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ABSTRACT
Theoretical discussions are given on issues in relativistic molecular orbital theory to which the quantum electrodynamics (QED) Hamiltonian
is applied. First, several QED Hamiltonians previously proposed are sifted by the orbital rotation invariance, the charge conjugation and time
reversal invariance, and the nonrelativistic limit. The discussion on orbital rotation invariance shows that orbitals giving a stationary point of
total energy should be adopted for QED Hamiltonians that are not orbital rotation invariant. A new total energy expression is then proposed,
in which a counter term corresponding to the energy of the polarized vacuum is subtracted from the total energy. This expression prevents
the possibility of total energy divergence due to electron correlations, stemming from the fact that the QED Hamiltonian does not conserve
the number of particles. Finally, based on the Hamiltonian and energy expression, the Dirac–Hartree–Fock (DHF) and electron correlation
methods are reintroduced. The QED-based DHF equation is shown to give information on positrons from negative-energy orbitals while
having the same form as the conventional DHF equation. Three electron correlation methods are derived: the QED-based configuration
interactions and single- and multireference perturbation methods. Numerical calculations show that the total energy of the QED Hamiltonian
indeed diverged and that the counter term is effective in avoiding the divergence. The relativistic molecular orbital theory presented in this
article also provides a methodology for dealing with systems containing positrons based on the QED Hamiltonian.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0145577

I. INTRODUCTION

The relativistic electronic structure theory, which is based on
the Dirac equation, is a powerful tool to understand the properties of
systems containing heavy or superheavy elements.1 Nowadays, the
relativistic Hartree–Fock (HF) method2,3 and electron correlation
methods, such as density functional theory,4 Møller–Plesset (MP)
perturbation method,5 configuration interaction (CI) method,6 mul-
ticonfiguration self-consistent field method,7 multireference per-
turbation method,8–10 multireference coupled-cluster method,11

two-time Green’s function method,12 and polarization propagator
method,13 have been developed and used. The relativistic electronic
structure theory is also useful to understand magnetic phenom-
ena because the spin–orbit interaction is naturally included through
the Dirac equation. In fact, the nuclear magnetic resonance (NMR)
shielding constants can be reproduced by taking into account the
spin–orbit interaction.14 One of the major differences between the
Dirac equation and the nonrelativistic Schrödinger equation is that
the former has negative kinetic energy solutions as well as positive
kinetic energy solutions. This is based on the fact that the rela-
tivistic dispersion relationship between energy and momentum is

a quadratic equation: E2
= m2c4

+ p2c2, i.e., E = ±(m2c4
+ p2c2

)
1/2.

This negative kinetic energy is conventionally referred to simply
as “negative energy,” and we, hereafter, follow this convention.
The problem of the negative-energy solution itself has already
been solved by the relativistic quantum field theory.15–18 The rel-
ativistic quantum field theory assumed that all negative-energy
levels are filled with unobservable electrons and regard holes in
negative energy levels as positrons. This interpretation not only
solved the aforementioned negative energy solution problem but
also predicted the pair-creation/annihilation of electron–positron
pairs.

In the relativistic molecular orbital method, the basic Hamilto-
nian is the Dirac–Coulomb (DC) Hamiltonian,

HDC
=∑

i

⎛

⎝

⎡
⎢
⎢
⎢
⎢
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which introduces the Dirac Hamiltonian and Coulomb repulsion as
the one-electron Hamiltonian and two-electron potential, respec-
tively. The second-quantized Hamiltonian, which is represented
simply by the electron creation/annihilation operators, regardless
of whether the energies of the orbitals expressing the Hamiltonian
are positive or negative, is the virtual pair approximation (VPA)
Hamiltonian,19

HVPA
=

all

∑
pq

hpqa†
paq +

1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq, (2)

where a†
p and a†

r are electron creation operators, and aq and as are
electron annihilation operators. The orbital sums are taken for all
the orbitals. The integrals hpq and (pq∣rs) are defined as

hpq = ∫ d3rψ†
p(r)
⎛
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ψq(r), (3)

(pq∣rs) = ∫ ∫ d3r1d3r2ψ†
p(r1)ψq(r1)

1
∣r1 − r2∣

ψ†
r (r2)ψs(r2). (4)

Alternatively, the second-quantized Hamiltonian, restricted to
include only positive-energy orbitals, is the no virtual pair approx-
imation (NVPA) Hamiltonian, often used in relativistic molecular
orbital theory,20

HNVPA
=

(+)

∑
pq

hpqa†
paq +

1
2

(+)

∑
pqrs
(pq∣rs)a†

pa†
r asaq, (5)

where the orbital sums (+) are taken only for the positive-energy
orbitals. The VPA and NVPA Hamiltonians have their own theoreti-
cal problems when applied to relativistic electron correlation theory.
The VPA Hamiltonian is problematic because it does not employ the
remedy to the aforementioned negative energy problem. The NVPA
Hamiltonian also has the problem that the Fock space used is not
complete.

In contrast to the VPA and NVPA Hamiltonians, which have
these problems, a second-quantized Hamiltonian that applies the
aforementioned remedy for the negative energy problem is the
quantum electrodynamics (QED) Hamiltonian.21–25 Note that the
QED in this paper is the so-called no-photon QED and that the
quantum effects of an electromagnetic field, the other important
aspect of the QED,26–32 are not treated in this paper. Even in the
QED Hamiltonian, several issues need to be investigated. The first
is the choice of the QED Hamiltonian to be employed. Several
different QED Hamiltonians have been proposed to date,21–25,33,34

depending on the type of contraction of the creation/annihilation
operators and the representing orbitals. Because there should be
only one “legitimate” Hamiltonian describing nature, we need to
examine which one should be adopted through theoretical require-
ments. Second, since the choice of orbitals used to describe the
second quantized Hamiltonian can be directly related to the divi-
sion of electron and positron space in the QED Hamiltonian, the
necessity of choosing orbitals beyond the HF method should also

be discussed. Third, it is not known whether the combination of
the QED Hamiltonian and electron correlation theory works prop-
erly. Since the QED Hamiltonian can describe the pair-creation
of electrons and positrons, electron correlation can cause the total
number of particles in the system to fluctuate. The effects of this
fluctuation in the number of particles should be verified. Relativistic
molecular orbital methods based on the QED Hamiltonian may also
provide an effective way to utilize negative-energy orbitals, which
have been “nuisances” in conventional relativistic molecular orbital
methods. In this article, we attempt to provide theoretical consid-
erations for these issues. The proper way to partition the electron
and positron space will be considered along with orbital rotational
invariance.

The arrangement of this article is as follows: In Sec. II, QED
Hamiltonians are examined and then sifted for proper QED Hamil-
tonians that satisfy the physical requirements [orbital rotation
invariance, charge conjugation and time reversal (CT) invariance,
and the nonrelativistic limit], and a total energy expression that can
exclude divergences by the electron correlations from pair-created
configurations is proposed. The issue of the partitioning of the space
between electrons and positrons is discussed along with orbital rota-
tional invariance. Based on the sifted QED Hamiltonian and the
proposed total energy expression, the relativistic molecular orbital
theory is rederived. In Sec. III, some of the theoretical considerations
in Sec. II are confirmed numerically. The conclusions are presented
in Sec. IV.

II. THEORY
In this section, we discuss several issues of relativistic molecular

orbital methods applying the QED Hamiltonian and propose reme-
dies if the existence of the problems is confirmed. First, we system-
atically list the QED Hamiltonians treated in this paper, including
the already proposed QED Hamiltonians and some new ones con-
sidered as variations of them. Which of these QED Hamiltonians
should be adopted is sifted according to whether it satisfies the three
physical requirements associated with positrons. We also propose
new total energy expressions for the QED-based electron correla-
tion methods. Based on these arguments, the relativistic molecular
orbital method will be re-derived in a form based on the QED
Hamiltonian.

A. Examination of QED Hamiltonians
In this subsection, we examine the expression of the QED

Hamiltonian. The QED Hamiltonian here is a Hamiltonian that is
based on the picture that the negative energy levels are filled with
electrons or that the holes in the negative energy levels are regarded
as antiparticles. Several different formulations of the QED Hamilto-
nian have been proposed, depending on the reference vacuums and
other factors. Here, determining the reference vacuum is essentially
the same as determining the representing orbitals that represent the
creation/annihilation operators. In this subsection, considering the
possibility that there may be other candidates for the QED Hamilto-
nians, we will reconsider the systematic derivation and classification
of the QED Hamiltonians. The change from the VPA Hamiltonian
to the QED Hamiltonian has been treated in a number of refer-
ences (Refs. 35–37), but we employ the method described in Refs. 24
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and 36. This change is also regarded as the change from the config-
uration space to the Fock space.38 The VPA Hamiltonian (2) can be
rewritten as follows:

HVPA
=

all

∑
pq

hpq{a†
paq}

n
+

1
2

all

∑
pqrs
(pq∣rs){a†

pa†
r asaq}

n

+
all

∑
pqrs
[(pq∣rs) − (ps∣rq)]{a†

paq}
n
⟨00∣a†

r as∣00⟩

+
all

∑
pq

hpq⟨00∣a†
paq∣00⟩ +

1
2

all

∑
pqrs
[(pq∣rs) − (ps∣rq)]

× ⟨00∣a†
paq∣00⟩⟨00∣a†

r as∣00⟩, (6)

where ∣00 ⟩ is the single configuration vacuum and the subscript “0”
indicates “single configuration,” and {}n is the normal ordering and
the subscript “n” indicates “normal.” Note that the single configura-
tion vacuum does not include the electron correlation and is not the
true vacuum state.

By eliminating the constant terms [the fourth and fifth terms
in Eq. (6)], we obtain a QED Hamiltonian. To obtain specific
forms, it is necessary to specify the contraction ⟨00∣a†

paq∣00⟩,
and furthermore, the representing orbitals defining integrals and
creation/annihilation operators. There are three choices for the
contraction. One is

⟨00∣a†
paq∣00⟩ ≡ 0, (7)

which we, hereafter, refer to as the “constantly null contraction
(CNC).” Another is the charge-conjugate contraction (CCC) as
proposed by Liu et al.,25,34,39

⟨00∣a†
paq∣00⟩ ≡

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(−1/2)δpq (p, q ∈ {(+)}),
(1/2)δpq (p, q ∈ {(−)}),
0 (other cases),

(8)

and the last one is the conventional contraction (cC),

⟨00∣a†
paq∣00⟩ ≡

⎧⎪⎪
⎨
⎪⎪⎩

δpq (p, q ∈ {(−)}),
0 ( other cases).

(9)

There are also three choices for representing orbitals. One
is the so-called molecular orbitals (MOs), which are orbitals
that are solutions of the Hartree–Fock or multi-configurational
self-consistent field (MCSCF) method. Another is free-particle
orbitals, which are eigenfunctions of kinetic energy part of the
one electron Dirac Hamiltonian, and the last one is the Furry
orbitals, which are eigenfunctions of the one-electron Dirac Hamil-
tonian. Hereinafter, the MOs are not enclosed with brackets,
the free-particle orbitals are enclosed with square brackets “[],”
and the Furry orbitals are enclosed with double square brack-
ets “[[]]” to distinguish them. Note that if the free-particle or
Furry orbitals are adopted as the representing orbitals, the nor-
mal ordering and the contraction must be redefined for the free-
particle or Furry orbitals rather than the MOs (e.g., p → [p] or

p→ [[p]]). The single configuration vacuum ∣00⟩ are also redefined
accordingly,

∣00⟩ ≡ ∣0
(MO)
0 ⟩ = a†

−1a†
−2 ⋅ ⋅ ⋅ a

†
−∞∣empty⟩, (10)

∣00⟩ ≡ ∣0
(free)
0 ⟩ = a†

[−1]a
†
[−2] ⋅ ⋅ ⋅ a

†
[−∞]
∣empty⟩, (11)

and

∣00⟩ ≡ ∣0
(Furry)
0 ⟩ = a†

[[−1]]a
†
[[−2]] ⋅ ⋅ ⋅ a

†
[[−∞]]

∣empty⟩, (12)

when the representing orbitals are MOs, free-particles, and Furry
orbitals, respectively. Here, ∣empty⟩ is the completely empty state;
in other words, the state that vanishes by an operation of any
(i.e., regardless of positive- or negative-electron energy) electron
annihilation operators.

Nine different QED Hamiltonians are possible from three dif-
ferent contractions and three different representing orbitals. We
will give systematic names to these nine QED Hamiltonians for
convenience in this paper.

If CNC is employed, and, in addition, the representing orbitals
of MOs, free-particle orbitals, and Furry orbitals are employed, then
the QED(MO-CNC) Hamiltonian,21–25

HQED(MO−CNC)
=

all

∑
pq

hpqa†
paq +

1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(−)

∑
p

hpp +
1
2

(−)

∑
pq
[(pp∣qq) − (pq∣qp)]

−
all

∑
pq

(−)

∑
r
[(pq∣rr) − (pr∣rq)]a†

paq, (13)

QED(free-CNC) Hamiltonian,33

HQED(free−CNC)
=

all

∑
pq

hpqa†
paq +

1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(−)

∑
p

h[pp] +
1
2

(−)

∑
pq
{([pp]∣[qq]) − ([pq]∣[qp])}

−
all

∑
pq

(−)

∑
r
{(pq∣[rr]) − (p[r]∣[r]q)}a†

paq, (14)

and QED(Furry-CNC) Hamiltonian,

HQED(Furry−CNC)
=

all

∑
pq

hpqa†
paq +

1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq −

(−)

∑
p

h[[pp]]

+
1
2

(−)

∑
pq
{([[pp]]∣[[qq]]) − ([[pq]]∣[[qp]])}

−
all

∑
pq

(−)

∑
r
{(pq∣[[rr]]) − (p[[r]]∣[[r]]q)}a†

paq,

(15)

are obtained, respectively.
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Then, if CCC is employed, and, in addition, the represent-
ing orbitals of MOs, free-particle orbitals, and Furry orbitals are
employed, then the QED(MO-CCC) Hamiltonian,

HQED(MO−CCC)
=

all

∑
pq

hpqa†
paq +

1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(−)

∑
p

hpp +
1
2

(−)

∑
p

(+)

∑
q
[(pp∣qq) − (pq∣qp)]

−
1
2

all

∑
pq

all

∑
r
[(pq∣rr) − (pr∣rq)]a†

paq, (16)

QED(free-CCC) Hamiltonian,

HQED(free−CCC)
=

all

∑
pq

hpqa†
paq +

1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq −

(−)

∑
p

× h[pp] +
1
2

(−)

∑
p

(+)

∑
q
{([pp]∣[qq]) − ([pq]∣[qp])}

−
1
2

all

∑
pq

all

∑
r
{(pq∣[rr]) − (p[r]∣[r]q)}a†

paq, (17)

and QED(Furry-CCC) Hamiltonian,

HQED(Furry−CCC)
=

all

∑
pq

hpqa†
paq +

1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq −

(−)

∑
p

h[[pp]]

+
1
2

(−)

∑
p

(+)

∑
q
{([[pp]]∣[[qq]]) − ([[pq]]∣[[qp]])}

−
1
2

all

∑
pq

all

∑
r
{(pq∣[[rr]]) − (p[[r]]∣[[r]]q)}a†

paq,

(18)

are obtained, respectively.
Finally, if cC is employed, and, in addition, the represent-

ing orbitals of MOs, free-particle orbitals, and Furry orbitals are
employed, then the QED(MO-cC) Hamiltonian,

HQED(MO− cC)
=

all

∑
pq

hpqa†
paq +

1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(−)

∑
p

hpp −
1
2

(−)

∑
pq
[(pp∣qq) − (pq∣qp)], (19)

QED(free-cC) Hamiltonian,

HQED(free− cC)
=

all

∑
pq

hpqa†
paq +

1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(−)

∑
p

h[pp] −
1
2

(−)

∑
pq
{([pp]∣[qq]) − ([pq]∣[qp])},

(20)

and QED(Furry-cC) Hamiltonian,

HQED(Furry− cC)
=

all

∑
pq

hpqa†
paq +

1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(−)

∑
p

h[[pp]] −
1
2

(−)

∑
pq
{([[pp]]∣[[qq]])

− ([[pq]]∣[[qp]])}, (21)

are obtained, respectively.
Here, four of the nine QED Hamiltonians are already reported

in important previous studies. QED(MO-CNC) is equivalent to the
widely known “QED Hamiltonian,”21–25

HQED(MO−CNC)

=

(+)

∑
pq

hpqa†
paq −

(−)

∑
pq

hpqb†
qbp +

(+)

∑
p

(−)

∑
q

hpqa†
pb†

q

+

(+)

∑
q

(−)

∑
p

hpqbpaq +
1
2
⎛

⎝

(+)

∑
pqrs
(pq∣rs)a†

pa†
r asaq

− 2
(+)

∑
pq

(−)

∑
rs
(pq∣rs)a†

pb†
s braq + 2

(+)

∑
ps

(−)

∑
qr
(pq∣rs)a†

pb†
qbras

+

(−)

∑
pqrs
(pq∣rs)b†

s b†
qbpbr + 2

(+)

∑
pqr

(−)

∑
s
(pq∣rs)a†

pa†
r b†

s aq

− 2
(+)

∑
r

(−)

∑
pqs
(pq∣rs)a†

r b†
s b†

qbp + 2
(+)

∑
pqs

(−)

∑
r
(pq∣rs)a†

pbrasaq

− 2
(+)

∑
s

(−)

∑
pqr
(pq∣rs)b†

qbpbras +

(+)

∑
pr

(−)

∑
qs
(pq∣rs)a†

pa†
r b†

s b†
q

+

(+)

∑
pr

(−)

∑
qs
(pq∣rs)bpbrasaq

⎞

⎠
, (22)

where b†
p and bp are creation and annihilation operators of a

positron, respectively. As a footnote, Eq. (13) can also be obtained
by replacing the operators in Eq. (22) as b†

p → ap and bp → a†
p and

ordering them with the anticommutation relations. The reference
vacuum corresponding to Eq. (22) is ∣empty⟩ and that correspond-
ing to Eq. (13) is ∣0(MO)

0 ⟩, which is the same reference vacuum
but apparently different. In addition, QED(free-CNC) is already
proposed by Saue and Visscher,33 QED(MO-CCC) is equivalent to
Eq. (27) in Ref. 34, and QED(free-CCC) is equivalent to Eq. (98)
in Ref. 34. The Hamiltonian of Eq. (67) in Ref. 34 differ only in
constant terms from QED(free-CCC); hence, they are essentially
identical.

We need to choose the most proper QED Hamiltonians.
The discussion that follows requires some conditions that seem
physically appropriate for many-body systems of electrons and
positrons.
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B. Fundamental requirements for the QED
Hamiltonian: Orbital rotation invariance, CT
invariance, and nonrelativistic limit

In this section, we discuss the orbital rotation invariance, CT
invariance, and nonrelativistic limit of the Hamiltonian as require-
ments for the second-quantized relativistic Hamiltonian. We focus
on these three requirements because the orbital rotation invariance
is closely related to the partitioning of the orbital space describ-
ing electrons and positrons, the CT invariance is related to the
symmetry between electrons and positrons, and, in the nonrelativis-
tic limit, the symmetry between electrons and positrons must also
hold. After sifting the candidates for the Hamiltonian using these
three requirements, we discuss the expression of total energy for the
Hamiltonian.

1. Orbital rotation invariance
First, we discuss the orbital rotation invariance of the Hamil-

tonian. Orbital rotation including negative-energy orbitals was first
considered in Ref. 40. Consider the orbital rotation, namely, the
unitary transformation for MOs,

φi → φ′i =∑
n

Uniφn. (23)

The corresponding unitary transformation for the annihilation
operators is given by

ai → a′i =∑
n
(U†
)

in
an. (24)

Using these expressions, the one- and two-electron terms of the VPA
Hamiltonian are transformed as follows:

all

∑
i j

hi ja†
i a j →

all

∑
i j

h′i ja′†i a′ j =
all

∑
ijmn
(U†
)

im
hmnUn jUmia†

m(U
†
)

jn
an

=
all

∑
mn

hmna†
man, (25)

all

∑
ijkl
(i j∣kl)a†

i a†
kala j →

all

∑
ijkl
(i j∣kl)′a′†i a′†k a′l a

′

j

=
all

∑
ijklpqrs

(U†
)

ip
Uq j(pq∣rs)(U†

)
kr

×UslUpia†
pUrka†

r (U
†
)

ls
as(U†

)
jq

aq

=
all

∑
pqrs
(pq∣rs)a†

pa†
r asaq. (26)

These results show that the VPA Hamiltonian is invariant for the
orbital rotation. In the same manner, we can easily show that the
QED(free-CNC), QED(Furry-CNC), QED(free-CCC), QED(Furry-
CCC), QED(free-cC), and QED(Furry-cC) Hamiltonians are also
invariant for orbital rotation.

In contrast, the QED(MO-CNC) Hamiltonian is not invari-
ant for the transformation. To see how the QED Hamiltonian

is transformed, we take a term
all
∑
i j

(−)

∑
k
[(i j∣kk) − (ik∣k j)]a†

i a j in

HQED(MO−CNC) as an example. This term is transformed by the
orbital rotation as follows:

all

∑
i j

(−)

∑
k
[(i j∣kk) − (ik∣k j)]a†

i a j →
all

∑
ijrs

(−)

∑
k
[(i j∣kk)′ − (ik∣k j)′]a′†i a′j

=
all

∑
ijpqrs

(−)

∑
k
(U†
)

ip
Uq j[(pq∣rs) − (ps∣rq)](U†

)
kr

×UskUpia†
p(U

†
)

jq
aq

=
all

∑
pqrs

(−)

∑
k
(U†
)

kr
Usk[(pq∣rs) − (ps∣rq)]a†

paq

≠
all

∑
pq

(−)

∑
r
[(pq∣rr) − (pr∣rq)]a†

paq. (27)

This is clearly not invariant because the summation for k is taken
not for all the orbitals but only for the negative-energy orbitals.
The same is true for the other terms, showing that the total
QED Hamiltonian is not orbital rotation invariant. In other words,
QED(MO-CNC), QED(MO-CCC), and QED(MO-cC) Hamiltoni-
ans are orbital rotation invariant only for special orbital rotations
that do not mix positive- and negative-energy orbitals, i.e., orbital
rotations represented by block diagonal matrices for the positive-
and negative-energy orbital parts. The general orbital rotations obvi-
ously have no such special properties and consequently change
the QED(MO-CNC), QED(MO-CCC), and QED(MO-cC) Hamil-
tonians. This fact is easily understood as follows: In the case that
the representing orbitals are MOs, the partitioning of the elec-
tron and positron orbital spaces is variable for the orbital rotation,
whereas in the case that the representing orbitals are the free par-
ticle or Furry orbitals, the partitioning is fixed. This difference in
the variable and fixed partitioning between the electron and positron
orbital space is responsible for the orbital rotation invariance of the
Hamiltonian.

If a Hamiltonian does not have orbital rotation invariance, even
if we construct the wave function with all possible configurations,
namely, excitations, pair creations, and pair annihilations, we can-
not obtain unique energy spectra. This is in sharp contrast to the
nonrelativistic Hamiltonian, for which we can obtain the unique
spectra using the full CI for any orbital sets made from a com-
mon basis set. These situations are also the case for the NVPA
Hamiltonian.

The discussion thus far has shown that some QED Hamilto-
nians are not orbital rotation invariant. This fact seems to indicate
that some QED Hamiltonians have a problem giving different spec-
tra depending on the orbital sets. However, this problem is resolved
by considering the time dependency of the states. As the spectra are
the expectation values of the total energy in the stationary state, the
orbitals used to calculate the spectra must be ones capable of con-
stituting the stationary state, and such orbitals must themselves be
stationary: i.e., they must not evolve in time. In other words, by
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using the stationary orbitals, the spectra are uniquely determined
even without orbital rotation invariance in stationary states, which
is in contrast to general (nonstationary) states, where any orbitals
are allowed. Therefore, the orbital rotation invariance for the QED
Hamiltonians itself is not necessarily essential. Note here that in this
paper, the term “stationary” is used in two senses: one is used to
mean that a variable does not evolve in time, and the other is used to
mean that the derivative of a function or functional derivative is zero
(i.e., at the maximum, minimum, or saddle point). We write sim-
ply “stationary” when we use it in the former sense and “stationary
point” in the latter sense.

Then, how can the stationary orbitals that are suitable for the
QED-level MO calculations be obtained? The answer to this ques-
tion lies in finding the MOs giving a stationary point of total energy,
as we usually do in the nonrelativistic electronic structure calcula-
tions. In fact, from the time-dependent variational principle, it can
be shown that MOs (and CI coefficients) giving a stationary point of
total energy do not evolve in time, but the derivation itself is left to
the Appendix. Consequently, the problem of the QED Hamiltonian
not being orbital rotation invariant is solved by using these optimal
MOs.

Thus, we have determined the orbital rotation invari-
ance/noninvariance of the Hamiltonians. By employing the proper
MOs, even orbital rotation invariant Hamiltonians are not sifted
out, but it should be noted that it is not possible to choose arbi-
trary MOs when using such Hamiltonians for stationary state
calculations.

2. CT invariance
We next discuss the CT invariance. The CT transformation is

a composite transformation of the charge conjugation25 and time
reversal41 (C and T) transformations, defined as

ĈK̂ = K̂Ĉ =
⎡
⎢
⎢
⎢
⎢
⎣

0 12

−12 0

⎤
⎥
⎥
⎥
⎥
⎦

(28)

in matrix form, where

Ĉ =
⎡
⎢
⎢
⎢
⎢
⎣

0 iσy

−iσy 0

⎤
⎥
⎥
⎥
⎥
⎦

K̂0 (29)

and

K̂ =
⎡
⎢
⎢
⎢
⎢
⎣

−iσy 0

0 −iσy

⎤
⎥
⎥
⎥
⎥
⎦

K̂0 (30)

are the C and T transformation operators, respectively. Here, K̂0 is
the complex conjugation operator. Applying the CT transformation
[Eq. (28)] to the Dirac equation,

⎡
⎢
⎢
⎢
⎢
⎣

V12 cσ ⋅ p
cσ ⋅ p V12 − 2mc212

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

ΨL

ΨS

⎤
⎥
⎥
⎥
⎥
⎦

= E
⎡
⎢
⎢
⎢
⎢
⎣

ΨL

ΨS

⎤
⎥
⎥
⎥
⎥
⎦

, (31)

we obtain the CT-transformed Dirac equation,

⎡
⎢
⎢
⎢
⎢
⎣

−V12 cσ ⋅ p
cσ ⋅ p −V12 − 2mc212

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

ΨS

−ΨL

⎤
⎥
⎥
⎥
⎥
⎦

= (−E − 2mc2
)

⎡
⎢
⎢
⎢
⎢
⎣

ΨS

−ΨL

⎤
⎥
⎥
⎥
⎥
⎦

= Ẽ
⎡
⎢
⎢
⎢
⎢
⎣

ΨS

−ΨL

⎤
⎥
⎥
⎥
⎥
⎦

, (32)

where Ẽ = −E − 2mc2 is reinterpreted energy: if E is negative, Ẽ
gives positive (normal) energy. This CT-transformed Dirac equa-
tion [Eq. (32)] contains a potential of inverse sign that gives
antiparticle solutions,42,43 and the associated eigen spinor has the
form of exchanged large and small components. The reinterpreted
energy corresponds to the energy of positrons without the rest
mass energy. Therefore, negative-energy orbitals with negative and
positive reinterpreted energy represent the bound and unbound
positrons, respectively. Here, the fact that the negative-energy solu-
tions are associated with antiparticles by Ẽ rather than E indicates
that the particle–hole relationship is inverted in the negative-energy
solutions.

Based on the properties of the CT transformation for the one-
particle Dirac equation, we next discuss the CT transformation for
the multiparticle (DC) Hamiltonian. Here, as preparation before CT
transformation, we rewrite Eq. (13). Because the indices in the sums
run over all the orbitals, including both Kramers pairs (p and p),
we can rewrite Eq. (13) by changing the order of the orbitals in
the sums,

HQED(MO−CNC)
=

all

∑
pq

hp qa†
paq +

1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(−)

∑
p

hpp +
1
2

(−)

∑
pq
[(pp∣qq) − (pq∣qp)]

−
all

∑
pq

(−)

∑
r
[(pq∣rr) − (pr ∣rq)]a†

paq. (33)

It should be noted that it is simply a change in the order of the sum.
This manipulation is done to make it easier to see the final result of
the CT transformation. Applying CT transformation to the Hamil-
tonian, the creation/annihilation operators and molecular integrals
change as follows:

a†
p → ap, ap → a†

p , hpq → −hCT
pq and (pq∣rs)→ (pq∣rs)CT, (34)

and we obtain

(HQED(MO−CNC)
)

CT
=

all

∑
pq

hCT
pq a†

paq +
1
2

all

∑
pqrs
(pq∣rs)CTa†

pa†
r asaq

−

(+)

∑
p

hCT
pp +

1
2

(+)

∑
pq
[(pp∣qq)CT

− (pq∣qp)CT
]

−
all

∑
pq

(+)

∑
r
[(pq∣rr)CT

− (pr∣rq)CT
]a†

paq (35)
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with

hCT
pq = ∫ d3rψ†

p(r)
⎡
⎢
⎢
⎢
⎢
⎣

−V12 + 2mc212 cσ ⋅ p
cσ ⋅ p −V12

⎤
⎥
⎥
⎥
⎥
⎦

ψq(r),

(36)

(pq∣rs)CT
= (pq∣rs).

This CT-transformed Hamiltonian includes the external field
potential of the inverse sign, and the rest mass energy is
attached to the particles, not the antiparticles. This means
that the CT-transformed Hamiltonian is essentially the same
as if it were formulated by simply swapping the particles
and antiparticles. Hence, it gives the same solutions as those
of the original Hamiltonian. In this meaning, the QED(MO-
CNC) Hamiltonian is CT invariant. In a similar way, QED(free-
CNC), QED(Furry-CNC), QED(MO-CCC), QED(free-CCC), and
QED(Furry-CCC) Hamiltonians are shown to be CT invariant, as
follows:

(HQED(free−CNC)
)

CT
=

all
∑

pq
hCT

qp a†
q ap +

1
2

all
∑

pqrs
(pq∣rs )a†

p a†
r asaq

−

(+)

∑

p
hCT
[pp] +

1
2

(+)

∑

pq
{([pp]∣[qq] ) − ([pq]∣[qp] )}

−

all
∑

pq

(+)

∑

r
{(pq∣[rr] ) − (p[r]∣[r]q )}a†

p aq, (37)

(HQED(Furry−CNC)
)

CT
=

all
∑

pq
hCT

qp a†
q ap +

1
2

all
∑

pqrs
(pq∣rs )a†

p a†
r asaq

−

(+)

∑

p
hCT
[[pp]] +

1
2

(+)

∑

pq

× {([[pp]]∣[[qq]] ) − ([[pq]]∣[[qp]] )}

−

all
∑

pq

(+)

∑

r
{(pq∣[[rr]] ) − (p[[r]]∣[[r]]q )}a†

p aq,

(38)

(HQED(MO−CCC)
)

CT
=

all

∑
pq

hCT
pq a†

paq +
1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(+)

∑
p

hCT
pp +

1
2

(+)

∑
p

(−)

∑
q
{(pp∣qq) − (pq∣qp)}

−
1
2

all

∑
pq

all

∑
r
{(pq∣rr ) − (pr∣rq)}a†

paq, (39)

(HQED(free−CCC)
)

CT
=

all

∑
pq

hCT
pq a†

paq +
1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(+)

∑
p

hCT
[pp] +

1
2

(+)

∑
p

(−)

∑
q

× {([pp]∣[qq]) − ([pq]∣[qp])}

−
1
2

all

∑
pq

all

∑
r
{(pq∣[rr] ) − (p[r]∣[r]q)}a†

paq,

(40)

(HQED(Furry−CCC)
)

CT
=

all
∑

pq
hCT

pq a†
p aq +

1
2

all
∑

pqrs
(pq∣rs)a†

p a†
r asaq

−

(+)

∑

p
hCT
[[pp]] +

1
2

(+)

∑

p

(−)

∑

q

× {([[pp]]∣[[qq]])−([[pq]]∣[[qp]])} −
1
2

all
∑

pq

all
∑

r

× {(pq∣[[rr]] ) − (p[[r]]∣[[r]]q )}a†
p aq. (41)

In contrast, the VPA, NVPA, QED(MO-cC), QED(free-cC),
and QED(Furry-cC) Hamiltonians are not CT invariant—they
change forms by CT transformation, beyond the mere exchange
of particles and antiparticles. In fact, the CT-transformed VPA,
NVPA, and QED(MO-cC), QED(free-cC), and QED(Furry-cC)
Hamiltonians are given as

(HVPA
)

CT
=

all

∑
pq

hCT
qp a†

qap +
1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−
all

∑
p

hCT
pp −

all

∑
pqr
[(pq∣rr ) − (pr∣rq)]a†

paq

+
1
2

all

∑
pq
[(pp∣qq) − (pq∣qp)], (42)

(HNVPA
)

CT
=

(+)

∑
pq

hCT
qp a†

qap +
1
2

(+)

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(+)

∑
p

hCT
pp −

(+)

∑
pqr
[(pq∣rr ) − (pr∣rq)]a†

paq

+
1
2

(+)

∑
pq
[(pp∣qq) − (pq∣qp)], (43)

(HQED(MO− cC)
)

CT
=

all

∑
pq

hCT
pq a†

paq +
1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(+)

∑
p

hCT
pp −

1
2

(+)

∑
pq
{(pp∣qq) − (pq∣qp)}

−
all

∑
pqr
[(pq∣rr ) − (pr∣rq)]a†

paq

+

(+)

∑
pq
{(pp∣qq) − (pq∣qp)}

+
1
2

(+)

∑
p

(−)

∑
q
{(pp∣qq) − (pq∣qp)}, (44)

(HQED(free− cC)
)

CT
=

all

∑
pq

hCT
pq a†

paq +
1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(+)

∑
p

hCT
[pp] −

1
2

(+)

∑
pq
{([pp]∣[qq])

− ([pq]∣[qp])} −
all

∑
pqr
[(pq∣rr ) − (pr∣rq)]

J. Chem. Phys. 159, 054105 (2023); doi: 10.1063/5.0145577 159, 054105-7

Published under an exclusive license by AIP Publishing

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

× a†
paq +

(+)

∑
pq
{([pp]∣[qq]) − ([pq]∣[qp])}

+
1
2

(+)

∑
p

(−)

∑
q
{([pp]∣[qq]) − ([pq]∣[qp])},

(45)

and

(HQED(Furry− cC)
)

CT

=
all

∑
pq

hCT
pq a†

paq +
1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

−

(+)

∑
p

hCT
[[pp]] −

1
2

(+)

∑
pq
{([[pp]]∣[[qq]]) − ([[pq]]∣[[qp]])}

−
all

∑
pqr
[(pq∣rr ) − (pr∣rq)]a†

paq

+

(+)

∑
pq
{([[pp]]∣[[qq]]) − ([[pq]]∣[[qp]])}

+
1
2

(+)

∑
p

(−)

∑
q
{([[pp]]∣[[qq]]) − ([[pq]]∣[[qp]])}, (46)

respectively. In the Hamiltonians (42)–(46), new terms have been
generated by the CT transformation. Of these new terms, the
constant terms are permitted as they only shift the energy spec-
tra, but the one-electron operator terms clearly violate the CT
invariance. Thus, of the eleven second-quantized relativistic Hamil-
tonians, QED(MO-CNC), QED(free-CNC), QED(Furry-CNC),
QED(MO-CCC), QED(free-CCC), and QED(Furry-CCC) are CT
invariant.

From the discussion on the CT invariance for the Hamil-
tonians, we can expect that the negative-energy virtual orbitals
describe the distribution of a positron and that by using an appro-
priate basis set, we can describe the positronic orbitals in systems
including positrons using negative-energy orbitals. In order to ver-
ify these predictions, the exact solutions for the hydrogen-like ion
need to be examined in detail. The exact solution of the Dirac
equation for the hydrogen-like ion is written in the following
form:22

ψ =
1
r

⎡
⎢
⎢
⎢
⎢
⎣

Pnκ(r)ξκm(θ,ϕ)
iQnκ(r)ξ−κm(θ,ϕ)

⎤
⎥
⎥
⎥
⎥
⎦

. (47)

Applying the CT transformation to Eq. (47) yields a spinor with the
large and small components interchanged in Eq. (47),

ψCT
=

1
r

⎡
⎢
⎢
⎢
⎢
⎣

iQnκ(r)ξ−κm(θ,ϕ)
−Pnκ(r)ξκm(θ,ϕ)

⎤
⎥
⎥
⎥
⎥
⎦

. (48)

By comparing Eqs. (47) and (48) in terms of angular symmetry only,
it is shown that the CT transformation is equivalent to reversing
the sign of κ = (l − j)(2 j + 1). Thus, we can explicitly represent the

positronic orbitals with the basis functions that have angular sym-
metry with the sign of κ reversed from that of the electrons (s1/2
⇄ p1/2, p3/2 ⇄ d3/2, d5/2 ⇄ f5/2, f7/2 ⇄ g7/2, . . .). Moreover, angler
symmetry of the negative-energy orbitals obtained as positronic vir-
tual orbitals can be interpreted in the same way. One might think
that there is still a concern that the extra r2 term in the positive κ
case included in the following small component:

σ ⋅ prle−ζr2

ξκm ∝

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

rl+1e−ζr2

ξ−κm (negative κ),

rl−1
(1 −

ζ
l + 1/2

r2
)e−ζr2

ξ−κm (positive κ),

(49)
which is obtained by imposing strict kinetic balance in the Gaus-
sian basis functions, may break the CT symmetry and interfere with
the description of the positronic orbitals. This concern is not an
essential problem, however, because remedies are possible; e.g., (i)
using a sufficiently rich basis set, (ii) using a restricted kinetic bal-
ance (RKB)44–46 for negative κ orbitals and an inverse kinetic balance
(IKB)47 for positive κ orbitals as in Ref. 48, and (iii) using a dual
kinetic balance (DKB).49

3. Nonrelativistic limit of QED Hamiltonians
We now discuss the nonrelativistic limit of the QED Hamil-

tonians. The QED Hamiltonian solves the problem of negative-
energy solutions by considering the electrons in the negative-energy
solution as positron holes. Therefore, the proper QED Hamilto-
nian must be capable of describing electron–positron many-body
systems. In particular, the nonrelativistic limit of the QED Hamil-
tonian must coincide with an appropriate nonrelativistic Hamil-
tonian, except for the difference in the constant terms. Based on
this requirement, we verify the nonrelativistic limit of the QED
Hamiltonians.

For the description of electron–positron systems, a method
called the multicomponent (MC)-MO method has been success-
fully applied to a number of systems.50,51 The MC-MO method is an
extension of the nonrelativistic MO method and can handle multiple
types of particles in a system, namely, electrons and positrons in this
context. The Hamiltonian of this nonrelativistic MC (NRMC)-MO
method is given by the following:51

H(NRMC)
=

(+)

∑
pq

h(ele.NR)
pq a†

paq +

(−)

∑
pq

h(pos.NR)
pq b†

pbq

+
1
2

(+)

∑
pqrs
(ψ(ele.)

p ψ(ele.)
q ∣ψ(ele.)

r ψ(ele.)
s )a†

pa†
r asaq

+
1
2

(−)

∑
pqrs
(ψ(pos.)

p ψ(pos.)
q ∣ψ(pos.)

r ψ(pos.)
s )b†

pb†
r bsbq

−

(+)

∑
pq

(−)

∑
rs
(ψ(ele.)

p ψ(ele.)
q ∣ψ(pos.)

r ψ(pos.)
s )a†

pb†
r bsaq (50)

with

h(ele.NR)
pq = ⟨ψ(ele.)

p ∣V(ext.)
∣ψ(ele.)

q ⟩

+ ⟨ψ(ele.)
p ∣−∇

2
/(2m)∣ψ(ele.)

q ⟩, (51)
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h(pos.NR)
pq = −⟨ψ(pos.)

p ∣V(ext.)
∣ψ(pos.)

q ⟩

+ ⟨ψ(pos.)
p ∣−∇

2
/(2m)∣ψ(pos.)

q ⟩, (52)

where the sum ranges (+) and (−) run over the nonrelativistic MOs
of the electron and positron, respectively, rather than the positive-
and negative-energy orbitals in the relativistic case. If the negative-
energy solution holes in the QED Hamiltonian correctly represent
the positron, then the nonrelativistic limit of the QED Hamiltonian
should be identical to H(NRMC), except for the difference in the con-
stant terms. The procedure for obtaining the nonrelativistic limit is
to first set

ψp =

⎡
⎢
⎢
⎢
⎢
⎣

ψ(ele.)
p

(σ ⋅ p/(2mc))ψ(ele.)
p

⎤
⎥
⎥
⎥
⎥
⎦

(53)

for the pth spinor with positive energy and

ψp =

⎡
⎢
⎢
⎢
⎢
⎣

−(σ ⋅ p/(2mc))ψ(pos.)
p

ψ(pos.)
p

⎤
⎥
⎥
⎥
⎥
⎦

(54)

for the pth spinor with negative energy and then take the limit
c→ +∞.

The resulting nonrelativistic limits for one-electron Hamilto-
nian matrix elements are

hpq → h(ele.NR)
pq + o(c−2

) (55)

for the case of p, q ∈ (+),

hpq → ⟨ψ(pos.)
p ∣V(ext.)

∣ψ(pos.)
q ⟩ − 2mc2

⟨ψ(pos.)
p ∣ψ(pos.)

q ⟩

− 2⟨ψ(pos.)
p ∣−∇

2
/(2m)∣ψ(pos.)

q ⟩ + o(c−2
)

= −h(pos.NR)
pq − 2mc2δpq + o(c−2

) (56)

for the case of p, q ∈ (−), and hpq ∼ c−1 for the case of p ∈ (+),
q ∈ (−) or p ∈ (−), q ∈ (+). Note that the result in Eq. (56) is
obtained by the normalization condition for Eq. (54). For the two-
electron integrals, the nonrelativistic limit is obtained by extracting
the terms independent of c, considering that the inner product
between the positive- and negative-energy spinors necessarily yields
a term with a negative power of c.

The resulting nonrelativistic limit of the QED(MO-CNC)
Hamiltonian is

HQED(MO−CNC)
→ H(NRMC)

+ 2mc2

× (number of positrons) + o(c−1
). (57)

The term proportional to c2 on the rhs can be neglected because
it is the relativistic rest energy. In the relativistic molecular orbital
method, the origin of the energy is shifted in advance so that there
is no rest energy of the electron, so the rest energy neglected here
should be understood that contribution by both the electrons and
positrons. Since the negative power term of c vanishes in the non-
relativistic limit, the nonrelativistic limit of the QED(MO-CNC)
Hamiltonian coincides with Eq. (50).

The nonrelativistic limit of the QED(free-CNC) Hamiltonian is

HQED(free−CNC)
→ H(NRMC)

−

(−)

∑
p
(h(pos.NR)

pp − h(pos.NR)
[pp] )

+
1
2

(−)

∑
pq
{(ψ(pos.)

p ψ(pos.)
p ∣ψ(pos.)

q ψ(pos.)
q )

− (ψ(pos.)
p ψ(pos.)

q ∣ψ(pos.)
q ψ(pos.)

p )}

−

(−)

∑
pq
{(ψ(pos.)

p ψ(pos.)
p ∣ψ(pos.)

[q] ψ(pos.)
[q] )

− (ψ(pos.)
p ψ(pos.)

[q] ∣ψ
(pos.)
[q] ψ(pos.)

p )}

+
1
2

(−)

∑
pq
{(ψ(pos.)

[p] ψ(pos.)
[p] ∣ψ

(pos.)
[q] ψ(pos.)

[q] )

− (ψ(pos.)
[p] ψ(pos.)

[q] ∣ψ
(pos.)
[q] ψ(pos.)

[p] )}

+

(+)

∑
pq

(−)

∑
r
{(ψ(ele.)

p ψ(ele.)
q ∣ψ(pos.)

r ψ(pos.)
r )

− (ψ(ele.)
p ψ(ele.)

q ∣ψ(pos.)
[r] ψ(pos.)

[r] )}a†
paq

+

(−)

∑
pq

(−)

∑
r
{(ψ(pos.)

p ψ(pos.)
q ∣ψ(pos.)

r ψ(pos.)
r )

− (ψ(pos.)
p ψ(pos.)

q ∣ψ(pos.)
[r] ψ(pos.)

[r] )

− (ψ(pos.)
p ψ(pos.)

r ∣ψ(pos.)
r ψ(pos.)

q )

+ (ψ(pos.)
p ψ(pos.)

[r] ∣ψ
(pos.)
[r] ψ(pos.)

q )}b†
pbq

+ 2mc2
× (number of positrons) + o(c−1

). (58)

This Hamiltonian contains operators in terms that do not depend
on c; hence, it does not coincide with H(NRMC) in the nonrelativistic
limit. Similarly, the QED(MO-CCC), QED(free-CCC), QED(MO-
cC), and QED(free-cC) Hamiltonians in the nonrelativistic limit are
as follows:

HQED(MO−CCC)
→H(NRMC)

−
1
2

(+)

∑
pq

(+)

∑
r
{(ψ(ele.)

p ψ(ele.)
q ∣ψ(ele.)

r ψ(ele.)
r )

− (ψ(ele.)
p ψ(ele.)

r ∣ψ(ele.)
r ψ(ele.)

q )}a†
paq

+
1
2

(+)

∑
pq

(−)

∑
r
(ψ(ele.)

p ψ(ele.)
q ∣ψ(pos.)

r ψ(pos.)
r )a†

paq

+
1
2

(−)

∑
pq

(+)

∑
r
(ψ(pos.)

p ψ(pos.)
q ∣ψ(ele.)

r ψ(ele.)
r )b†

qbp

−
1
2

(−)

∑
pq

(−)

∑
r
{(ψ(pos.)

p ψ(pos.)
q ∣ψ(pos.)

r ψ(pos.)
r )

− (ψ(pos.)
p ψ(pos.)

r ∣ψ(pos.)
r ψ(pos.)

q )}b†
qbp

+ 2mc2
× ( number of positrons) + o(c−1

), (59)
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HQED(free−CCC)
→ H(NRMC)

−

(−)

∑
p
(h(pos.NR)

pp − h(pos.NR)
[pp] )

+
1
2

(−)

∑
pq
{(ψ(pos.)

p ψ(pos.)
p ∣ψ(pos.)

q ψ(pos.)
q )

− (ψ(pos.)
p ψ(pos.)

q ∣ψ(pos.)
q ψ(pos.)

p )}

−
1
2

(−)

∑
pq
{(ψ(pos.)

p ψ(pos.)
p ∣ψ(pos.)

[q] ψ(pos.)
[q] )

− (ψ(pos.)
p ψ(pos.)

[q] ∣ψ
(pos.)
[q] ψ(pos.)

p )}

+
1
2

(−)

∑
p

(+)

∑
q
{(ψ(pos.)

[p] ψ(pos.)
[p] ∣ψ

(ele.)
[q] ψ(ele.)

[q] )

− (ψ(pos.)
p ψ(pos.)

p ∣ψ(ele.)
[q] ψ(ele.)

[q] )}

−
1
2

(+)

∑
pq

(+)

∑
r
{(ψ(ele.)

p ψ(ele.)
q ∣ψ(ele.)

[r] ψ(ele.)
[r] )

− (ψ(ele.)
p ψ(ele.)

[r] ∣ψ
(ele.)
[r] ψ(ele.)

q )}a†
paq

+

(+)

∑
pq

(−)

∑
r
{(ψ(ele.)

p ψ(ele.)
q ∣ψ(pos.)

r ψ(pos.)
r )

−
1
2
(ψ(ele.)

p ψ(ele.)
q ∣ψ(pos.)

[r] ψ(pos.)
[r] )}a†

paq

+
1
2

(−)

∑
pq

(+)

∑
r
(ψ(pos.)

p ψ(pos.)
q ∣ψ(ele.)

[r] ψ(ele.)
[r] )b

†
pbq

−

(−)

∑
pq

(−)

∑
r
{(ψ(pos.)

p ψ(pos.)
q ∣ψ(pos.)

r ψ(pos.)
r )

− (ψ(pos.)
p ψ(pos.)

r ∣ψ(pos.)
r ψ(pos.)

q )}b†
pbq

+
1
2

(−)

∑
pq

(−)

∑
r
{(ψ(pos.)

p ψ(pos.)
q ∣ψ(pos.)

[r] ψ(pos.)
[r] )

− (ψ(pos.)
p ψ(pos.)

[r] ∣ψ
(pos.)
[r] ψ(pos.)

q )}b†
pbq

+ 2mc2
× (number of positrons) + o(c−1

), (60)

HQED(MO− cC)
→ H(NRMC)

+

(+)

∑
pq

(−)

∑
r
(ψ(ele.)

p ψ(ele.)
q ∣ψ(pos.)

r ψ(pos.)
r )a†

paq

−

(−)

∑
pq

(−)

∑
r
{(ψ(pos.)

p ψ(pos.)
q ∣ψ(pos.)

r ψ(pos.)
r )

− (ψ(pos.)
p ψ(pos.)

r ∣ψ(pos.)
r ψ(pos.)

q )}b†
pbq

+ 2mc2
× (number of positrons) + o(c−1

), (61)

HQED(free− cC)
→ H(NRMC)

−

(−)

∑
p
(h(pos.NR)

pp − h(pos.NR)
[pp] )

+
1
2

(−)

∑
pq
{(ψ(pos.)

p ψ(pos.)
p ∣ψ(pos.)

q ψ(pos.)
q )

TABLE I. Properties of various DC Hamiltonians.

Orbital rotation
invariance

CT
invariance

Nonrelativistic
limit

VPA ✓ × N/A
NVPA × × N/A
QED(MO-CNC) × ✓ ✓

QED(free-CNC) ✓ ✓ ×

QED(Furry-CNC) ✓ ✓ ×

QED(MO-CCC) × ✓ ×

QED(free-CCC) ✓ ✓ ×

QED(Furry-CCC) ✓ ✓ ×

QED(MO-cC) × × ×

QED(free-cC) ✓ × ×

QED(Furry-cC) ✓ × ×

− (ψ(pos.)
p ψ(pos.)

q ∣ψ(pos.)
q ψ(pos.)

p )}

−
1
2

(−)

∑
pq
{(ψ(pos.)

[p] ψ(pos.)
[p] ∣ψ

(pos.)
[q] ψ(pos.)

[q] )

− (ψ(pos.)
[p] ψ(pos.)

[q] ∣ψ
(pos.)
[q] ψ(pos.)

[p] )}

+

(+)

∑
pq

(−)

∑
r
(ψ(ele.)

p ψ(ele.)
q ∣ψ(pos.)

r ψ(pos.)
r )a†

paq

−

(−)

∑
pq

(−)

∑
r
{(ψ(pos.)

p ψ(pos.)
q ∣ψ(pos.)

r ψ(pos.)
r )

− (ψ(pos.)
p ψ(pos.)

r ∣ψ(pos.)
r ψ(pos.)

q )}b†
pbq

+ 2mc2
× (number of positrons) + o(c−1

), (62)

which do not coincide with H(NRMC) in the nonrelativistic limit. Fur-
thermore, QED(Furry-CNC), QED(Furry-CCC), and QED(Furry-
cC), obtained from the replacement of parentheses (the parentheses
[] replaced by [[]]) in Eqs. (58), (60), and (62), respectively, also
do not coincide with H(NRMC) in the nonrelativistic limit. Thus,
all the QED Hamiltonians except QED(MO-CNC) have extra one-
electron operators not included in the NRMC. These are caused
by the differences in the representing orbitals and contractions
adopted.

Thus, only the QED(MO-CNC) Hamiltonian properly
describes the electron–positron interactions in the nonrelativistic
limit. The properties of the Hamiltonians with respect to the three
criteria, namely, the orbital rotation invariance, CT invariance,
and nonrelativistic limit, are summarized in Table I. Hereafter,
we refer to the QED(MO-CNC) Hamiltonian simply as the QED
Hamiltonian, unless otherwise noted.

4. Total energy expression for QED Hamiltonian
In the discussions in Subsections II B 1–II B 3 of Sec. II B, we

have shown that the QED(MO-CNC) Hamiltonian is a candidate
for relativistic Hamiltonians that can describe many-body systems
including both electrons and positrons. However, in addition, we
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need to define the total energy expressions for the QED Hamilto-
nian. Because the QED Hamiltonian does not conserve the number
of particles, the number of particles fluctuates, even in vacuum, i.e.,
the lowest energy state. This indicates that the energy of the vacuum,
defined as the expectation value of the QED(MO-CNC) Hamilto-
nian, may diverge if an infinite number of electron–positron pairs
are created, albeit with a very low probability. Therefore, to guar-
antee finite total energy, an offset of the vacuum energy is required.
Thus, we define the following as the expression of the total energy of
state ∣Ψ⟩ :

EQED
= ⟨Ψ∣HQED

∣Ψ⟩ − ⟨0(MO)
∣HQED

∣0(MO)
⟩, (63)

where the first term represents the un-offset total energy and the
second term represents the total energy of the vacuum—these refer
to as the main term and the counter term, respectively. Since
electron–positron pair creations are described as excitations from
a negative-energy orbital to a positive-energy orbital, the intensity
of the divergence depends on the calculation levels of electron cor-
relation. Thus, to properly cancel the total energy divergence, the
level of electron correlation in the counter term should be iden-
tical to the main term. For example, at the Dirac–Hartree–Fock
(DHF) level, the vacuum state is defined in Eq. (10). At this
level, the counter term is zero, and there is no need to consider
it. In another case, at the CI level, the Furry vacuum state is
defined by

∣0(MO)
CI ⟩ =

⎛

⎝

⌣

C0 +

(+)

∑
i

(−)

∑
j

⌣

Ci
ja

†
i a j +

(+)

∑
ik

(−)

∑
jl

⌣

Cik
jla

†
i a ja†

kal + ⋅ ⋅ ⋅
⎞

⎠

× ∣0(MO)
0 ⟩, (64)

where
⌣

C0,
⌣

Ci
j ,
⌣

Cik
jl ⋅ ⋅ ⋅ are the CI coefficients for the vacuum state,

which should be determined so that ⟨0(MO)
CI ∣HQED

∣0(MO)
CI ⟩ is min-

imized. In this case, this minimum value itself is the counter
term.

We should mention here that expressions of Eqs. (27), (67),
and (98) in Ref. 34, or Eq. (7–98) in Ref. 52, look formally sim-
ilar to the total energy Eq. (63). However, the terms subtracted
from the referenced Hamiltonians are single Slater determinants
and cannot remove total energy divergence caused by the gener-
alized electron correlation. Thus, these subtracted terms are not
counter terms but the terms that are subtracted as the vacuum
expectation value that is discarded in the normal ordering proce-
dure described in Sec. II A. Although not explicitly introduced for
the purpose of eliminating divergence, an expression for subtract-
ing the vacuum containing electron correlation is given in Eq. (113)
of Ref. 34. This expression, which can be regarded as an extension
of Eq. (27) in Ref. 34, differs from Eq. (63), in that it employs the
QED(MO-CCC) Hamiltonian. Here, one might argue that, given
that the vacuum is a system without real electrons and positrons, it
could be appropriate to employ the Furry orbitals instead of MOs
for its description. The total energy expression and the concrete
expressions for MP2, CI, and MCQDPT of this case are given in the
supplementary material.

We have now narrowed down the Hamiltonian to QED(MO-
CNC) [Eq. (13)] and obtained a total energy expression [Eq. (63)]
necessary to formulate a QED-based MO theory. We next derive
the QED-level DHF, CI, MP2, and multireference second order
perturbation methods based on Eq. (63).

C. QED-based MO theory
1. QED-based DHF method

In previous discussions, we have shown that the relativis-
tic MO method rederived based on the QED(MO-CNC) Hamil-
tonian can describe positrons reasonably when using negative-
energy solutions. In this subsection, we derive the DHF method,
including explicit positrons in the configuration, based on the
QED(MO-CNC) Hamiltonian (22). The ground configuration
explicitly including positrons is written using creation operators a†

i
and b†

p as

∣Ψ0⟩ =

occ(ele.)

∏
i

a†
i

occ(pos.)

∏
p

b†
p ∣ empty⟩. (65)

The expectation value of the QED(MO-CNC) Hamiltonian for this
configuration is the total energy already shown in Eq. (53) of Ref. 48.
The QED-based Fock operator

f̂ = ĥ +
occ(ele.)

∑
j
(Ĵ j − K̂ j) −

occ(pos.)

∑
p
(Ĵp − K̂p) (66)

was also obtained by taking the variation of this total energy with
respect to the electron orbitals in Ref. 48. Note that this Fock
operator is shown in matrix notation in Eq. (60) of Ref. 48.

Following the conventional HF procedure, we introduce
the Lagrangian to take into account the orthonormality of the
orbitals:

L = E −
occ(ele.)

∑
i j
(⟨ i∣ j⟩ − δi j)ε ji −

occ(pos.)

∑
pq

(⟨p∣q⟩ − δpq)(−εqp)

−

occ(ele.)

∑
i

occ(pos.)

∑
p
⟨ i∣p⟩εpi −

occ(ele.)

∑
i

occ(pos.)

∑
p
⟨p∣i⟩(−εip). (67)

The signs of the Lagrange multipliers in Eq. (67) were cho-
sen so that proper physical interpretation of the multipliers is
assured, which simplifies the final form of the DHF equation.
Taking the variations of the kth orbital of electrons for L, we
have

δL(δk) = ⟨δk∣ f̂ ∣k⟩ −
occ(ele.)

∑
j
⟨δk∣ j⟩ε jk −

occ(pos.)

∑
p
⟨δk∣p⟩εpk + c.c.

(68)

Using a similar procedure, we can obtain the results for variations of
the sth orbital of positrons,

δL(δs) = ⟨δs∣− f̂ ∣s⟩ −
occ(ele.)
∑

j
⟨δs∣ j⟩(−ε js) −

occ(pos.)
∑

p
⟨δs∣p⟩(−εps) + c.c.

(69)
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Setting the δL in Eqs. (68) and (69) to zero, we obtain the following
DHF equations:

f̂ ∣k⟩ =
occ(ele.)

∑
j
∣ j⟩ ε jk +

occ(pos.)

∑
p
∣p⟩ εpk, (70)

f̂ ∣ s⟩ =
occ(ele.)

∑
j
∣ j⟩ ε js +

occ(pos.)

∑
p
∣p⟩ εps. (71)

Now, we have two equations, (70) and (71), but they are actually
equivalent. Therefore, we only have to solve either of the eigen equa-
tions of f̂ . If the solution is considered an electron solution, then
it is a result of Eq. (70), and if it is considered a positron solution,
then it is a result of Eq. (71). These solutions are readily achieved by
using the canonical orbitals to define orbital energies, as in the case
of non-QED. We can easily distinguish the electron and positron
solutions by checking whether the orbital energy is greater or less
than −mc2. Canonicalizing and applying the LCAO approximation
to Eqs. (70) and (71), we have the Dirac–Hartree–Fock–Roothaan
(DHFR) equation,

Fc = Scε, (72)

where c is the MO coefficients, S is the overlap integral matrix, and
F is the Fock matrix,

(F)μν = (h)μν +∑
λρ
((P(ele.)

)
λρ
− (P(pos.)

)
λρ
)

× [(μν∣λρ) − (μρ∣λν)], (73)

with

(F)μν = ⟨μ∣ f̂ ∣ν⟩, (h)μν = ⟨μ∣ĥ∣ν⟩. (74)

The total energy expression in the LCAO approximation is written
as

E =
1
2∑μν

[(P(ele.)
)
μν
− (P(pos.)

)
μν
][(h)μν + (F)μν]. (75)

Here, P(ele.) and P(pos.) are electronic and positronic density matrices,
respectively,

(P(ele.)
)
μν
=

occ(ele.)

∑
i
(c)∗μi(c)νi,

(P(pos.)
)
μν
=

occ(pos.)

∑
i
(c)∗μi(c)νi. (76)

They are characteristic of the QED-based DHF method. For a system
without positrons, the positronic density matrix is equal to the null
matrix. In this case, the QED-based DHFR equation becomes iden-
tical to the conventional (NVPA- or VPA-based) DHFR equation.
Nevertheless, even in such a case, our QED-based DHF formal-
ism can give various information about positronic virtual orbitals

from the negative-energy orbitals. According to the discussion in
Subsection II B 2, the reinterpreted orbital energy,

ε̃p = −εp − 2mc2, (77)

obtained from the negative orbital energy represents the effective
one-particle energy of the positron, and the form of the small com-
ponent reflects the symmetry (e.g., s-type, p-type, and so on) of the
orbitals of positrons.

2. QED-based CI method
The derivation of the basic equation of the QED-based CI

method using the DHF wave function is straightforward. In the
QED-based MO theory, the electronic state in nonrelativistic the-
ory, which involves only electrons, is generalized to the state that
includes both electrons and positrons. This generalized electronic
state is expressed as a linear combination of configurations (Slater
determinants) ∣ΨJ⟩ in the CI method,

∣ΨCI
α ⟩ =∑

J
CJα∣ΨJ⟩, (78)

where subscript α denotes a generalized electronic state. The gener-
alized configurations ∣ΨJ⟩ are conventional electronic configurations
or configurations including both electrons and positrons due to pair
creations, and the coefficients CJα are obtained as eigenvectors of the
CI Hamiltonian matrix,

HIJ = ⟨ΨI ∣HQED
∣ΨJ⟩. (79)

Note that the QED Hamiltonian mixes the DHF configuration
with pair-created/annihilated configurations as well as the electron-
excited configurations. From Eqs. (13) and (79), the diagonal and
nondiagonal matrix elements of the QED-based CI Hamiltonian
matrix are written as

HJJ =

occJ(ele.)

∑
p

hpp −

occJ(pos.)

∑
r

hrr +
1
2

occJ(ele.)

∑
pq

[(pp∣qq) − (pq∣qp)]

−

occJ(ele.)

∑
p

occJ(pos.)

∑
r

[(pp∣rr) − (pr∣rp)]

+
1
2

occJ(pos.)

∑
rs

[(rr∣ss) − (rs∣sr)] (80)

and

HIJ =
all

∑
pq
⟨ΨI ∣a†

paq∣ΨJ⟩

⎧⎪⎪
⎨
⎪⎪⎩

hpq −

(−)

∑
r
[(pq∣rr) − (pr∣rq)]

⎫⎪⎪
⎬
⎪⎪⎭

+
1
2

all

∑
pqrs
⟨ΨI ∣a†

pa†
r asaq∣ΨJ⟩(pq∣rs), (81)

respectively. Here, occJ(ele.) and occJ(pos.) in the summations indi-
cate that the orbital labels run over the electronic and positronic
occupied orbitals in ∣ΨJ⟩, respectively. The CI energies Eα are
obtained from the counter term and the eigenvalues of the
Hamiltonian matrix,

Eα =∑
IJ

C∗IαHIJCJα − ⟨0(MO)
CI ∣HQED

∣0(MO)
CI ⟩. (82)
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3. QED-based MP2 method
The perturbation method differs from the CI method, in that

the counter term is not straightforward but is treated perturbatively,
as is the main term. The MP2 formula at the QED level has already
been derived in Refs. 24, 35, and 36 for general orbitals as well as
the canonical MOs. However, in the perturbation energies presented
in these references, the case involving real (occupied) positrons,
which is the focus of our interest, is not considered. We, therefore,
attempted a formulation based on the QED(MO-CNC) Hamiltonian
and the counter term Eq. (63), including the case with positronic
occupied orbitals.

The energy up to the second order for the DHF configuration,
including the counter term, is given by the following formula:

EMP2
= EDHF

+ E(2) − E(2)counter, (83)

E(2) = ∑
n(≠DHF)

⟨ΨDHF∣V ∣Ψn⟩⟨Ψn∣V ∣ΨDHF⟩

E(0)DHF − E(0)n
, (84)

where the counter term in Eq. (63) is expressed by the second-order
perturbation energy. Note that the zeroth-plus first-order contri-
butions to the counter term are zero, as discussed for the DHF
method.

As mentioned in Sec. II A, we can choose either expression
Eq. (13) or Eq. (22) to derive a more specific energy expression
for MP2. Here, we use the expression Eq. (13) for simplicity in the
derivation. Since the Brillouin theorem is satisfied for the QED-
based DHF method, the intermediate states ∣Ψn ⟩ in Eq. (84) are
double excitation configurations,

∣Ψn ⟩ = a†
s aba†

r aa ∣ΨDHF ⟩ = ∣Ψrs
ab ⟩, (85)

where these excitations include not only conventional electron exci-
tations but also pair creations. The partitioning of the Hamiltonian
into the unperturbed Hamiltonian and perturbation is given as

HQED
= HQED

0 + V ,

HQED
0 =

all

∑
p
εpa†

pap −

(−)

∑
p
εp,

V = HQED
−HQED

0

=
1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq

+ (constant and 1 − electron operator). (86)

According to this partitioning, the energy denominator and numer-
ator in Eq. (84) are

E(0)DHF − E(0)n = ⟨ΨDHF∣HQED
0 ∣ΨDHF⟩ − ⟨Ψn∣HQED

0 ∣Ψn⟩

= ⟨ΨDHF

RRRRRRRRRRR

all

∑
p
εpa†

pap

RRRRRRRRRRR

ΨDHF⟩ − ⟨Ψrs
ab

RRRRRRRRRRR

all

∑
p
εpa†

pap

RRRRRRRRRRR

Ψrs
ab⟩

= εa + εb − εr − εs (87)

and

⟨ΨDHF∣V ∣Ψrs
ab⟩ = (ar∣bs) − (as∣br ), (88)

respectively. Thus, the second term on the rhs of Eq. (83) becomes

E(2) =
1
2

occ

∑
ab

vir

∑
rs
[
(ar∣bs)(ra∣sb)
εa + εb − εr − εs

−
(ar∣bs)(rb∣sa)
εa + εb − εr − εs

], (89)

which looks like the familiar MP2 formula in the nonrelativistic
theory. However, the ranges in the summations are

{occ} = {occ(ele.)} ∪ {vir(pos.)},

{vir} = {vir(ele.)} ∪ {occ(pos.)}.
(90)

When the system includes no positrons, {vir(pos.)} = {(−)} and
{occ(pos.)} = ∅ are satisfied. For comparison, the ranges in the
summation for VPA-based MP2 are

{occ} = {occ(ele.)},

{vir} = {vir(ele.)} ∪ {(−)}.
(91)

Note that negative-energy orbitals are treated differently in QED
and VPA. In addition to this difference, the counter term E(2)counter
is also needed in the QED-based MP2. Since the counter term is the
second-order energy for the vacuum configuration, it is obtained by
adopting the following ground configuration and intermediate states
for Eqs. (84) and (87), respectively:

∣ΨDHF ⟩→ ∣0
(MO)
0 ⟩, (92)

∣Ψn ⟩→ a†
s aba†

r aa ∣0(MO)
0 ⟩. (93)

These substitutions are equivalent to adopting {(−)} and {(+)} for
{occ} and {vir} in Eq. (89), respectively. Thus, the counter term for
MP2 is obtained as

E(2)counter =
1
2

(−)

∑
ab

(+)

∑
rs
[
(ar∣bs)(ra∣sb)
εa + εb − εr − εs

−
(ar∣bs)(rb∣sa)
εa + εb − εr − εs

]. (94)

From Eqs. (83), (89), and (94), the final energy expression of the
QED-based MP2 is

EMP2
= EDHF

+
1
2

occ

∑
ab

vir

∑
rs
[
(ar∣bs)(ra∣sb)
εa + εb − εr − εs

−
(ar∣bs)(rb∣sa)
εa + εb − εr − εs

]

−
1
2

(−)

∑
ab

(+)

∑
rs
[
(ar∣bs)(ra∣sb)
εa + εb − εr − εs

−
(ar∣bs)(rb∣sa)
εa + εb − εr − εs

]. (95)

The main and counter terms in Eq. (95) contain the common sum,

1
2

vir(pos.)

∑
ab

vir(ele.)

∑
rs
[
(ar∣bs)(ra∣sb)
εa + εb − εr − εs

−
(ar∣bs)(rb∣sa)
εa + εb − εr − εs

], (96)

which can be excluded in advance from both the main and counter
terms.

It should be noted that there are some previous studies
of second-order perturbation energy expressions34,38,39,53,54 that
include a term corresponding to the counter term, although they
were not introduced explicitly to suppress the divergence of the
perturbation energy.
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4. QED-based multiconfigurational quasi-degenerate
perturbation theory (MCQDPT)

The same procedure as for the single-reference perturbation
theory can also be applied to derive a QED-based multireference
perturbation theory. A brief explanation follows.

In the multiconfigurational quasi-degenerate perturbation the-
ory (MCQDPT),55 the effective Hamiltonian up to the second order
is given by

HMCQDPT
αβ = Hαβ +

1
2

× ∑
I(≠CAS)

⎧⎪⎪
⎨
⎪⎪⎩

⟨Ψα∣V ∣ΨI⟩⟨ΨI ∣V ∣Ψβ⟩

E(0)β − E(0)I

+ (α↔ β)
⎫⎪⎪
⎬
⎪⎪⎭

, (97)

where Ψα and Ψβ are states functions composed of the determinants
inside the complete active space (CAS), and ΨI are the determinants
outside CAS. Here, the perturbation Hamiltonian V of MCQDPT is
identical to that given in Eq. (86), but the one-electron term should
be explicitly specified,

V =
1
2

all

∑
pqrs
(pq∣rs)a†

pa†
r asaq +

all

∑
pq
{hpq − f pq}a†

paq + const., (98)

where f pq is the elements of the modified Fock matrix,

f pq = fpq +

(−)

∑
r
[(pq∣rr) − (pr∣rq)]. (99)

In brief, by treating negative-energy orbitals as occupied orbitals
as well as substituting the Fock matrix with the modified Fock
matrix, we can perform MCQDPT calculations for the QED Hamil-
tonian. If the active orbital space of the main term does not include
both positive- and negative-energy orbitals, the counter term of
second-order MCQDPT is identical to that of MP2 because the cor-
responding active space for the counter term does not contain any
particles in this case. Due to the very large energy gap between the
positive- and negative-energy solutions, there is almost no nondy-
namical correlation between the electron and positron. If one needs
to consider both the electron–electron and positron–positron non-
dynamical correlations, it is recommended to use, for example, the
product space (quasi-complete active space56,57) of the electron CAS
and the positron CAS instead of the CAS across the positive- and
negative-energy orbitals. In the cases of using the product spaces,
the counter term of second-order MCQDPT is identical to that of
MP2.

III. NUMERICAL RESULTS AND DISCUSSION
A. QED-based DHF calculations: Hydride
ion and positronium

In Subsection II C 1, we generalized the DHF method to a
method in QED-based form. An important point of the generaliza-
tion is that it is extended to handle the systems containing positrons.
Therefore, the validity of the generalization is tested by whether the
method can describe the properties of positrons. In other words,
the orbital shapes and energies of negative-energy solutions must be
proper as the occupied or virtual orbitals of a positron. To confirm

this point, we performed calculations for the hydride ion and the
positronium.

1. Hydride ion
We calculated the hydride ion using the DHF method described

in Subsection II C 1 with s, p, d, f , and g being orbital-type even-
tempered Gaussian basis functions, the exponents of which are given
by {ζ = 0.01(1/45)3(2.0)n−1, n = 1,2, . . ., 45}. Here, we focus on the
negative-energy virtual orbitals rather than the occupied orbitals of
electrons. This is because, for systems without positrons, our formu-
lation is identical to the conventional DHF method, which only gives
the physical interpretation of negative-energy solutions. In Fig. 1, the
reinterpreted energy levels of the negative-energy orbital ε̃k, which
is defined in Eq. (77), are shown. The orbitals with energy ε̃k < 0
are regarded as bound levels of a positron. The degeneracy pattern
of the bounded negative-energy levels is not at all similar to the
single-center Coulombic field. Referring to the discussion in Sub-
section II B 2, we see the relationship between the symmetry of the
original basis functions and that of the negative-energy solutions
when they are regarded as positronic orbitals. These orbitals are con-
structed from the basis functions originally used to describe the p1/2
orbital of the electrons, but both correspond to the s orbitals of the
positron. The shapes of the small component of the two orbitals with
the first- and second-lowest reinterpreted orbital energies are shown
in Fig. 2. The curve shown on the left side of Fig. 2 corresponds to the
1s1/2 orbital of a positron. On the left side of Fig. 2, the function value
at the origin is 0.026 356, and the slope is 0.024 353. The curve on
the right side of Fig. 2 corresponds to the 2s1/2 orbital of a positron.
On the right side of Fig. 2, the function value at the origin is 0.015
954, and the slope is 0.016 820. The fact that the function values and
the slopes are almost equal indicates that these orbitals follow the
nuclear cusp conditions for Z = −1. Thus, the particles correspond-
ing to these orbitals behave repulsively with the central proton and
can be interpreted as actually having a positive charge. This is consis-
tent with the interpretation that these orbitals are positronic virtual
orbitals (1s1/2 and 2s1/2 orbitals of the positrons), which are caused
by the attractive potential created by the two electrons occupying the
1s1/2 orbital of the electron. Therefore, our reinterpretation in Sub-
section II C 1 holds no inconsistency regarding the virtual orbitals of
positrons.

2. Positronium
We calculated the singlet configuration of the positronium

(para-positronium) using s and p1/2 orbital-type even-tempered
RKB Gaussian basis functions, the exponents of which are given
by {ζ = 0.01(10/45)3

(2.0)n−1, n = 1, 2, . . . , 35}. In this system, no
point charge was placed at the center of the basis functions, and
the bound state was formed only by the electron–positron attrac-
tion. The radial functions of the calculated (relativistic) orbitals
corresponding to the nonrelativistic 1s1/2 orbitals of electrons and
positrons are shown in Fig. 3 (left). Here, the nonrelativistic 1s
orbital of an electron corresponds to the large component of the
s orbital with the lowest positive energy, while the nonrelativis-
tic 1s orbital of a positron corresponds to the small component
of the p1/2 orbital with the highest negative energy. As described
in Subsection II B 2, basis functions employing RKB of the large
component of the s orbitals and the small component of the p1/2
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FIG. 1. Energy level of negative-energy orbitals for the hydride ion.

FIG. 2. Radial functions of positronic 1s1/2 (left) and 2s1/2 (right) orbitals for the
hydride ion.

orbitals have different function forms in the radial direction. Nev-
ertheless, these orbitals are in good agreement, and this indicates
that the CT invariance can be recovered by employing a sufficient
number of basis functions. The calculated orbital energies corre-
sponding to the 1s1/2 orbitals of an electron was −0.162 773 a.u.
and that of a positron was −37 557.562 071 a.u., which is equal to
−0.162 765 a.u. in reinterpreted orbital energy. Thus, the CT invari-
ance of the one-particle energy is almost preserved to the fifth
decimal place.

The DHF total energy for this system was −0.100 846 a.u.,
which is considerably higher than the exact nonrelativistic total
energy of −0.25 a.u. In general, in precise calculations of the total
energy of systems with explicit positrons, the electron–positron cor-
relations are taken into account by highly correlated methods, such
as the MO method using a Hylleraas-type basis and the diffusion
Monte Carlo method. However, since the aim of the numerical
calculations in this section is not to calculate positronium com-
pounds accurately but to show that the negative-energy solution

describes the positron, we performed HF calculations for positro-
nium based on the NRMC-MO method. The basis functions used
were the s-orbital Gaussian basis set with the same exponents as
in the DHF calculations above and common to the electron and
positron. The 1s orbital radial functions obtained from the cal-
culation were the same for electron and positron, as shown in
Fig. 3 (right). The HF total energy was −0.108 513 a.u. The radial
function in Fig. 3 (right) is similar to both the large compo-
nent of the electronic 1s1/2 spinor and the small component of
the positronic 1s1/2 spinor in Fig. 3 (left). Thus, the results of the
DHF calculation and NRMC HF calculation are in good agreement.
This indicates that the reinterpretation for negative-energy orbitals
shown in Subsection II C 1 is plausible for the occupied orbitals of
positrons.

B. QED-based MP2 and MCQDPT2 calculations:
Helium-like ion

We have expressed our concern about the divergence of
the total energy of QED-based electron correlation methods in
Subsection II B 4, and our prediction that the problem of this
divergence can be solved by a counter term. These concerns and
predictions could be shown to exist by numerical calculation of
the electron correlation theory in an appropriate system. As a
system suitable for the verification, we employed the helium-
like ion with Z = 100. As discussed in Subsection II B 4, the
QED-level electron correlation methods involve wave functions
consisting of generalized electronic excited configurations, such
as pair creations, conventional excitations, and their combina-
tions. Because the number of pair creation configurations becomes
very large, even for a system with few electrons, the CI calcula-
tions at the QED level are not an easy task. In contrast, second-
order perturbation calculations are readily performed. We, there-
fore, performed the second-order perturbation calculations (MP2
and MCQDPT2) as a test of the QED-level electron correlation
theory.

To verify whether the MP2 energy converges to a finite value,
we observed the change in energy while varying the range of absolute
values of the momentum of the orbitals included in the MP2 calcu-
lation. For this calculation, we first performed the DHF calculation
to obtain the MOs. The basis functions used were s-type Gaussian
functions with their exponents given by {ζ = 0.01(100/45)3(2.0)n−1,
n = 1, 2, . . ., 45}. The square momenta of the MOs were calculated
from the relativistic kinetic energy as

⟨p2
⟩

i
= (⟨TR⟩i/c +mc)2

−m2c2, (100)

where ⟨TR⟩i is the relativistic kinetic energy of the ith orbital. We
then performed the MP2 calculation by varying the cutoff momen-
tum p2 (i.e., the MOs with ⟨p2

⟩
i
< p2 were included in the orbital

summation in the MP2 formula). The results of MP2 calculations
are shown in Fig. 4. The horizontal axis indicates the cutoff momen-
tum p2, and the vertical axis indicates the second-order perturbation
energy. Note that QED and QED(renormalized) mean E(2) and
E(2) − E(2)counter, respectively. With the increase of p2, the perturbation
energies of NVPA, VPA, and QED(renormalized) converge to the
finite values −0.031 76, −0.026 87, and −0.037 33 a.u., respectively,
while the perturbation energies of QED diverge to minus infinity.

J. Chem. Phys. 159, 054105 (2023); doi: 10.1063/5.0145577 159, 054105-15

Published under an exclusive license by AIP Publishing

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 3. Radial functions of the electronic and positronic 1s1/2 orbitals of positronium calculated by the QED-based DHF (left) and the nonrelativistic multicomponent HF (right)
methods.

FIG. 4. Second-order perturbation energy of MP2 for helium-like ion (Z = 100).
The zeroth- and first-order energies (DHF total energy) are −11 796.856 33 a.u.

Thus, in Fig. 4, the perturbation energy of VPA is higher than that
of NVPA and that of QED is lower than that of NVPA. This can
be understood from the fact that for second-order perturbations
involving negative-energy orbitals, the sign of the denominator of
the perturbation is opposite since VPA considers excitation con-
figurations from positive-energy orbitals to negative-energy orbitals
and QED considers excitation configurations from negative-energy
orbitals to positive-energy orbitals. In Fig. 4, the perturbation energy
of QED(renormalized) is lower than that of NVPA due to perturba-
tions that do not cancel with the counter term and have a negative
value contribution. The excited configurations giving such pertur-
bations are combinations of a single excitation and a single-pair
creation.

FIG. 5. Second-order contribution of MCQDPT2 to excitation energies for the T1,
S1, and S2 excited states of a helium-like ion (Z = 100).

Subsequently, we performed MCQDPT2 calculations for the
helium-like ion with Z = 100 to observe the behavior of the excited
state energies. The MOs are identical to those in the MP2 calcula-
tions. The reference space of MCQDPT2 was the CAS-CI composed
of two electrons and the 1s and 2s orbitals, and the target states
were the ground (S0) and three excited (T1, S1, and S2) states, of
which the main configurations were the 1s2, 1s12s1 (triplet), 1s12s1

(singlet), and 2s2, respectively. The results are shown in Fig. 5 and
Table II. In Fig. 5, the horizontal axis is the same as in Fig. 4,
and the vertical axis shows the second-order perturbation contribu-
tions of the excitation energies. As in the case of the MP2 energy,
the perturbation energy of each state diverges with the addition
of large momentum configurations. The renormalized total energy
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TABLE II. Second-order contributions to excitation energies by MCQDPT. The refer-
ence CI (zeroth-plus first-order) excitation energies for the T1, S1, and S2 states are
4334.0179, 4342.2433, and 8719.7062 a.u., respectively, and the S0 state total ener-
gies of QED (renormalized), NVPA, and VPA are −11 796.893 74, −11 796.888 17,
and −11 796.883 29, respectively.

QED(renormalized) NVPA VPA

T1 −0.2107 −0.2091 −0.2123
S1 −0.0355 −0.0339 −0.0357
S2 −0.6178 −0.6123 −0.6163

of each state is the MCQDPT2 energy minus the counter term
energy used in the MP2 calculation, which shows a converged finite
value as in the MP2 case. As the counter terms of each state are
common, the excitation energies, which are the energy differences
from the ground state energy, are the values of the second-order
perturbation as it is. The obtained excitation energy cancels out
the divergence of energy in each state in the same way that the
counter terms cancel out each other. In fact, as seen in Fig. 4, the
values of the excitation energies for the T1, S1, and S2 states con-
verged to −0.2107, −0.0355, and −0.6178 a.u., respectively, with the
increase of p2. Thus, it is shown that the QED-based MP2 and
MCQDPT give stable and finite values for the total and excitation
energies.

IV. CONCLUSIONS
We have discussed proper forms of the second-quantized rel-

ativistic many-body Hamiltonian in relativistic MO theory. We
theoretically investigated the properties of the QED Hamiltonians
in terms of the orbital rotation invariance, CT invariance, and non-
relativistic limit. First, we examined the orbital rotation invariance
of the QED Hamiltonians. We showed that three out of nine QED
Hamiltonians are not orbital rotation invariant. This noninvari-
ance may lead to indefinite eigenvalues. However, we also showed
that this problem does not arise if the orbitals are fixed to those
proper for a stationary state, and that such proper orbitals are
determined as MOs giving a stationary point of the total energy
surface. Such orbitals are optimal for QED Hamiltonians without
rotational invariance, while for QED Hamiltonians with rotational
invariance, there is no optimal one and any orbitals can be adopted.
Second, we examined the CT invariance of the QED Hamiltonian.
We confirmed that the virtual negative-energy orbitals indicate the
virtual orbitals of positrons and that the negative-energy orbitals
can be used to describe the occupied orbitals of positrons when CT
invariance holds and showed that six out of nine QED Hamiltoni-
ans are CT invariant. Third, we examined the nonrelativistic limit
of the QED Hamiltonians. We showed that only the QED(MO-
CNC) Hamiltonian has the nonrelativistic limit consistent with
conventional (nonrelativistic) MCMO theory. Among our candi-
dates for the QED Hamiltonians, the only Hamiltonian that meets
our requirements is the QED(MO-CNC) Hamiltonian. In addition,
we mention the possibility of divergence of the total energy obtained
from the QED Hamiltonian, which allows an infinite number of
pair creations. To avoid the divergence, we proposed a total energy
expression including a counter term, which adjusts the energy origin
so that the vacuum energy is zero.

Based on these considerations, we discussed the DHF and elec-
tron correlation methods. We confirmed that the conventional DHF
equation can also be regarded as the DHF equation for the QED
Hamiltonian, keeping the same form, and showed that the DHF
equation for positrons is also derived simultaneously. In addition,
we presented CI, single-reference perturbation (MP2), and mul-
tireference perturbation (MCQDPT) methods based on the QED
Hamiltonian.

In the results of the DHF calculations of the hydride ion, the
negative-energy orbital with negative reinterpreted orbital energy
can be interpreted as a bound positron. It was also found that,
although the function forms of the basis functions using RKB lack
CT invariance, the CT invariance of the QED Hamiltonian itself
can be recovered by using a sufficiently rich basis function set.
The results of MP2 calculations for the helium-like ion showed
that the total energy of the QED Hamiltonian without the counter
term diverges to minus infinity, and the introduction of the counter
term leads to a proper finite total energy. The MCQDPT calcula-
tions for the helium-like ion also showed that the QED Hamilto-
nian gives finite excitation energies; in this case, the counter term
does not affect the excitation energies since they are the energy
differences between the total energies of the states. From these con-
siderations and results for a relativistic MO theory without the
theoretical inconsistency we mentioned, it is appropriate to use the
QED (MO-CNC) Hamiltonian, MOs that give a stationary point
of total energy, and to introduce a counter term that suppresses
divergence.

SUPPLEMENTARY MATERIAL

See the supplementary material for the explanation of the for-
mulation of counter terms that differ from those presented in the
main text.
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APPENDIX: PROOF OF NO TIME EVOLUTION OF WAVE
FUNCTION GIVING STATIONARY POINT

In this appendix, we show that MOs (and CI coefficients) giv-
ing a stationary point of total energy do not evolve in time from the
time-dependent variational principle.

Let ∣Ψ(t)⟩ be the wave function of a state and express its time
dependence as a linear combination of determinants ∣ΦI(t)⟩ ,

∣Ψ(t)⟩ =∑
I

CI(t)∣ΦI(t)⟩ . (A1)

The time dependence of the determinants ∣ΦI(t)⟩ is further
expressed using time-dependent MO coefficients qmi(t) for the MOs
φi(t),

φi(t) =∑
m

qmi(t)φm(0), (A2)

and creation operators a†
m(0) at t = 0 as

∣ΦI(t)⟩ =
occ.I

∏
i
(∑

m
qmi(t)a†

m(0))∣empty⟩ , (A3)

where i in the multiplication runs over the occupied MOs in deter-
minant I. To describe the time evolution of the state ∣Ψ(t)⟩ , we
define the following Lagrangian:

L =
i
2
⟨Ψ(t)∣Ψ̇(t)⟩ −

i
2
⟨Ψ̇(t)∣Ψ(t)⟩ − ⟨Ψ(t)∣H∣Ψ(t)⟩

−∑
i j
λi j(

d
dt∑k

(q∗ki(t)qk j(t)))

−Λ(
d
dt∑I

(C∗I (t)CI(t))), (A4)

where the “over-dot” means the time derivative, as usual. Because
the ket ∣Ψ(t)⟩ depends only on qpq and CI but not on their complex
conjugate q∗pq and C∗I , and vice versa for the bra ⟨Ψ(t)∣ , the time
derivative of the state ∣ Ψ̇(t)⟩ is written as

∣ Ψ̇(t)⟩ =∑
pq
∣
∂Ψ
∂qpq
(t)⟩q̇pq +∑

I
∣
∂Ψ
∂CI
(t)⟩ĊI ,

⟨ Ψ̇(t)∣ =∑
pq
⟨

∂Ψ
∂qpq
(t)∣ q̇∗pq +∑

I
⟨
∂Ψ
∂CI
(t)∣ Ċ∗I .

(A5)

Then, applying the Euler–Lagrange equation to the Lagrangian (A4)
gives the equation of motions for the MOs,

∂L
∂q∗pq

−
d
dt

∂L
∂q̇∗pq

= i∑
rs

Apq,rs q̇rs(t) + i∑
I

a∗I,pqĊI(t) −
∂E
∂q∗pq

= 0, (A6)

as well as that for CI coefficients,

∂L
∂C∗I

−
d
dt

∂L
∂Ċ∗I

= i∑
rs

aI,rsq̇rs(t) + iĊI(t) −
∂E
∂C∗I

= 0, (A7)

where we have used the following as shorthand notations:

E ≡ ⟨Ψ(t)∣H∣Ψ(t)⟩,

Apq,rs ≡ ⟨
∂Ψ
∂qpq
(t)∣

∂Ψ
∂qrs
(t)⟩,

aI,pq ≡ ⟨
∂Ψ
∂CI
(t)∣

∂Ψ
∂qpq
(t)⟩.

(A8)

By combining Eqs. (A6) and (A7) into a matrix representation, we
have

⎡
⎢
⎢
⎢
⎢
⎣

A a†

a 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

q̇
Ċ

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

∂E/∂q∗

∂E/∂C∗

⎤
⎥
⎥
⎥
⎥
⎦

, (A9)

which shows that if ∂E/∂q∗pq = 0 and ∂E/∂C∗I = 0, then q̇rs(t) = 0
because the inverse of the coefficient matrix of Eq. (A9) exists under
usual conditions. In other words, if E is at a stationary point with
respect to changes in MO coefficients qpq(t) and CI coefficients
CI(t), the orbital coefficients qpq(t) do not evolve in time.
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