 1.645 93.9 1.649 92.6

Po 1.742 90.7 1.742 90.3 1.746 90.0

10 KANEMARU ET AL.
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The peaks of CH3I are featured to be lower and broader than those of

I�. These results indicate tight hydration around the charged I� ion

and loose hydration around I of the neutral molecule CH3I.

The difference between the RDFs of CH3I by the relativistic and

nonrelativistic RISM-SCF is shown in Figure 2. The RDFs of I� are not

shown because they are identical for relativistic and nonrelativistic, as

discussed above. From the figure, the first peak height of the RDF in the

relativistic case is slightly lower than in the nonrelativistic case. This fea-

ture corresponds to the SFE behavior discussed above; that is, the intro-

duction of the relativistic effects weakens the solute–solvent interaction.

In contrast to the solvation structures, which differ little between

the relativistic and nonrelativistic cases, the electronic structures of I�

and CH3I are naturally different due to the relatively large spin–orbit

interaction. Figure 3A,B presents the energy levels of the four highest

energy orbitals (including degeneracy) of I� and CH3I, respectively. In

the charged system I�, the 5p3/2, 5p1/2 and 5s orbitals are significantly

stabilized by �0.2989 a.u. The MOs of CH3I corresponding to these

orbitals of I� are the highest occupied MO (HOMO) (9e; characterized

as 5πI), HOMO�1 9e0;5π0I
�

), HOMO�2 (13a1; σCH), and HOMO�5

(12a1; 5sI). The stabilizations of these energy levels are relatively

small, namely: �0.0346, �0.0338, �0.0230, and �0.0290a.u., respec-

tively, as expected for a neutral molecule.

4.2 | Hydrogen chalcogenide H2X (X = O, S, Se,
Te, and Po)

Another example is the series of hydrogen chalcogenides. The molec-

ular structures of the H2X molecules in gas phase and in water, which

were optimized using the DHF/RISM-SCF and DHF/PCM-SCF

methods, are shown in Table 4. These molecules have also been

examined in the relativistic PCM-SCF paper.23 This paper reported

that bond lengths increase monotonically with increasing chalcogen

atomic number in correlation with the size of the central atom, and

that there is no deviation from this trend even when relativity is

included and the solvent effect is considered. The DHF/RISM-SCF

method provides similar results. The structures by DHF/RISM-SCF

and DHF/PCM-SCF methods in the table are quite close, with a maxi-

mum difference of 0.04 Å in bond distance and 2.5� in bond angle.

For the bond distance, the DHF/RISM-SCF method tends to have a

slightly larger distance, and for the bond angle, the DHF/RISM-SCF

method tends to have a slightly smaller angle. The solvent effect on

the solute structure was smaller with the DHF/RISM-SCF method

than with DHF/PCM-SCF. In fact, even for H2O, where the change in

electric dipole moment due to solvation, as will be shown later, is

large: the changes are +0.005 Å for bond distance and �0.3� for bond

angle. This is much the same for the DHF/PCM-SCF method.

The Helmholtz energies, as well as the SFEs and their compo-

nents, for H2X (X = O, S, Se, Te, and Po) are shown in Table 5. The

Helmholtz energies and SFEs by the DHF/PCM-SCF method are also

listed. The nonelectrostatic contributions to the SFEs were not

included because the nonelectrostatic energy is not handled in the

current PCM implementation of the program package (DIRAC). Hence,T
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the SFEs by the DHF/PCM-SCF method are the sum of Ereorg and

ΔμES. For this reason, direct comparison between the total SFEs Aslv

by the DHF/PCM-SCF and DHF/RISM-SCF methods is not

appropriate, and only the electrostatic and electronic reorganization

energies are compared below. Table 6 lists the z components of the

electric dipole moments and the electrostatic potential (ESP) charge

on the X atom of the solute molecule. The H2X molecules have a C2v

symmetry, and thus only the z component of the dipole moment has a

value.

The SFE by the DHF/RISM-SCF method is negative (�5.31 kcal/

mol) for H2O and positive (6.95–14.94 kcal/mol) for the other mole-

cules, increasing with the atomic number of chalcogen. The electro-

static and nonelectrostatic components of the SFE increase from H2O

to H2Po: the electrostatic component increases from �18.17 kcal/mol

for H2O to �0.22 for H2Po, and the nonelectrostatic component

increases from 6.82 kcal/mol for H2O to 15.07 for H2Po. By contrast,

the reorganization energy is smaller than these two energies, decreas-

ing from 6.04 to 0.99 kcal/mol. According to Table 6, the magnitude

of the electric dipole moment and ESP charge decrease with increas-

ing chalcogen atomic number, indicating that the polarity of the mole-

cules reduces with increasing chalcogen atomic number. The SFE

results correspond to the magnitude of the molecular polarity. That is,

the larger the polarity of the molecule, the larger the magnitude of the

electrostatic component and the reorganization energy, and the smal-

ler the magnitude of the nonelectrostatic component. For H2O, the

most polar molecule, the electrostatic component of �18.17 kcal/mol

is dominant, and the nonelectrostatic component and reorganization

energy are of similar magnitude, 6.82 and 6.04 kcal/mol, respectively.

By contrast, for H2Po, the least polar molecule, the nonelectrostatic

TABLE 6 Z component of electric dipole moment and
electrostatic potential charge on X for H2X (X = O–Po)

H2O H2S H2Se H2Te H2Po

GAS

DM(z) (a.u.) 0.781 0.449 0.307 0.115 �0.229

q (e) �0.741 �0.319 �0.226 �0.116 0.033

RISM

DM(z) (a.u.) 1.137 0.861 0.732 0.464 –0.342

q (e) �1.056 �0.553 �0.446 �0.268 0.080

PCMa

DM(z) (a.u.) 0.903 0.584 0.426 0.191 �0.327

aReference 23.

F IGURE 4 Radial distribution functions between H2X and solvent water
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energy of 15.07 kcal/mol is dominant, and the electrostatic compo-

nent and reorganization energy are very small, �0.22 and 0.09 kcal/

mol, respectively. Both the electrostatic component and reorganiza-

tion energy are rather smaller by the DHF/PCM-SCF method than by

the DHF/RISM-SCF method. Even for H2O, which has the largest

magnitude, the electrostatic component and reorganization energy

are �6.28 and 0.67 kcal/mol, respectively. Note that comparing the

dipole moments of RISM and PCM in Table 6, the DHF/RISM-SCF

values are larger than those of DHF/PCM-SCF. The maximum differ-

ence is 0.306 a.u. for H2Se, while the difference is relatively small for

H2Po with different polarity, 0.015 a.u. The overestimation may be

attributed to the fact that the RISM-SCF method overestimates the

polarization of solute molecules in polar solvents when using the

point-charge representation.43

The RDFs by the DHF/RISM-SCF method are shown in

Figure 4A–D. The RDFs of H2S, H2Se, and H2Te were similar, indicat-

ing that the RDF features can be classified into three groups: H2O,

H2S–H2Te, and H2Po. In all the RDFs, the peak heights decrease with

increasing chalcogen atomic number. This reflects the fact that the

solute–solvent interaction weakens with increasing chalcogen atomic

number, as can be seen from the polarity of the solute molecules in

Table 6.

The RDF, gX–H, between X of the solute and H of the solvent

(Figure 4A) shows a conspicuous peak at 1.80 Å for H2O, but there are

no corresponding peaks for the other molecules; the second peak for

H2O corresponds to the first peaks of the other molecules. These first

peaks are at shorter distances than the first RDF peak between X of the

solute and O of the solvent (Figure 4B) in the case of H2O–H2Te, and at

about the same distance for H2Po. This indicated that for H2O, there is

distinct hydrogen bond formation between O of the solute and H of the

solvent; for H2Po, the solvent waters take a nearly random orientation

with respect to Po; and for H2S, H2Se, and H2Te, the solvent waters are

roughly oriented with H toward the X of the solute.

For the four molecules H2O–H2Te the RDFs, gH–O, between H of

the solutes and O of the solvent in Figure 4D have a peak at about

2 Å, and the RDFs, gH–H, between H of the solute and H of the sol-

vent in Figure 4C have a peak or shoulder at about 2.5 Å. These indi-

cate the hydrogen bond formation between solute H and solvent O

for the three molecules. In contrast, there is no peak at a similar posi-

tion in H2Po, and gH–O has a small peak around r = 3.1 Å, indicating

that H of the solute and O of solvent are loosely bound without form-

ing an obvious hydrogen bond.

5 | CONCLUSIONS

We have presented the DHF/RISM-SCF method, which is the initial

implementation of a combined method of a four-component relativis-

tic theory and an integral equation theory of molecular liquid to con-

sider both the relativistic and the solvent effects on the electronic

structure of solvated molecules. The method was formulated as a vari-

ational form of the Helmholtz energy, and the analytic energy gradi-

ents were also derived using the variational property.

We have applied the DHF/RISM-SCF method to iodine ion I�,

methyl iodide CH3I, and hydrogen chalcogenide H2X (X = O–Po) in

aqueous solutions. For I� and CH3I, the SFEs and their components,

and the RDFs of solvent around the I atoms were shown and dis-

cussed. For species with no or small charge bias, the absolute reorga-

nization energy was very small, and the signs of the SFEs were

determined by the electrostatic energy in Δμ for I� and by the none-

lectrostatic energy in Δμ for CH3I. The solvation structures for I� and

CH3I around the I atom were similar for the peak and shoulder posi-

tions, whereas the peak heights were different due to the charge dif-

ferences. The comparison with the nonrelativistic HF/RISM-SCF

results indicated that changes in solvation structure due to relativistic

effects were relatively small. In contrast, for the electronic structures

of solute, such as the orbital energy levels, the relativistic description

using the DHF/RISM-SCF method was essential. For H2X, the molec-

ular structures, SFE and their components, the electric dipole moment

and ESP charges of the solute, and the RDF of solvent around the X

and H atoms were computed and discussed focusing mainly on the

differences due to the heavy atom X. As shown by the dipole moment

results, the polarity of molecule decreased with increasing chalcogen

atomic number. Consequently, the SFE increased, and the electro-

static energy decreased in its absolute value. The solvation structures

of H2X were classified into three groups: H2O, H2S–H2Te, and H2Po.

In H2O, both the O and H atoms formed hydrogen bonds with solvent

water. In H2Po, by contrast, the solvent water took nearly random ori-

entations around the Po atom of the solute. The H atom of the solute

and the O atom of the solvent were loosely bound without forming

an obvious hydrogen bond. In other molecules, hydrogen bond forma-

tion was observed between the H of the solute and the O atom of the

solvent, and the solvent waters were roughly oriented with the H

atom toward the heavy element of the solute. Overall, it can be said

that the DHF/RISM-SCF method appropriately introduces solvent

effects to the four-components relativistic electronic structure theory.

The present DHF/RISM-SCF method can be extended in both the

four-component relativistic electronic structure theory of solute mole-

cules and the solvent model. Though the electron correlation effect is

not so large for the molecular systems treated in the present article,

the combination with electron correlation methods is crucial, espe-

cially for the precise description of the electronic structure of solute

molecules, the quantitative description of chemical reactions, and

their application to quasidegenerate systems. For full variational elec-

tronic structure methods, such as the four-component KS-DFT and

MCSCF methods, the variational approach to the Helmholtz energy is

applicable, as described in the Methods section. Additionally, for non-

variational electron correlation methods, such as the four-component

perturbation and coupled-cluster methods, the formulation procedure

using a Lagrangian in the RISM-SCF method is now well established.

For solvent models, more accurate models such as three-dimensional

(3D) RISM44,45 and the molecular Orenstein–Zernike (MOZ)46,47

model that are compatible with the four-component relativistic

method describing fine electronic structures of solutes, are desired.

The 3D-RISM theory explicitly incorporates the orientation of one

molecule in the two-body interaction between molecules, and the
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MOZ theory explicitly incorporates the orientations of both mole-

cules, resulting in the 3D-RISM-SCF48,49 and MOZ-SCF32,50 methods

using these models to refine the description of solute–solvent inter-

molecular interactions. Those developments are currently in progress.
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