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A B S T R A C T   

The incorporation of a two-component transformation into the contraction coefficients of basis functions is 
suggested. Such a contraction, referred to as “two-component transformation inclusive contraction (TIC)”, 
effectively eliminates the computational cost associated with the two-component transformation and can be 
readily implemented into conventional quantum chemistry programs. TIC was verified through numerical cal-
culations using the second- and third-order unitarized Douglas–Kroll method, which is newly derived for the 
validation of TIC, and the infinite-order two-component method. The numerical validation results suggested that 
TIC could sufficiently reproduce the results of primitive basis sets for both atoms and molecules.   

1. Introduction 

One of the key goals of computational chemistry is the treatment of 
all the elements in the periodic table with uniformity and high accuracy. 
Achieving this goal would provide accurate information about all mol-
ecules uniformly. However, the heavy and superheavy elements contain 
a large number of electrons, and also require the consideration of rela-
tivistic effects, in particular in the description of their core electrons. 
Therefore, to treat heavy and superheavy elements with the same level 
of accuracy as light elements, in practical calculations, a low computa-
tional cost method that can incorporate relativistic effects with high 
accuracy is needed. 

The relativistic effects are introduced into the molecular orbital 
theory by formulating it based on the Dirac equation instead of the 
nonrelativistic Schrödinger equation. However, the four-component 
formulation based on the Dirac equation includes negative kinetic en-
ergy solutions corresponding to positrons, as well as positive kinetic 
energy solutions corresponding to electrons. Most of the systems of in-
terest in chemistry contain only electrons, and the description of posi-
trons is not required. For this reason, in the relativistic molecular orbital 
theory, the relativistic two-component method, which transforms and 

decouples the four-component equations and wave functions into those 
corresponding to only two components for electrons, is often used. For 
example, the following methods have been developed: the Breit–Pauli 
approximation (BPA) [1], the zeroth-order regular approximation 
(ZORA) [2–5], the infinite-order regular approximation (IORA) [6], the 
Douglas–Kroll (DK) method [7–14], the infinite-order two-component 
(IOTC) method [15], exact two-component (X2C) method [16–19], etc. 
The two-component method gives a one-electron Hamiltonian that is 
half the size of the four-component method; moreover, the theoretical 
framework does not include positron solutions, giving the Hamiltonian a 
structure similar to nonrelativistic theory. This provides significant 
implementation advantages. 

Another way to reduce the size of the problems is an effective 
contraction of the basis functions. This contraction of basis functions 
was originally introduced to fit linear combinations of primitive 
Gaussian functions to Slater-type functions that are the exact solutions of 
one-center problems, and various contracted basis sets for nonrelativ-
istic calculation [20,21] have been proposed. In addition to these 
nonrelativistic contracted basis sets, relativistic versions have also been 
proposed: a contracted basis set for two-component methods, the 
Sapporo-DK basis set [22–24], or the basis sets for four-component 
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methods by Koga et al. [25–27], Tatewaki et al. [28,29], Dyall et al. 
[30–38], and Faegri [39]. In the framework of the nonrelativistic theory, 
a superior basis set is one that results in fewer contracted basis functions 
and a lower total energy. However, in the relativistic case, in some in-
stances, inadequate contracted basis functions may produce a lower 
energy than the exact solution, primarily due to the incorrect mixing of 
negative kinetic energy solutions, a phenomenon known as “variational 
collapse”. Consequently, it is challenging to obtain a concise basis set 
that consistently yields a lower total energy in relativistic calculations. 

To reduce the computational cost directly, we considered the possi-
bility of combining the two-component method with basis function 
contraction. One idea for reducing the computational cost of the two- 
component transformation is to contract basis functions before the 
transformation. However, the division into positive and negative energy 
spaces by two-component transformation in a much smaller space of the 
contracted basis set can lead not only to the variational collapse 
described above, but also to a loss of accuracy of the resolution of 
identity. In other words, it is very important to adhere to the order of the 
two-component transformation first, followed by the basis function 
contraction. Here, we arrive at a different perspective by recognizing 
that both the two-component transformations that are expressible 
through unitary transformations and the contraction of basis functions 
can be seen as linear transformations on the Dirac Hamiltonian. From 
this perspective, we propose a scheme that uses a linear transformation 
that unifies the two-component transformation and the contraction of 
basis functions; in other words, this is a proposal of the contraction 
coefficients of the basis functions encapsulating the two-component 
transformation. 

In this paper, we introduce a new scheme called the two-component 
transformation inclusive contraction coefficient (TIC) scheme. We 
describe the construction of the TIC basis functions in subsection 2.1. In 
subsection 2.2, we present a new two-component method, called the 
unitarized DK method, which recovers the complete unitarity of the DK 
method by not applying cutoffs. In section 3, we provide numerical 
verification for the methods proposed in subsections 2.1 and 2.2. In 
practical use, our scheme provides a means to obtain the two-component 
Hamiltonian by simply contracting the basis functions without explicitly 
performing the two-component transformation. 

2. Theory 

2.1. Two-component transformation inclusive contraction 

In the relativistic two-component methods, the one-electron Dirac 
Hamiltonian operator HD is block-diagonalized by a two-component 
transformation U to obtain the two-component one-electron Hamilto-
nian H+

2c: 

U†HDU =

[
U†

LL U†

SL

U†

LS U†

SS

][
V c(σ⋅p̂)

c(σ⋅p̂) V − 2c2

][
ULL ULS

USL USS

]

=

[
H+

2c 0
0 H−

2c

]

,

(1)  

where V is the nuclear attraction potential, c is the speed of light, σ =
(
σx, σy, σz

)
is the Pauli matrices, and p̂ is the momentum operator. Using 

the two-component primitive basis functions 
{

χL
μ

}
and the strict kinetic 

balance (SKB) relation 
⃒
⃒
⃒χS

μ

〉
∝(σ⋅p̂)

⃒
⃒
⃒χL

μ

〉
, the representation matrices of 

the Dirac Hamiltonian HD is expressed as 

HD =

[ VL cΠLS

cΠSL VS − 2c2SS

]

,

(VL)μν =
〈

χL
μ |V|χL

ν

〉
, (VS)μν = κμκν

〈
χL

μ |(σ⋅p̂)V(σ⋅p̂) |χL
ν

〉
,

(ΠSL)μν = κμ

〈
χL

μ
⃒
⃒p̂2⃒⃒χL

ν

〉
, (ΠLS)μν = κν

〈
χL

μ
⃒
⃒p̂2⃒⃒χL

ν

〉
,

(SL)μν =
〈

χL
μ |χL

ν

〉
, (SS)μν = κμκν

〈
χL

μ
⃒
⃒p̂2⃒⃒χL

ν

〉
,

(2)  

with κμ = 1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈χL
μ

⃒
⃒
⃒p̂2
⃒
⃒
⃒χL

μ 〉

√

. The representation matrices of ULL and USL in 

the transformation operator U, which are required to construct the H+
2c, 

are expressed as 

(ULL)μν = S− 1
L

〈
χL

μ |ULL|χL
ν

〉
,

(USL)μν = κμS− 1
S

〈
χL

μ |(σ⋅p̂)USL |χL
ν

〉
.

(3)  

From Eqs. (1), (2), and (3), the representation matrix of 
(
H+

2c
)

μν

(
=

〈
χL

μ
⃒
⃒H+

2c
⃒
⃒χL

ν

〉)
is written as 

H+
2c = [U†

LL U†

SL ]HD

[ULL

USL

]

. (4)  

To apply the two-component Hamiltonian H+
2c to the many-electron 

systems, a two-electron Hamiltonian is necessary along with H+
2c. 

Because the relativistic effects on the two-electron Hamiltonian are 
relatively small compared with those on the one-electron Hamiltonian, 
in this work, the nonrelativistic Coulomb operator was used as the two- 
electron Hamiltonian. Using these one- and two-electron Hamiltonians 
for atomic Hartree–Fock (HF) calculations yields the atomic orbitals 
(AOs). In the case where the basis functions are primitive Gaussian 
functions, the AO coefficients can be used as the general contraction 
coefficients in the basis function contraction. Using matrix dA, the 
contracted basis functions χA(c)

α of an atom A are represented by linear 
combinations of the primitive Gaussian basis functions χA

μ as 

⃒
⃒χA(c)

α
〉
=
∑

μ

(
dA)

μα

⃒
⃒
⃒χA

μ

〉
, (5)  

where the number of rows in dA is equal to that in UA
LL and UA

SL and larger 
than the number of columns in dA. 

Let us discuss the contraction of the one-electron Hamiltonian in 
more detail. For atoms, the one-electron Hamiltonian in the primitive 
basis functions H+

2c can be reduced into that of the contracted basis 
functions H+(c)

2c using matrix dA: 

H+(c)
2c = dA†H+

2cd
A. (6)  

Substituting Eq. (4) into Eq. (6) yields 

H+(c)
2c = dA†[

UA
LL

† UA
SL

†
]
HD

⎡

⎣
UA

LL

UA
SL

⎤

⎦dA. (7)  

This equation shows that the two-component transformation and basis 
function contraction can be combined into a single transformation. 
Thus, we introduce TIC. In this TIC scheme, the TIC matrices are defined 
by 

dA(TIC)
L = UA

LLdA,

dA(TIC)
S = UA

SLdA.
(8)  

The contracted two-component Hamiltonian for atoms can be rewritten 
in simpler form: 
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H+(c)
2c =

[
dA(TIC)

L
†

dA(TIC)
S

† ]HD

⎡

⎣
dA(TIC)

L

dA(TIC)
S

⎤

⎦. (9)  

In other words, by preparing these TIC matrices as the coefficient matrix 
of the basis functions, the two-component transformation and basis 
function contraction can be performed simultaneously in advance. Here, 
when we use the nonrelativistic two-electron Hamiltonian mentioned 
above, dA should be used for the contraction of the two-electron 
Hamiltonian instead of dA(TIC)

L and dA(TIC)
S . 

The TIC matrices thus constructed can be applied to molecular cal-
culations by combining the local unitary transformation (LUT) [40], 
which approximates the molecular two-component transformation by 
the direct sum of atomic two-component transformations. Suppose that 
a molecule consists of a set of atoms {A,B,⋯}. The contraction matrix 
dTotal and LUT-approximated two-component transformation UTotal

LL and 
UTotal

SL of the whole molecule can be written as 

dTotal =

⎡

⎢
⎢
⎣

dA 0 ⋯

0 dB ⋯

⋮ ⋮ ⋱

⎤

⎥
⎥
⎦, (10)  

UTotal,LUT
LL =

⎡

⎢
⎢
⎢
⎣

UA
LL 0 ⋯
0 UB

LL ⋯
⋮ ⋮ ⋱

⎤

⎥
⎥
⎥
⎦
,

UTotal,LUT
SL =

⎡

⎢
⎢
⎢
⎣

UA
SL 0 ⋯
0 UB

SL ⋯
⋮ ⋮ ⋱

⎤

⎥
⎥
⎥
⎦
,

(11)  

where UA
LL,U

B
LL,⋯ (UA

SL,U
B
SL,⋯) are the LL (SL) blocks of the atomic two- 

component transformation for atom A, B, ⋯, respectively. The TIC 
matrices of the molecule are constructed from the atomic TIC coefficient 
matrices: 

dTotal(TIC)
L = UTotal,LUT

LL dTotal =

⎡

⎢
⎢
⎢
⎢
⎣

dA(TIC)
L 0 ⋯
0 dB(TIC)

L ⋯
⋮ ⋮ ⋱

⎤

⎥
⎥
⎥
⎥
⎦
, (12)  

dTotal(TIC)
S = UTotal,LUT

SL dTotal =

⎡

⎢
⎢
⎢
⎢
⎣

dA(TIC)
S 0 ⋯
0 dB(TIC)

S ⋯
⋮ ⋮ ⋱

⎤

⎥
⎥
⎥
⎥
⎦
. (13)  

Thus, under the LUT approximation, the TIC matrices obtained from the 
atomic calculations can be applied to molecular calculations. The LUT 
approximation provides a key idea in implementing the TIC scheme for 
molecules. The above discussion applies to any two-component trans-
formation as long as the transformation is unitary. 

In the TIC scheme, by applying Eqs. (10), (12), and (13) to the un-
contracted one-electron Dirac Hamiltonian matrix HD and Eq. (10) to 

the uncontracted nonrelativistic two-electron integrals 
(

χL
μ χL

ν |χL
λ χL

σ

)
, we 

can obtain the contracted one-electron integrals 
(

H+(TIC)
2c

)

αβ
=
∑L,S

X,Y

∑

μν

(
dTotal(TIC)

X

)*

μα

(
dTotal(TIC)

Y

)

νβ

(
[HD]XY

)

μν, (14)  

and the contracted two-electron integrals 

(αβ|γδ)(TIC(NR) )
=
∑

μνλσ

(
dToral)*

μα

(
dTotal)

νβ

(
dTotal)*

λγ

(
dTotal)

σδ

(
χL

μ χL
ν

⃒
⃒
⃒χL

λ χL
σ

)
.

(15)  

Here, α, β, γ, and δ are the indices for the contracted basis functions. 
Based on Eq. (14), we can construct the two-component Hamiltonian 
from the TIC coefficients without explicitly performing the two- 
component transformation. That is, unless the adopted two-component 
method or the set of primitive basis functions before contraction is 
replaced with another, the storaged TIC coefficients can be reused and 
there is no need to compute them in each electronic structure 
calculation. 

To obtain specific representations of the TIC matrices, explicit ex-
pressions of UA

LL and UA
SL are necessary. Taking IOTC [15,41] as an 

example, the explicit expressions of UA
LL and UA

SL are summarized as 

UA
LL,IOTC = XQÃ

(
I − B̃p̃Ỹ

)
Ω̃Q†X†SL, (16)  

UA
SL,IOTC = S− 1

S ΠSLXQÃB̃
(

I + B̃− 1p̃− 1Ỹ
)

Ω̃Q†X†SL, (17)  

with 

Ẽp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

c2p̃2
+ c4

√

, Ã =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ẽp + c2

2Ẽp

√

, B̃ =
c

Ẽp + c2
, (18)  

Ω̃+ =
(

1 + Ỹ†Ỹ
)− 1

2
. (19)  

X and Q are an orthogonalized matrix satisfying X†SLX = I and a unitary 
matrix such that Q†X†ΠLSS− 1

S ΠSLXQ is a diagonal matrix p̃2, respec-
tively. M̃ is defined by M̃ = Q†X†MXQ for an arbitrary representation 
matrix M. Y is the parameter of IOTC. 

In contrast to IOTC, the original DK Hamiltonian cannot be expressed 
by a single linear transformation because of the finite-order truncation 
of the Hamiltonian. Restoration of the unitarity solves this problem, 
making the TIC scheme applicable to the DK method. 

2.2. Unitarized DK transformation 

In this subsection, we present a unitarized variant of the DK method, 
to which the TIC scheme is applicable. The second- and third-order DK 
Hamiltonian operators HDK2 and HDK3 are obtained by applying the 
transformations 

[
U†

1U†

0HDU0U1
]

LL and 
[
U†

2U†

1U†

0HDU0U1U2
]

LL to the 
Dirac Hamiltonian, and then truncating the result at the second and 
third orders, respectively. The unitary transformations U0, U1, and U2 
are given by 

U0 =

[
A − AB(σ⋅p̂)

(σ⋅p̂)BA A

]

, (20)  

U1 = f

([
0 − W†

1

W1 0

])

, (21)  

and 

U2 = f

([
0 − W†

2

W2 0

])

, (22)  

respectively, where f is a function specifying the transformation. Ac-
cording to the function form of f , several parametrization types have 
been proposed, such as the exponential (exp) [10], the square root (sqrt) 
[7], McWeeny (McW) [42], Cayley (CA) [14], and Optimal (opt) [14]. In 
addition, a general treatment including all function forms is also 
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proposed [14]. The matrix representations of W1 and W2 are 

(W1)μν =
〈

χL
μ
⃒
⃒(σ⋅p̂)p̂ − 1W1

⃒
⃒χL

ν

〉
= SLXQW̃1Q†X†SL,

(W2)μν =
〈

χL
μ
⃒
⃒(σ⋅p̂)p̂ − 1W2

⃒
⃒χL

ν

〉
= SLXQW̃2Q†X†SL,

(23)  

where W̃1 and W̃2 are defined as 

(

W̃1

)

ij
=

(

Õ1

)

ij(

Ẽp

)

ii
+

(

Ẽp

)

jj

, (24)  

(

W̃2

)

ij
=

(

Ẽ
′
1W̃1 − W̃1Ẽ1

)

ij(

Ẽp

)

ii
+

(

Ẽp

)

jj

, (25)  

with 

Ẽ1 = Ã
(

ṼL + B̃Ṽ
′
B̃
)

Ã, (26)  

Õ1 = Ã
(

p̃− 1Ṽ
′
B̃ − B̃p̃ṼL

)

Ã, (27)  

Ẽ
′
1 = Ã

(

B̃p̃ṼLp̃B̃ + p̃− 1Ṽ
′
p̃− 1
)

Ã, (28)  

and 

V’ = ΠLSS− 1
S VSS− 1

S ΠSL. (29)  

In the conventional DK method, the unitarity of the transformations 
does not hold because of the truncation of the Hamiltonian at a finite 
order. In other words, if we evaluate the Hamiltonian without truncating 
each unitary transformation at a finite order, we can construct a “uni-
tarized” DK (uDK) method. Thus, the second- and third-order uDK 
Hamiltonians are obtained by the same derivation scheme without 
truncation, as follows: 

HuDK2 = SLXQ{G̃
e
1

(

Ẽp − c2I + Ẽ1

)

G̃
e
1 + G̃

o
1
†

Õ1G̃
e
1

+G̃
e
1Õ

†

1G̃
o
1 + G̃

o
1
†
(

− Ẽp − c2I + Ẽ
’
1

)

G̃
o
1

}

Q†X†SL,

(30)  

and 

HuDK3 = SLXQ⋅
{(

G̃
e
2G̃

e
1 − G̃

o
2
†

G̃
o
1

)(

Ẽp − c2I + Ẽ1

)(

G̃
e
1G̃

e
2 − G̃

o
1
†

G̃
o
2

)

+

(

G̃
e
2G̃

o
1
†

+ G̃
o
2
†

G̃
e’

1

)

Õ1

(

G̃
e
1G̃

e
2 − G̃

o
1
†

G̃
o
2

)

+

(

G̃
e
2G̃

e
1 − G̃

o
2
†

G̃
o
1

)

Õ
†

1

(

G̃
o
1G̃

e
2 + G̃

e’

1 G̃
o
2

)

+

(

G̃
e
2G̃

o
1
†

+ G̃
o
2
†

G̃
e’

1

)(

− Ẽp − c2I + Ẽ
’
1

)(

G̃
o
1G̃

e
2 + G̃

e’

1 G̃
o
2

)}

⋅Q†X†SL,

(31)  

where, Ge
n, Go

n, and Ge′
n in Eqs. (30) and (31) are defined by 

Ge
n =

〈
χL

μ
⃒
⃒geven

(
W†

nWn
) ⃒
⃒χL

ν

〉
,

Go
n =

〈
χL

μ
⃒
⃒(σ⋅p̂)p̂ − 1Wngodd

(
W†

nWn
) ⃒
⃒χL

ν

〉
,

Ge’

n =
〈

χL
μ
⃒
⃒(σ⋅p̂)p̂ − 1geven

(
WnW†

n

)
p̂ − 1(σ⋅p̂)

⃒
⃒χL

ν

〉
,

(32)  

with 

geven(x) =
f (i

̅̅̅
x

√
) + f ( − i

̅̅̅
x

√
)

2
,

godd(x) =
f (i

̅̅̅
x

√
) − f ( − i

̅̅̅
x

√
)

2i
̅̅̅
x

√ .

(33)  

Here, f(x) is the function in Eqs. (21) and (22). The evaluation of Eq. 
(32) requires the explicit expressions of geven(x) and godd(x), which are 
derived from the even- and odd-order terms of f(x), respectively 
(Table 1). The four types (exp, sqrt, McWeeny, Cayley) have their 
explicit forms, and hence, Eq. (32) can be evaluated directly. By 
contrast, the optimal type has no function form, being given only by 
coefficients of the Taylor series. However, for practical use, evaluation 
with double precision in the region of |x| ≤ 1 is sufficient. 

To construct TIC coefficients for the n-th-order uDK, we need to 
obtain not only the general contraction coefficients dA from a one-center 
HF calculation for each atom using HuDKn, but also the two-component 
transformation matrices ULL,uDKn and USL,uDKn. These transformation 
matrices for the second and third orders are obtained by [U0U1]LL, 
[U0U1]SL, [U0U1U2]LL, [U0U1U2]SL, and Eq. (3), as follows: 

ULL,uDK2 = XQÃ
(

G̃
e
1 − B̃p̃G̃

o
1

)

Q†X†SL, (34)  

USL,uDK2 = S− 1
S ΠSLXQÃB̃

(

G̃
e
1 + B̃− 1p̃− 1G̃

o
1

)

Q†X†SL, (35)  

ULL,uDK3 = XQÃ
{(

G̃
e
1 − B̃p̃G̃

o
1

)

G̃
e
2

−

(

G̃
o
1
†

+ B̃p̃G̃
e’

1

)

G̃
o
2

}

Q†X†SL,

(36)  

USL,uDK3 = S− 1
S ΠSLXQÃB̃

{(

G̃
e
1 + B̃− 1p̃− 1G̃

o
1

)

G̃
e
2

+

(

B̃− 1p̃− 1G
e’

1 − G̃
o
1
†
)

G̃
o
2

}

Q†X†SL.

(37)  

3. Results and discussion 

3.1. Atomic calculations: Rn84+ ion and Rn atom 

To verify the performance of the TIC scheme in atomic calculations, 
we performed HF calculations for the Rn helium-like cation (Rn84+) and 
the Rn atom. The IOTC, conventional DK, and uDK based on five 
different function forms were applied to the two-component trans-
formations. For the DK method, conventional and uDK at the second and 
third orders were considered. The basis functions for the Rn atom and its 
cation were constructed by adding three additional basis functions with 
large orbital exponents to the Gaussian functions of Tatewaki et al. 
[25–27]. This addition of large exponents was due to the use of the point 
charge model for the nucleus. Using these basis functions, we carried out 
two-component HF calculations to obtain the AO coefficients dA first, 
and then constructed the TIC coefficients from Eq. (8). 

Table 2 and Table 3 show the HF energies and the energy errors of 
the TIC basis functions from the primitive basis functions for the Rn84+

Table 1 
Function forms used in the implementation of uDK transformations.   

exp sqrt McW CA opt 

f(x) expx ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + x2

√
+ x 1 + x

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − x2

√
2 + x
2 − x 

∑∞
i=0aixi 

geven(x) cos
̅̅̅
x

√ ̅̅̅̅̅̅̅̅̅̅̅̅
1 − x

√ 1
̅̅̅̅̅̅̅̅̅̅̅̅
1 + x

√
4 − x
4 + x 

∑∞
i=0a2i( − x)i 

godd(x) sin
̅̅̅
x

√

̅̅̅
x

√
1 1

̅̅̅̅̅̅̅̅̅̅̅̅
1 + x

√
4

4 − x  

∑∞
i=0a2i+1( − x)i  
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ion and Rn atom, respectively. As theoretically expected, for the IOTC 
and the 10 uDK methods, the TIC results agreed exactly with the results 
of the primitive basis functions for both the Rn84+ ion and the Rn atom. 
These results were in contrast with the large errors of ≥ 1 Hartree for the 
conventional DK2 and DK3, the transformations of which are not 
unitary. 

Moreover, the uDKs (DK2 and DK3) gave HF energies closer to those 
of IOTC in comparison to the conventional DKs in the primitive basis 
functions, indicating that they are more accurate than the conventional 
DKs. This and the abovementioned fact suggest the effectiveness of the 
combination of the TIC and uDK methods. 

3.2. Molecular calculations: NaF, NaI, FrF, and FrI molecules 

To verify the applicability of the TIC scheme to molecular systems, 
we constructed TIC basis functions for F, Na, I, and Fr, and performed HF 
calculations for NaF, NaI, FrF, and FrI molecules. The primitive basis 
functions for the atoms were the Gaussian basis functions of Tatewaki 
et al. [25–27] augmented by three additional functions with large 
orbital exponents. To construct the TIC basis functions, because these 
four atoms are open-shell atoms, the average-of-configuration approxi-
mation [43,44] was applied in the calculations. In addition, to describe 
the bonding of the molecules more accurately, some HF virtual orbitals 
(the s, p functions for F and Na, s, p, d functions for I, and s, p, d, f 

functions for Fr) of the atoms were included in the TIC basis functions. 
The contents of the resulting basis functions are shown in Table 4. The 
term “Min. + n (n = 1,2,3)” in the table indicates that these are the basis 
functions with n lowest virtual orbitals in each angular momentum. Note 
also that the alkali metal atoms (Na and Fr) include one more p orbital in 
the outermost shell. In addition to these elements, we constructed “Min. 
+ 3” TIC coefficients for IOTC for elements 1–103, which are presented 
in the supporting information. 

Table 5 compares the results of the TIC basis functions with those of 
the primitive basis functions in terms of the equilibrium internuclear 
distance Re and the HF energy at Re of the FrI molecule. The equilibrium 
internuclear distance Re was calculated using cubic curve fitting. The 
table shows that the inclusion of at least two virtual orbitals in each 
angular momentum, namely (Min. + 2), is necessary for obtaining an Re 

error of less than 0.001 Å. The (Min. + 2) basis functions also calculate 
the energy with an error of less than 10− 4 Hartree. These results indicate 
that the errors due to the LUT approximation and the contraction are 
both sufficiently small. By contrast, the (Min. + 1) and (Min.) TIC basis 
functions show errors of more than 0.02 Å for Re and more than 0.001 
Hartree for the energy. Table 6 shows the equilibrium internuclear 
distances and the HF energies calculated with the (Min. + 3) basis 
functions for the other three molecules. For all the three molecules, the 
errors are about 0.001 Å for Re and less than 10− 4 Hartree for the energy. 

By including two or more virtual orbitals in each angular momentum 
in the TIC basis functions, the errors due to TIC are sufficiently small, 
indicating that the present scheme performs satisfactorily in molecular 
calculations. 

4. Conclusion 

We have proposed the TIC scheme, in which a two-component 
transformation is incorporated into the contraction coefficients of 
basis functions, to reduce the computational cost of relativistic two- 
component calculations. The TIC scheme is directly applicable to 
atoms, and can also be applied to molecules by utilizing the LUT 
approximation, with a treatment almost identical to the conventional 
basis function contractions. In addition to reducing the computational 
cost at runtime, TIC has a very low implementation cost owing to its 
similarity in form to the conventional basis function contraction. We 
have also introduced a new uDK method, which is a modification of the 
conventional DK method designed to maintain the unitarity of the two- 
component transformation. This ensures that TIC is in agreement with 
the original two-component method and does not require modification 
of the overlap integrals. To generate TIC coefficients, the contraction 
coefficients obtained by applying the original two-component method to 
atomic calculations with primitive basis functions and the specific 
matrix-form expressions for the two-component transformations are 
needed. Once TIC coefficients are generated and stored for a certain set 
of a two-component method and primitive basis functions, then we can 
obtain the contracted two-component Hamiltonian without two- 
component transformation using the stored TIC coefficients unless the 
set is changed. The explicit expressions and procedures for generating 
the TIC coefficients for the uDK and conventional IOTC methods were 
provided. 

We have implemented programs for generating TIC coefficients and 
performing calculations using these coefficients. These programs were 
applied to study atomic (Rn84+ and Rn) and several molecular systems 

Table 2 
HF energies by TIC scheme and errors from primitive basis set energies for the 
Rn84+ ion (in Hartree).  

Method TIC primitive a Difference 

IOTC  − 8247.0076  − 8247.0076  <10− 8 b 

exp-DK3  − 8248.2263  − 8248.2263  <10− 8 b 

sqrt-DK3  − 8248.1222  − 8248.1222  <10− 8 b 

McW-DK3  − 8248.4454  − 8248.4454  <10− 8 b 

CA-DK3  − 8248.2797  − 8248.2797  <10− 8 b 

opt-DK3  − 8248.2135  − 8248.2135  <10− 8 b 

exp-DK2  − 8255.0896  − 8255.0896  <10− 8 b 

sqrt-DK2  − 8255.3458  − 8255.3458  <10− 8 b 

McW-DK2  − 8254.5988  − 8254.5988  <10− 8 b 

CA-DK2  − 8254.9644  − 8254.9644  <10− 8 b 

opt-DK2  − 8255.1203  − 8255.1203  <10− 8 b 

DK3  − 8248.1139  − 8249.8238  1.7098 
DK2  − 8255.1690  − 8220.4862  − 34.6828  

a The “primitive” results were obtained by the two-component method 
without LUT, using primitive basis functions. 

b The notation “<10− 8” indicates that the absolute value of the difference is 
less than 10− 8. 

Table 3 
HF energies by TIC scheme and errors from primitive basis set energies for the 
Rn atom (in Hartree).  

Method TIC primitive a Difference 

IOTC  − 23598.6123  − 23598.6123  <10− 8 b 

exp-DK3  − 23600.1008  − 23600.1008  <10− 8 b 

sqrt-DK3  − 23599.9747  − 23599.9747  <10− 8 b 

McW-DK3  − 23600.3660  − 23600.3660  <10− 8 b 

CA-DK3  − 23600.1654  − 23600.1654  <10− 8 b 

opt-DK3  − 23600.0853  − 23600.0853  <10− 8 b 

exp-DK2  − 23608.5245  − 23608.5245  <10− 8 b 

sqrt-DK2  − 23608.8343  − 23608.8343  <10− 8 b 

McW-DK2  − 23607.9307  − 23607.9307  <10− 8 b 

CA-DK2  − 23608.3730  − 23608.3730  <10− 8 b 

opt-DK2  − 23608.5616  − 23608.5616  <10− 8 b 

DK3  − 23599.9897  − 23602.1726  2.1830 
DK2  − 23608.6278  − 23566.0769  − 42.5509  

a The “primitive” results were obtained by the two-component method 
without LUT, using primitive basis functions. 

b The notation “<10− 8” indicates that the absolute value of the difference is 
less than 10− 8. 

Table 4 
Contents of primitive and TIC basis sets.  

Atom Primitive Min. + 3 Min. + 2 Min. + 1 Min. 

F 15s11p 5s4p 4s3p 3s2p 2s1p 
Na 19s11p 6s5p 5s4p 4s3p 3s2p 
I 25s21p15d 8s7p5d 7s6p4d 6s5p3d 5s4p2d 
Fr 31s24p18d13f 10s9p6d4f 9s8p5d3f 8s7p4d2f 7s6p3d1f  
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(NaF, NaI, FrF, and FrI) for numerical validation. The calculations 

confirmed that for the atomic systems, the results obtained using the TIC 
basis functions were in exact agreement with those derived from the 
two-component method using primitive basis functions. Additionally, 
for the molecular systems, we have demonstrated that the equilibrium 
internuclear distances (Re) and the total energies at Re, as calculated 
with primitive basis functions, could be accurately reproduced by 
extending the minimal basis set so as to include up to the third virtual 
orbital of each angular momentum. These results suggest that the TIC 
scheme proposed in this paper could be an effective approach in the field 
of relativistic molecular orbital calculations. 
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Appendix 

Appendix A. . TIC two-electron integrals 

In this work, we used a many-body Hamiltonian composed of the one-electron Hamiltonian by TIC and the nonrelativistic two-electron Hamil-
tonian. However, the use of the nonrelativistic two-electron Hamiltonian is not essential to the TIC scheme, and the use of the two-electron 
Hamiltonian with TIC applied is also an available option. The TIC two-electron integrals are given by 

Table 5 
Equilibrium internuclear distances and HF energies for FrI calculated using TIC and primitive basis sets.  

Method Re/Å ΔRe/Å Ee/Hartree ΔEe/Hartree  

primitive a Min. + 3 Min. + 2 Min. + 1 Min. + 0 primitive a Min. + 3 Min. + 2 Min. + 1 Min. + 0 

IOTC  3.5874  0.0002  0.0004  0.0274  0.0952  − 31421.9194  0.0000  0.0000  0.0021  0.0302 
exp-DK3  3.5873  0.0001  0.0004  0.0274  0.0952  − 31423.5768  0.0000  0.0000  0.0021  0.0302 
sqrt-DK3  3.5873  0.0001  0.0004  0.0274  0.0952  − 31423.4365  0.0000  0.0000  0.0021  0.0302 
McW-DK3  3.5873  0.0001  0.0004  0.0274  0.0952  − 31423.8719  0.0000  0.0000  0.0021  0.0302 
CA-DK3  3.5873  0.0001  0.0004  0.0274  0.0952  − 31423.6487  0.0000  0.0000  0.0021  0.0302 
opt-DK3  3.5873  0.0001  0.0004  0.0274  0.0952  − 31423.5595  0.0000  0.0000  0.0021  0.0302 
exp-DK2  3.5870  0.0002  0.0004  0.0274  0.0952  − 31433.0300  0.0000  0.0000  0.0021  0.0302 
sqrt-DK2  3.5870  0.0002  0.0004  0.0274  0.0952  − 31433.3751  0.0000  0.0000  0.0021  0.0302 
McW-DK2  3.5870  0.0002  0.0004  0.0274  0.0952  − 31432.3684  0.0000  0.0000  0.0021  0.0302 
CA-DK2  3.5870  0.0002  0.0004  0.0274  0.0952  − 31432.8612  0.0000  0.0000  0.0021  0.0302 
opt-DK2  3.5870  0.0002  0.0004  0.0274  0.0952  − 31433.0713  0.0000  0.0000  0.0021  0.0302  

a The “primitive” results were obtained by the two-component method without LUT, using primitive basis functions. 

Table 6 
Equilibrium internuclear distances and HF energies for FrF, NaI, and NaF mol-
ecules calculated using TIC (Min. + 3) and primitive basis sets.  

Method Re/Å ΔRe/Å Ee/Hartree ΔEe/Hartree  
primitive a Min. + 3 primitive a Min. + 3 

FrF     
IOTC  2.5231  0.0007  − 24407.2191  0.0000 
exp-DK3  2.5230  0.0007  − 24408.8578  0.0000 
sqrt-DK3  2.5230  0.0007  − 24408.7189  0.0000 
McW-DK3  2.5230  0.0007  − 24409.1500  0.0000 
CA-DK3  2.5230  0.0007  − 24408.9290  0.0000 
opt-DK3  2.5230  0.0007  − 24408.8407  0.0000 
exp-DK2  2.5229  0.0007  − 24417.9764  0.0000 
sqrt-DK2  2.5229  0.0007  − 24418.3159  0.0000 
McW-DK2  2.5229  0.0007  − 24417.3261  0.0000 
CA-DK2  2.5229  0.0007  − 24417.8105  0.0000 
opt-DK2  2.5229  0.0007  − 24418.0170  0.0000 
NaI     
IOTC  2.7728  0.0004  − 7276.3638  0.0000 
exp-DK3  2.7728  0.0004  − 7276.3825  0.0000 
sqrt-DK3  2.7728  0.0004  − 7276.3811  0.0000 
McW-DK3  2.7728  0.0004  − 7276.3853  0.0000 
CA-DK3  2.7728  0.0004  − 7276.3832  0.0000 
opt-DK3  2.7728  0.0004  − 7276.3823  0.0000 
exp-DK2  2.7729  0.0004  − 7276.7170  0.0000 
sqrt-DK2  2.7729  0.0004  − 7276.7228  0.0000 
McW-DK2  2.7729  0.0004  − 7276.7058  0.0000 
CA-DK2  2.7729  0.0004  − 7276.7142  0.0000 
opt-DK2  2.7729  0.0004  − 7276.7177  0.0000 
NaF     
IOTC  1.9479  0.0003  − 261.6679  0.0000 
exp-DK3  1.9479  0.0003  − 261.6679  0.0000 
sqrt-DK3  1.9479  0.0003  − 261.6679  0.0000 
McW-DK3  1.9479  0.0003  − 261.6679  0.0000 
CA-DK3  1.9479  0.0003  − 261.6679  0.0000 
opt-DK3  1.9479  0.0003  − 261.6679  0.0000 
exp-DK2  1.9479  0.0003  − 261.6679  0.0000 
sqrt-DK2  1.9479  0.0003  − 261.6679  0.0000 
McW-DK2  1.9479  0.0003  − 261.6679  0.0000 
CA-DK2  1.9479  0.0003  − 261.6679  0.0000 
opt-DK2  1.9479  0.0003  − 261.6679  0.0000  

a The “primitive” results were obtained by the two-component method 
without LUT, using primitive basis functions. 
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(αβ|γδ)(TIC)
=
∑L,S

X,Y

∑

μνλσ

(
dTotal(TIC)

X

)*

μα

(
dTotal(TIC)

X

)

νβ

(
dTotal(TIC)

Y

)*

λγ

(
dTotal(TIC)

Y

)

σδ

(
χX

μ χX
ν

⃒
⃒
⃒χY

λ χY
σ

)
. (A1) 

Relativistic two-component electronic structure calculations using these integrals are expected to be highly accurate. However, the two-electron 
integrals in Eq. (A1) involving small components, namely 

(
χS

μχS
ν |χL

λ χL
σ

)
and 

(
χS

μχS
ν |χS

λ χS
σ

)
, require a high computational cost compared with 

(
χL

μ χL
ν |χL

λ χL
σ

)
. Therefore, other approaches, such as approximating small-component two-electron integrals [45–47], are essential for achieving effi-

cient two-component method calculations using the two-electron integrals (αβ|γδ)(TIC) in Eq. (A1). 
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