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Abstract

The generalized Foldy–Wouthuysen (GFW) transformation was proposed as a

generic form that unifies four types of transformations in relativistic two-component

methods: unnormalized GFW(UN), and normalized form 1, form 2, and form 3 (GFW(-

N1), GFW(N2), and GFW(N3)). The GFW transformation covers a wide range of

transformations beyond the simple unitary transformation of the Dirac Hamiltonian,

allowing for the systematic classification of all existing two-component methods.

New two-component methods were also systematically derived based on the GFW

transformation. These various two-component methods were applied to hydrogen-

like and helium-like ions. Numerical errors in energy were evaluated and classified

into four types: the one-electron Hamiltonian approximation, the two-electron oper-

ator approximation, the newly defined “picture difference error (PDE),” and the error

in determining the transformation, and errors in multi-electron systems were dis-

cussed based on this classification.

K E YWORD S

exact two-component (X2C) method, Foldy–Wouthuysen (FW) transformation, picture
difference error (PDE), relativistic two-component method

1 | INTRODUCTION

The importance of relativistic effects in understanding the chemical

properties of systems containing heavy and superheavy elements is

now well recognized. Relativistic effects on atoms and molecules are

naturally introduced by the formalism based on the Dirac equation. The

wave function, the solution of the Dirac equation, is a four-component

spinor, where the four components correspond to electrons and posi-

trons with up and down spins. The relativistic electronic structure

methods that use this four-component spinor as an orbital are known as

four-component methods. They can handle relativistic effects accu-

rately, but their computational cost is significant compared with nonrela-

tivistic (NR) methods. In the field of chemistry, we are often only

interested in solutions corresponding to electrons, and therefore it is

useful if the components corresponding to the up and down spins of

positrons can be separated. To date, two-component methods that

explicitly handle only the two components corresponding to the up and

down spins of electron were developed with this motivation. To effec-

tively reduce computational costs, some approximations are required in

the process of obtaining the two-component equation from the four-

component equation, and various two-component methods have

been developed for the different approximation types, including the

Breit–Pauli approximation (BPA),1 the zeroth order regular approxima-

tion (ZORA),2–5 the infinite order regular approximation (IORA),6 the

Douglas–Kroll method (DK; also known as the Douglas–Kroll–Hess

method (DKH)),7–14 the infinite order two-component method (IOTC;

also known as the Barysz–Sadlej–Snijders method (BSS)),15 and the

exact two-component method (X2C).16–19

The method to obtain two-component equations from the four-

component equation is to apply a transformation that block-

diagonalizes the four-component Hamiltonian to the Hamiltonian and

the wave function. One such transformation is the Foldy–Wouthuysen
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(FW)2,3,20–23 transformation, and some two-component methods can

be derived as approximations to this transformation. In addition, similar

transformations, such as unnormalized elimination of the small compo-

nent (UESC)16,24 and normalized elimination of the small component

(NESC)16 have been proposed. However, there are also several two-

component methods that are not formulated as approximations of the

FW transformation, UESC, or NESC. A transformation that generalizes

the FW transformation, UESC, and NESC, systematically derives the

existing two-component methods under appropriate approximations,

and allows for systematic error analysis of the two-component

methods from the four-component methods would be useful. In the

present article, we present such a transformation, the generalized FW

(GFW) transformation.

The present article is structured as follows. In Section 2, the GFW

transformation for the one-electron Dirac Hamiltonian in operator and

matrix forms is introduced in subsection 2.1, existing and new two-

component Hamiltonians are classified using the GFW transformation in

subsection 2.2, and the GFW transformation for the two-electron opera-

tor is shown and existing two-component transformations for the two-

electron operator are classified in subsection 2.3. In Section 3, various

two-component methods based on the GFW transformation are applied

to a hydrogen-like ion and to helium-like ions, and the accuracy of these

methods is discussed. In Section 4, conclusions are presented.

2 | THEORY

2.1 | GFW transformation

The starting point of the discussion is the Dirac equation, the relativis-

tic wave equation of an electron:

bHDΨD ¼ΨDE, ð1Þ

where the Hamiltonian is a 4 � 4 matrix operator:

bHD ¼ V cσ �bp
cσ �bp V�2c2

� �
,

ð2Þ

and the wave function is a four-component spinor:

ΨD ¼ ϕD

χD

" #
:

ð3Þ

Here, the operators V and cσ �bp in bHD and the functions ϕD and χD in

ΨD are two-component operators and spinors, respectively. The two-

component spinors ϕD and χD in the electronic solutions are called

the large and small components, respectively.

The FW transformation.2,3,20–23

bU†
N
bHD

bUN ¼
bHLL

FW
bHLS

FWbHSL

FW
bHSS

FW

24 35
,

ð4Þ

with bHLS

FW ¼ bHSL

FW ¼0 is widely known as the transformation that decou-

ples the four-component Dirac equation to a two-component equation.

Note that several different formulations are currently known as FW

transformations, and in this paper, we refer to Kutzelnigg's formulation

simply as “FW transformation”21–23 to avoid readers' confusion. The FW

transformation bUN and the operator bX in bUN are operators satisfying

bUN ¼ bωþ �bX†bω�bXbωþ bω�

" #
, ð5Þ

bXϕD ¼ χD: ð6Þ

The FW transformation bUN consists of two steps, that is, the block-

diagonalization step bUU and the renormalization step bΩFW:

bUU ¼ 1 �bX†

bX 1

" #
, ð7Þ

bΩFW ¼ bωþ 0

0 bω�

� �
, ð8Þ

with

bωþ ¼ 1þ bX†bX� ��1=2
, ð9Þ

bω� ¼ 1þ bXbX†� ��1=2
: ð10Þ

The spinor is transformed in the same manner:

bU†
NΨ

D ¼ bω�1
þ ϕD

0

" #
,

ð11Þ

where only the upper two components remain from Equation (6). The

transformation is specified so that the transformed off-diagonal blockbHSL

FW is null, and therefore bX satisfies the following equation2,3,21:

�bXV� bXcσ �bpbXþcσ �bpþ V�2c2
� �bX¼0: ð12Þ

Equation (12) and the two-component equations resulting from the

FW transformation

bHFWϕFW ¼ϕFWE, ð13Þ

when combined, are equivalent to the four-component Dirac equation

and are the basic equations of the two-component method, wherebHFW ¼ bHLL

FW

� �
and ϕFW are

bHFW ¼ bωþ Vþcσ �bpbXþ� bX†
cσ �bp

þbX†
V�2c2
� �bX�bωþ ,

ϕFW ¼ bω�1
þ ϕD:

ð14Þ
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It should be noted here that transformations have been previously

proposed that use the same operators as the FW transformation but

have different formulation. One of them is UESC16,24:

bHUESCϕ
UESC ¼ϕUESCE, ð15Þ

bHUESC ¼Vþcσ �bpbX, ϕUESC ¼ϕD, ð16Þ

another is NESC16:

bHNESCϕ
NESC ¼ bω�2

þ ϕNESCE, ð17Þ

bHNESC ¼Vþ cσ �bpbXþ bX†
cσ �bpþ bX†

V�2c2
� �bX, ϕNESC ¼ϕD, ð18Þ

and yet another is the formulation by Heully et al.,3 which is also

known as the FW transformation:

bHFW Heullyð ÞϕFW Heullyð Þ ¼ϕFW Heullyð ÞE, ð19Þ

bHFW Heullyð Þ ¼ bω�1
þ Vþ cσ �bpbX� �bωþ, ϕFW Heullyð Þ ¼ bω�1

þ ϕD: ð20Þ

The operator bX in Equations (15)–(20) are all the same as bX of the FW

transformation, determined from Equation (12).

These four decoupling methods of the Dirac Hamiltonian men-

tioned above, FW, UESC, NESC, and FW (Heully), have much in com-

mon and can be described in a common framework. However, several

existing two-component methods cannot be derived from this frame-

work. To describe such two-component methods in a single

framework, an additional transformation used along with the decou-

pling transformation is necessary. Thus, we introduce an additional

unitary transformation bUG within the diagonal blocks:

bUG ¼
bUþ 0

0 bU�

" #
: ð21Þ

This transformation does not break the block-diagonality, and hence it

does not affect bX already determined from Equation (12).

Incorporating the new additional transformation into the four

forms, FW, UESC, NESC, and FW (Heully), we propose a GFW

transformation:

bU�
GFW

bHD
bUGFW

� � bU�1

GFWΨD
� �

¼ bU�
GFW

bUGFW

� � bU�1

GFWΨD
� �

E: ð22Þ

Here, according to the two options for the product representation ofbUGFW, we have four choices

bUGFW : bUGFW ¼ bUN
bUG or bUGFW ¼ bUU

bUG, ð23Þ

and two possibilities for bU�
GFW

bU�
GFW ¼ bU†

GFW or bU�
GFW ≠ bU†

GFW: ð24Þ

The two-component wave equation resulting from these four GFW

transformations can be written in a common form:

bHGFWϕGFW ¼bSGFWϕGFWE, ð25Þ

and when combined with Equation (12), they are equivalent to the

four-component Dirac equation and hence are the basic equations of

the two-component methods. Here,bHGFW and bSGFW are the two-com-

ponent Hamiltonian and the normalization factor, respectively. Using

this normalization factor, we define the normalization condition:

ΨDjΨD
� 	¼ ϕGFW bSGFW


 


ϕGFW

D E
, ð26Þ

which means that the norm in the four-component method is pre-

served in the two-component method.

Let us examine the four forms more specifically. The first is the

transformation using the combination of bUGFW ¼ bUU
bUG andbU�

GFW ≠ bU†
GFW, which we call “unnormalized form (UN).” Here, bU�

GFW is

written as

bU�
GFW ¼ bU†

G: ð27Þ

The resulting two-component wave equation of the GFW(UN) is

given by setting

bHGFW ¼ bHUN � bU†
þ Vþ cσ �bpbX� �bUþ,bSGFW ¼bSUN � b1,

ϕGFW ¼ϕUN � bU†
þϕ

D,

ð28Þ

in Equation (25). This form includes UESC16,24 as a special case,bUG ¼ b1. GFW(UN) is characterized by the fact that it does not satisfy

the normalization condition:

ΨDjΨD
� 	¼ ϕD bω�2

þ



 


ϕD

D E
¼ ϕUN bU†

þbω�2
þ bUþ




 


ϕUN
D E
≠ ϕUN bSUN


 


ϕUN

D E
:

ð29Þ

The second is the transformation using the combination ofbUGFW ¼ bUN
bUG and bU�

GFW ¼ bU†
GFW, which we call “normalized form

1 (N1).” The resulting two-component wave equation of the

GFW(N1) is given by setting

bHGFW ¼ bHN1 � bU†
þbωþ Vþcσ �bpbXþ bX†

cσ �bpþ bX†
V�2c2
� �bX� �bωþbUþ,bSGFW ¼bSN1 � b1,

ϕGFW ¼ϕN1 � bU†
þbω�1

þ ϕD,

ð30Þ
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in Equation (25). This form includes the FW transformation21–23 as a

special case, bUG ¼ b1. The GFW(N1) satisfies the normalization

condition:

ΨDjΨD
� 	¼ ϕD bω�2

þ



 


ϕD

D E
¼ ϕD bω�1

þ bUþbU†
þbω�1

þ



 


ϕD

D E
¼ ϕN1 bSN1




 


ϕN1
D E

:

ð31Þ

The third is the transformation using the combination ofbUGFW ¼ bUU
bUG and bU�

GFW ¼ bU†
GFW, which we call “normalized form

2 (N2).” The resulting two-component wave equation of the

GFW(N2) is given by setting

bHGFW ¼ bHN2 � bU†
þ Vþcσ �bpbXþ bX†

cσ �bpþ bX†
V�2c2
� �bX� �bUþ,bSGFW ¼bSN2 � bU†

þbω�2
þ bUþ,

ϕGFW ¼ϕN2 � bU†
þϕ

D,

ð32Þ

in Equation (25). This form includes NESC16 as a special case, bUG ¼ b1.
The GFW(N2) satisfies the normalization condition:

ΨDjΨD
� 	¼ ϕD bω�2

þ



 


ϕD

D E
¼ ϕD bUþbU†

þbω�2
þ bUþbU†

þ



 


ϕD

D E
¼ ϕN2 bSN2




 


ϕN2
D E

:

ð33Þ

The fourth is the transformation using the combination ofbUGFW ¼ bUN
bUG and bU�

GFW ≠ bU†
GFW, which we call “normalized form 3

(N3).” Here, bU�
GFW is written as

bU�
GFW ¼ bU†

G
bU†
N
bUU: ð34Þ

The resulting two-component wave equation of the GFW(N3) is given

by setting

bHGFW ¼ bHN3 � bU†
þbω�1

þ Vþ cσ �bpbX� �bωþbUþ,bSGFW ¼bSN3 � b1,
ϕGFW ¼ϕN3 � bU†

þbω�1
þ ϕD,

ð35Þ

in Equation (25). This form includes FW (Heully)3 as a special case,bUG ¼ b1. The GFW(N3) satisfies the normalization condition:

ΨDjΨD
� 	¼ ϕD bω�2

þ



 


ϕD

D E
¼ ϕD bω�1

þ bUþbU†
þbω�1

þ



 


ϕD

D E
¼ ϕN3 bSN3




 


ϕN3
D E

:

ð36Þ

The GFW transformation can describe the existing two-compo-

nent methods by setting bX and bUþ properly. In some cases, however,

method-specific approximations may be necessary to achieve a full

match, such as truncation of a series expansion and Hermitization of

the Hamiltonian:

bH†þ bH� �
=2: ð37Þ

The Hermitization is in effect for the GFW(UN) or GFW(N3), where

the resulting Hamiltonian may not be Hermitian.

In the last part of this subsection, we rewrite the GFW transfor-

mations in operator form into a matrix form, which has the strong

advantage of being directly implementable in the computational pro-

grams. The matrix form is a representation of equations by the basis

functions μj if g, but in some cases, it differs from direct expression of

operators in matrices. For example, the matrix representation of bX, a
key operator of the GFW transformation, differs from the direct

expression and is given by

Xð Þμν ¼ c
X
λ

T�1
� �

μλ
λ σ �bpbX


 


νD E

: ð38Þ

The two-component wave Equation (25) is rewritten in

matrix form:

HGFWCGFW ¼ SGFWCGFWE, ð39Þ

with

HGFWð Þμν ¼ μ bHGFW




 


νD E
, SGFWð Þμν ¼ μ bSGFW


 


νD E

: ð40Þ

Applying Equations (28), (30), (32), and (35) to Equations (39) and (40),

we obtain the two-component wave equation in matrix form for

GFW(UN), GFW(N1) GFW(N2), and GFW(N3), respectively. The

resulting two-component Hamiltonian and overlap matrices are

HUN ¼U†
þ VþTXð ÞUþ , S

UN ¼ S, ð41Þ

HN1 ¼U†
þΩ

†
þ eVþeT� �

ΩþUþ , S
N1 ¼S, ð42Þ

HN2 ¼U†
þ eVþeT� �

Uþ , S
N2 ¼U†

þeSUþ, ð43Þ

HN3 ¼U†
þSΩ

�1
þ S�1 VþTXð ÞΩþUþ , S

N3 ¼ S: ð44Þ

Here, S, T, and V are the NR overlap, kinetic energy, external potential

matrices given by

Sð Þμν ¼ μ νjh i , Tð Þμν ¼ μ p2=2


 

ν� 	

, Vð Þμν ¼ μ Vj jνh i, ð45Þ

respectively. Vp defined here is the matrix used to the relativistic cor-

rection of external potential, and given by

526 INOUE ET AL.
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Vpð Þμν ¼ μ σ �bpVσ �bpj jνh i: ð46Þ

The matrices eS, eT, and eV are defined from X, S, T, V, and Vp as

eS¼ Sþ 1
2c2

X†TX , eT¼TXþX†T�X†TX , eV¼Vþ 1
4c2

X†VpX, ð47Þ

and Ωþ and Uþ are the matrix representations of operatorsbωþand bUþ:

Ωþð Þμν ¼
X
λ

S�1
� �

μλ
λ bωþj jνh i, ð48Þ

Uþð Þμν ¼
X
λ

S�1
� �

μλ
λ bUþ



 


νD E

: ð49Þ

Using the definitions in Equations (9), (47), and (48), Ωþ is explicitly

represented as

Ωþ ¼S�1=2 S�1=2eSS�1=2
h i�1=2

S1=2: ð50Þ

The matrix representations for FW, UESC, NESC, and FW (Heully) are

given by Equations (41–44) with Uþ ¼ I applied, respectively. The nor-

malized modified FW (NMFW),25

HNMFW ¼ S1=2eS�1=2 eVþeT� �eS�1=2
S1=2 , SNMFW ¼ S, ð51Þ

is the case with Uþ ¼Ω�1
þ eS�1=2

S1=2 ≠ Ið Þ applied in Equation (42) and

is not identical to the matrix representation of FW.

2.2 | Classification of two-component methods
using GFW transformation

In the previous subsection, we proposed a new GFW transformation. In

this subsection, we classify the various existing two-component methods

to the four-types of GFW transformation or approximations thereof.

Table 1 shows the classification of existing two-component methods. First,

consider the case bUþ ¼ b1. For bX, several approximations are known.

One approximation for bX is the “low-order (LO) approximation”26,27:

bX¼ 1
2c

σ �bp: ð52Þ

For this bX, if we use GFW(UN), we obtain the NR Schrödinger equa-

tion, and if we use GFW(N1) and truncate the Taylor series of the

Hamiltonian for 1=c at the second order (1=c2), we obtain BPA1; if we

use GFW(N2), we obtain the low-order NESC (LO-NESC).26,27

Another approximation for bX is “regular approximation (RA)”:

bX¼ c
2c2�V

σ �bp: ð53Þ

For this bX, if we use GFW(UN), GFW(N1), and GFW(N2), we obtain

ZORA,5 RFW,6 and IORA,6 respectively. GFW(N3) has not been

reported previously, and thus we obtained a new approximation,

which we named RA(N3). The methods, such as the newly derived

RA(N3) for method comparison in this work, are summarized in

Table 2. Here, although ZORA is based on GFW(UN), it gives a Hermi-

tian Hamiltonian. However, in general, RA(N3) can give a non-

Hermitian Hamiltonian, and we named the RA(N3) with Hermitization

in such a case “RA(N3)-H.” If we set V¼0 in Equation (12) (the free

particle FW (fpFW)), we have another bX:
TABLE 1 Classification of existing two-component methods.

GFW type Approximation of bX Series truncation Hamiltonian Hermitization bUG

NR UN LO – – b1
LO-NESC N2 LO – – b1
BPA N1 LO 1=c2 – b1
ZORA UN RA – – b1
IORA N2 RA – – b1
RFW N1 RA – – b1
FORA UN RA and Equation (71) – ✓ b1
NESC-SORA N2 RA and Equation (75) – – b1
RESC N3 Equation (55) 1=c2 only for bω�1

þ , bωþ ✓ b1
DK1 N1 fpFW – – b1
DKn (n>1) N1 Equation (61) Vn – Equation (62)

IOTC N1 exact solution of Equation (12) – – Equation (56)

X2C N1 exact solution of Equation (12) – – b1

INOUE ET AL. 527
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bX¼ bBσ �bp, bB¼ c

c2þbEp , bEp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2bp2þc4

q
: ð54Þ

For this bX, if we use GFW(N1), we obtain the first-order Douglas–

Kroll method (DK1).7 Furthermore, if we use the following bX (which is

Equation (54) with additional terms)

bX¼ bBσ �bpþ c�1bB2
Vσ �bp�c�1bp�2σ �bpVbB2bp2, ð55Þ

and use GFW(N3), the relativistic scheme with small component elimi-

nation (RESC)28 is obtained. In RESC, as further approximations, the

second and third terms in rhs of Equation (55) are neglected in evalu-

ating bωþ and bω�1
þ in the Hamiltonian (Equation (35)), and Hermitiza-

tion (Equation (37)) is applied. We also considered RESC with no

Hermitization for comparison, which was named “RESC-NH.”
Next, consider the case of bUþ ≠ b1. If we use bX, the exact solution

of Equation (12), and following bUþ:

bUþ ¼ bA 1�bBbpbY� �bωIOTCbωIOTC 1� bY†bpbB� �bAh i�1=2bA 1�bBbpbY� �bωIOTC,

ð56Þ

and use GFW(N1), we obtain IOTC.15 Here, bA and bωIOTC are

bA¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Epþc2

2Ep

s
,

bωIOTC ¼ 1þ bY†bY� ��1=2

,
ð57Þ

and bY is the solution of the nonlinear equation:

bY¼
X
p,p0

pj i 1
EpþEp0

ph jbp�1σ �bpbO1

þbp�1σ �bpbE1σ �bpbp�1bY� bYbE1
þbYbO1σ �bpbp�1bY p0j i p0h j,

ð58Þ

with

bE1 ¼ bAVbAþbAbBσ �bpVσ �bpbBbA, ð59Þ

bO1 ¼ bAVσ �bpbBbA�bAbBσ �bpVbA: ð60Þ

Moreover, if we use the following bX and bUþ:

bX¼ bAbBσ �bp bULL

DKnþbB�1bp�2σ �bpbUSL

DKn

� � bULL

DKn�bBσ �bpbUSL

DKn

� ��1bA�1
, ð61Þ

bUþ ¼ bA bULL

DKn�bBσ �bpbUSL

DKn

� � bULL†
DKn� bUSL†

DKnσ �bpbB� �bAh i�1=2bA bULL

DKn�bBσ �bpbUSL

DKn

� �
,

ð62Þ

with

bUDKn ¼
Yn�1

i¼1

bUi
,

bUi ¼ f
0 � bW†

ibWi 0

24 350@ 1A, ð63Þ

use GFW(N1), and truncate the transformed Hamiltonian up to the n-

th order of V, we obtain the n-th order DK (DKn).9–14 This truncation

is done based on the Taylor series of f xð Þ and bWk being k-th order

with respect to V. Here, the function f xð Þ characterizes the variants of

DK and should satisfy

f xð Þf �xð Þ¼1, ð64Þ

for bUi to be unitary. Several function forms have been proposed

(e.g., square root type function,7 Cayley transform type,14,21

McWeeny choice,29 exponential type,10 optimal unitary type14) and

a general treatment14 that covers all the function forms is also

proposed. Each bWk are determined by the condition that the k-th

order terms of V in the LS-part of the transformed four-component

Hamiltonian cancel out. The low-order operators bW1 and bW2 can be

determined regardless of the choice of f xð Þ and they have a com-

mon form:

bW1 ¼
X
p,p0

pj i
p bO1




 


p0D E
EpþEp0

p0h j, ð65Þ

TABLE 2 Classification of newly derived two-component methods.

GFW Type Approximation ofbX Series truncation Hamiltonian Hermitization bUG

X2C(UN) UN exact solution of Equation (12) – � b1
X2C(N2) N2 exact solution of Equation (12) – – b1
X2C(N3) N3 exact solution of Equation (12) – � b1
X2C(UN)-H UN exact solution of Equation (12) – ✓ b1
X2C(N3)-H N3 exact solution of Equation (12) – ✓ b1
RA(N3) N3 RA – � b1
RA(N3)-H N3 RA – ✓ b1
RESC-NH N3 Equation (55) 1=c2 only for bω�1

þ ,bωþ � b1
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bW2 ¼
X
p,p0

pj i
p bE1 bW1� bW1

bE1


 


p0D E
EpþEp0

p0h j: ð66Þ

On the other hand, bWk k ≥ 3ð Þ are different depending on the function

f xð Þ. The DK2, DK3, and DK4 Hamiltonians are common14 regardless

of the choice of f xð Þ, while the DKn n≥5ð Þ Hamiltonians differ

depending on the choice of f xð Þ.
In the following, we discuss the two-component methods that

were not mentioned in first half of this subsection; first-order regular

approximation (FORA), second-order regular approximation to NESC

(NESC-SORA), and X2C. It is more straightforward to consider these

methods in matrix form than in operator form. The starting point of

the discussion is the matrix form of Equations (52–54),

X¼ I, ð67Þ

X¼ T� 1
4c2

Vp
� 
�1

T
,

ð68Þ

and

X¼2cS�1B, ð69Þ

respectively. Here, matrix B is defined by Bð Þμν ¼ μh jbB νj i. To enhance

the approximation of X in Equations (67–69), an X matrix that is closer

to the exact solution of Equation (12) needs to be adopted. The matrix

form can be used to systematically provide such X. In matrix form,

Equation (12) is written as

X¼X0 I� 1
2c2

XS�1 VþTXð Þ
� �

,
ð70Þ

where X0 is equal to X of Equation (68). One way to use Equation (70)

is to create a recurrence formula, for example,

Xkþ1 ¼X0 I� 1
2c2

XkS
�1 VþTXkð Þ

� �
,

ð71Þ

where X converges to the exact solution of Equation (70), unless it

diverges. Therefore, it is expected that a better approximation of X is

obtained from X0 by the recurrence formula. From the first step of

the recurrence relation (Equation (71)),

X1 ¼X0 I� 1
2c2

X0S
�1 VþTX0ð Þ

� �
,

ð72Þ

is obtained. Substituting this X1 into UESC yields the FORA

Hamiltonian4 after Hermitization (Equation (37)):

HFORA ¼1
2

VþTX1ð Þþ VþX†
1T

� �� �
: ð73Þ

Equation (70) is also transformed to another equivalent form:

X¼X0 I� 1
2c2

XeS�1 eVþeT� �� �
:

ð74Þ

This equation is similarly used to create a recurrence formula:

Xkþ1 ¼X0 I� 1
2c2

Xk
eS�1 eVþeT� �� �

:
ð75Þ

X0
1 obtained from the first step of the recurrence relation (75) is

X0
1 ¼X0 I� 1

2c2
X0

eS�1

0
eV0þeT0

� �� �
,

ð76Þ

with

eS0 ¼ Sþ 1
2c2

X†
0TX0 , eT0 ¼TX0þX†

0T�X†
0TX0 , eV0 ¼Vþ 1

4c2
X†
0V

pX0,

ð77Þ

and substituting X0
1 into NESC yields the NESC-SORA30 Hamiltonian.

Thus, both FORA and NESC-SORA are derived from the first step

of the recurrence relations. In this manner, the recurrence Equa-

tions (71) and (75) can be formally used to obtain X with sequential

approximation, but they can also be used to obtain the solution of

Equation (70) numerically by the iterative method. However, the con-

vergence of the recurrence Equations (71) and (75) is not good, and

special numerical processing is often required31 to make them

converge.

The solution of Equation (70) can also be obtained through

the direct diagonalization of the one-electron Hamiltonian and

such a scheme is called X2C.16–19 The X2C scheme can also be

derived within the framework of the GFW transformation as fol-

lows. Using the basis function expansion by μj if g, the matrix forms

of the Dirac Hamiltonian and the four-component overlap are

given by

HD ¼ V 2cTκ
2cκT κVpκ�4c2κTκ

� �
,

ð78Þ

and

SD ¼ S 0

0 2κTκ

� �
,

ð79Þ

respectively, with

κð Þμν ¼ δμν=
ffiffiffiffiffiffiffiffiffiffi
2Tμμ

p
: ð80Þ

By solving the generalized eigenvalue problem for the Hamiltonian

HD, the eigenvector matrix

CL
þ CL

�
CS
þ CS

�

" #
,

ð81Þ
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is obtained, where the eigenvectors with positive and negative energy

are divided between the left and right half columns, respectively. On

the other hand, the transformation GFW(N1) is represented in matrix

form as

ΩþUþ �c�1S�1κTXΩ�U�
2cð Þ�1κ�1XΩþUþ Ω�U�

" #
,

ð82Þ

with

Ω�ð Þμν ¼
X
λ

S�1
� �

μλ
λ bω�j jνh i,

U�ð Þμν ¼
X
λ

S�1
� �

μλ
λ bU�



 


νD E

:
ð83Þ

Assuming that the expressions in Equations (81) and (82) are equiva-

lent, two equations are obtained from the matrix correspondence:

X¼�cT�1κ�1 CS
�C

S†
�

� ��1
CS
�C

L†
� S, ð84Þ

X¼2cκCS
þC

L†
þ CL

þC
L†
þ

� ��1
: ð85Þ

The two X matrices determined from Equations (84) and (85) are iden-

tical. Equations (84) and (85) obtained from GFW(N1) are identical to

the equations shown in the original X2C papers,17–19 indicating that

the X2C method is actually derived in the framework of the

GFW transformation. The derivation based on the GFW transforma-

tion is straightforward, because the FW transformation only describes

the block diagonalization, whereas the GFW transformation can rep-

resent more general transformations, including full diagonalization.

This favorable feature of the GFW transformation allowed us a direct

comparison of Equations (81) and (82) to obtain Equations (84)

and (85).

The X matrix determined from Equation (84) (or Equation (85))

can also be applied to GFW(UN), GFW(N2), and GFW(N3). We refer

to GFW(UN), GFW(N2), and GFW(N3) with Equation (84)

(or Equation (85)) and Uþ ¼ I applied as X2C(UN), X2C(N2), and X2C

(N3), respectively. Furthermore, we refer to the Hermitized X2C

(UN) and X2C(N3) as X2C(UN)-H and X2C(N3)-H, respectively. The

Hermitization is important because these transformations may lead to

non-Hermitian Hamiltonians.

2.3 | GFW transformation of two-electron
operator

For higher accuracy of the two-component methods, the transforma-

tions of the two-electron operator are essential as well as the one-

electron Hamiltonian. The two-component methods involving the

transformation of the two-electron operator have already been devel-

oped for BPA,1,32 DK1,33–35 DK2,36 DK3,36 and IOTC.37 Moreover,

without specification of bX, the two-electron operator for NESC26,30

has been developed. Here, the transformation of the two-electron

operator is discussed in the framework of the GFW transformation.

The two-component two-electron operator obtained by applying

the GFW transformation to the four-component two-electron Cou-

lomb interaction operator is

bgGFW r1,r2ð Þ¼
XL,S
X,Y

bKX lð Þ
r1ð Þ

� 
† bKY lð Þ
r2ð Þ

� 
† 1
r1� r2j j

bKX lð Þ
r1ð ÞbKY lð Þ

r2ð Þ
,

ð86Þ

where the transformation operators bKL lð Þ
, bKL rð Þ

, bKS lð Þ
, and bKS rð Þ

used in

Equation (86) are

bKL lð Þ ¼ bKL rð Þ ¼ bUþ,bKS lð Þ ¼ bKS rð Þ ¼0,
ð87Þ

for GFW(UN),

bKL lð Þ ¼ bKL rð Þ ¼ bωþbUþ,bKS lð Þ ¼ bKS rð Þ ¼ bXbωþbUþ,
ð88Þ

for GFW(N1),

bKL lð Þ ¼ bKL rð Þ ¼ bUþ,bKS lð Þ ¼ bKS rð Þ ¼ bXbUþ,
ð89Þ

for GFW(N2), and

bKL lð Þ ¼ bω�1
þ bUþ,bKL rð Þ ¼ bωþbUþ,bKS lð Þ ¼ bKS rð Þ ¼0,

ð90Þ

for GFW(N3). The Hermitization can also be defined for two-electron

operators. Because only GFW(N3) gives a non-Hermitian two-

electron operator, the Hermitization is effective only for GFW(N3):

bgGFW N3ð Þ�H r1,r2ð Þ¼1
4

bKL lð Þ
r1ð Þ

� 
† bKL lð Þ
r2ð Þ

� 
† 1
r1� r2j j

bKL rð Þ
r1ð ÞbKL rð Þ

r2ð Þ
"

þ bKL lð Þ
r1ð Þ

� 
† bKL rð Þ
r2ð Þ

� 
† 1
r1� r2j j

bKL rð Þ
r1ð ÞbKL lð Þ

r2ð Þ

þ bKL rð Þ
r1ð Þ

� 
† bKL lð Þ
r2ð Þ

� 
† 1
r1� r2j j

bKL lð Þ
r1ð ÞbKL rð Þ

r2ð Þ

þ bKL rð Þ
r1ð Þ

� 
† bKL rð Þ
r2ð Þ

� 
† 1
r1� r2j j

bKL lð Þ
r1ð ÞbKL lð Þ

r2ð Þ
#
:

ð91Þ

The two-electron operators of various two-component methods are

derived from Equation (86) by the same procedure as for the two-

component one-electron Hamiltonian. Take the bUþ ¼ b1 case as an
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example. Applying GFW(UN) and Equation (52) to Equation (86) yields

the NR approximation:

bgNR r1,r2ð Þ¼ 1
r1� r2j j , ð92Þ

and applying GFW(N1) and Equation (52) to Equation (86) and trun-

cating the Taylor series for 1=c of the two-electron operator up to the

second order (1=c2) yield the BPA.

Let us consider the matrix form of the two-component two-

electron operator. The matrix representation of the two-electron

operator is the two-electron integral, which is given by

αβjγδð ÞGFW ¼
XL,S
X,Y

X
μνλρ

KX lð Þ†
αμ KX lð Þ†

γλ μXνX jλYρY� �
KY rð Þ
νβ KY rð Þ

ρδ , ð93Þ

where the bases μL


 	

and μS


 	

denote μj i and σ �p μj i, respectively.
The transformation matrices KL lð Þ, KL rð Þ, KS lð Þ, and KS rð Þare

KL lð Þ ¼KL rð Þ ¼Uþ,
KS lð Þ ¼KS rð Þ ¼0,

ð94Þ

for GFW(UN),

KL lð Þ ¼KL rð Þ ¼ωþUþ,

KS lð Þ ¼KS rð Þ ¼ 1
2c

XωþUþ,
ð95Þ

for GFW(N1),

KL lð Þ ¼KL rð Þ ¼Uþ,

KS lð Þ ¼KS rð Þ ¼ 1
2c

XUþ,
ð96Þ

for GFW(N2), and

KL lð Þ ¼ S�1ω�1
þ SUþ,

KL rð Þ ¼ωþUþ,
KS lð Þ ¼KS rð Þ ¼0,

ð97Þ

for GFW(N3). In the matrix form, the NR approximation to the two-

component two-electron operator corresponds to the replacement of

αβjγδð ÞGFW with αβjγδð Þ.
For multi-electron systems, even using the two-component

transformation of the two-electron operator discussed here and

applying the exact bX in Equation (12) to the two-component transfor-

mation does not give the same results as the four-component method.

This is because Equation (12) is a condition for block diagonalization of the

one-electron Hamiltonian, in which the two-electron operator is not taken

into account. Such errors can be eliminated by applying a two-component

transformation to the Dirac–Fock operator instead of the one-electron

Hamiltonian in, for example, the Hartree–Fock method.35,38

3 | NUMERICAL RESULTS
AND DISCUSSION

As shown in subsection 2.2, the GFW transformation framework sys-

tematically derives various existing two-component methods. In this

section, we numerically examine the accuracy of the approximations

of the various two-component methods described in the framework

of the GFW transformation.

3.1 | Calculations by a single Gaussian function

First, consider the calculation on a very simple model. We calculated

the energy of the hydrogen-like ion with nuclear charge Z¼96 using

a single normalized s-type Gaussian functions: Nexp �ζr2
� �

. The spe-

cific form of this “single Gaussian function” for the four-component

method is given by

NL exp �ζr2
� �
0

" #
,
NSσ �p

exp �ζr2
� �
0

24 35
,

ð98Þ

where NL and NS are the normalization constants. Figure 1 shows the

energy E plotted against the exponent ζ of the Gaussian function. This

plot follows the method used in Refs.26,27 The vertical axis repre-

sents the modified logarithmic scale of E, and the horizontal axis rep-

resents the logarithmic scale of ζ.

Three important pieces of information can be observed from

Figure 1. First, the asymptotic behavior in the large ζ region

indicates the p-dependent form of the kinetic energy. For a single

Gaussian function, the expectation value p2
� 	

is 3ζ, and in the large ζ

region, the kinetic energy is dominant in the total energy relative to

the nuclear attraction potential energy. Therefore, the behavior of

the curve in the large ζ region represents the p2
� 	

dependence of the

relativistic kinetic energy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 p2h iþc4

p
�c2�

ffiffiffiffiffiffiffiffiffiffi
3c2ζ

p
. Because the

graph in Figure 1 is bi-logarithmic, the slope of the curve should be

1/2. This condition is not satisfied in the NR, BPA, FORA, and

LO-NESC approximations (Figure 1). Second, the existence of

a minimum value indicates the possibility of a stable variational

calculation. The absence of a minimum value implies that the more

the Gaussian basis functions with larger exponents added, the

lower the total energy. Thus, the existence of the minimum value is

essential for the solution of the linear variational problem using

basis function expansion. The BPA, FORA, and LO-NESC approxi-

mations, which do not have the minimum value, are not suitable for

variational calculations (Figure 1). Third, the graphs give a rough

indication of the approximation accuracy of the methods. The four-

component method is the reference for the X2C methods. The

RESC curve deviates slightly from the four-component method

curve; the ZORA, IORA, and RFW curves are also good approxima-

tions of the four-component method curve. For the entire ζ region,

the NESC-SORA, DK, IOTC, and X2C closely follow the four-

component method curve. The IOTC and X2C theoretically give the

INOUE ET AL. 531
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same curve as the four-component method for the one-electron

system (Figure 1).

Figure 2 shows the results for the Z¼0 case, that is, no external

potential V¼0; ZORA is consistent with NR. The BPA and FORA

curves show divergence, which is due to the collapse of the Taylor

expansion (or the asymptotic expansion) for 1/c of the kinetic energy,

and IORA, RFW, LO-NESC, and NESC-SORA are also ill behaved. By

contrast, the RESC, DK, IOTC, and X2C curves are almost identical to

the four-component method curve; hence, the relativistic kinetic

energy is properly computed by these methods.

3.2 | Calculations by multiple Gaussian functions

3.2.1 | Hydrogen-like ion

Next, consider a hydrogen-like ion using multiple Gaussian functions.

We calculated the total energy of the hydrogen-like ion (Z = 100) using

even-tempered s orbital-type basis functions expanded with 45 Gaussian

functions.37 Both two- and four-component methods were used for

comparison. However, the two-component methods, which were shown

to be unsuitable for variational calculations (see Section 3.1), were

excluded. Table 3 shows the computed total energies and the square of

the norm ΨDjΨD
� 	

defined by Equation (26). The forms satisfy the

normalization condition with the exception of GFW(UN), that is,

ΨDjΨD
� 	¼1 is always satisfied. The energies of X2C and IOTC are

identical to that obtained using the four-component method because

of the theoretical equivalence to the four-component method for

one-electron systems. Similarly, the energies of X2C(UN), X2C(N2),

and X2C(N3) are also identical to that obtained using the four-

component method. However, the X2C(UN) energy divided by

ΨDjΨD
� 	

, that is, the normalized energy, has a difference of

939.1944 a.u. from the four-component method. By contrast, the nor-

malized ZORA energy (ZORA energy divided by ΨDjΨD
� 	

) has a very

small difference of �0.0001 a.u. from the four-component method,

but this improvement may be due to error cancelation. This is because

the energy of X2C(UN), which uses bX with no approximation in one-

electron systems, is deteriorated by the normalization.

The total energies of RESC and RA(N3)-H (both approximations

of X2C(N3)-H) are extremely low and their errors are far beyond

F IGURE 1 Energy of a hydrogen-like ion (Z = 96) computed with
a single Gaussian basis function. Curves that overlap due to the same
or close numerical values are represented by a single line.

F IGURE 2 Energy of a hydrogen-like ion (Z = 0) computed with a
single Gaussian basis function. Curves that overlap due to the same or
close numerical values are represented by a single line.

TABLE 3 Energy and the square of the wave function norm
(Equation (26)) for the Z = 100 hydrogen-like ion.

ΔE (a.u.) from E4-comp.a

Square of the norm

(equation (26))

IOTC 0.0000 1

X2C 0.0000 1

X2C(UN) 0.0000 1.1878

X2C(N2) 0.0000 1

X2C(N3) 0.0000 1

X2C(UN)-H �123.9186 1.2312

X2C(N3)-H 0.0000 1

ZORA �1115.6115 1.1878

RFW �103.3898 1

IORA �103.3898 1

RA(N3) �1115.6115 1

RA(N3)-H �58242725.5868 1

NESC-SORA �140691.2280 1

RESC-NH 432.2560 1

RESC �202738.3711 1

DK1 �533.1619 1

DK2 33.0021 1

DK3 �3.1754 1

aThe reference energy of the four-component method is

E4-comp. = �5939.1935 a.u.
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100%. By contrast, the total energy differences of RESC-NH and

RA(N3) from the four-component method (both approximations of

X2C(N3)) are 432.2560 and �1115.6115 a.u., respectively, and their

errors are within 20%. These results indicate that the Hermitization

(Equation (99)) of the X2C(N3) Hamiltonian after the approximation is

not effective. The NESC-SORA energies are also extremely low. This

poor performance is probably ascribed to the point-charge nucleus

model in the large atomic number region. In fact, the total energy

under the finite-size nuclear model is �5924.190743 a.u., which is

rather favorable. The truncation of the 1/c series in the BPA system

was such a poor approximation that it could not be used for varia-

tional calculations. By contrast, the energy differences for DK1, DK2,

and DK3 from the four-component method were �533.1619,

33.0021, and �3.1754 a.u., respectively, indicating that truncation did

not lead to poor behavior and provided rather good approximations.

These findings indicated that truncation of V was a good approxima-

tion, and truncation of a series itself was not necessarily a bad strat-

egy in deriving the two-component methods.

3.2.2 | Helium-like ions

Finally, consider many-electron systems. We performed Hartree–Fock

calculations for the helium-like ions (Z = 10, 20,…,130) using the basis

functions expanded by even-tempered s orbital-type 45 Gaussian

functions.37 In these calculations, the two-component methods, the

values of which collapsed in the previous subsection, were further

excluded. The GFW transformations were first applied and deter-

mined for the one-electron Hamiltonian, and then applied to the rela-

tivistic two-electron operator using Equation (93). The calculations

applying the NR approximation to the two-electron operator were

also performed for comparison.

Figure 3 shows the Hartree–Fock energy plotted against the

nuclear charge Z. The energies were adjusted so that the energy of

the four-component method represents the origin. The results for

NR/NR, DK1/NR, DK2/NR, DK3/NR, and IOTC/NR show that the

energy difference from the four-component method was greatly

reduced as the level of approximation for the one-electron Hamilto-

nian increased. At first glance, it appears that DK3/NR gave better

results than IOTC/NR, but it was due to the cancelation of the under-

estimated contribution from the one-electron Hamiltonian and the

overestimated contribution from the two-electron operator in

DK3/NR. In fact, IOTC/NR gave a better result at Z = 130, where the

relativistic effect was the largest. The results of IOTC/NR, IOTC/DK1,

IOTC/DK2, IOTC/DK3, and IOTC/IOTC showed that the energy dif-

ference from the four-component method was also reduced as the

level of approximation for the two-electron operator increased. How-

ever, the effect was much smaller than for the one-electron Hamilto-

nian. Therefore, when selecting the approximation to be used for the

one-electron Hamiltonian and the two-electron operator, the one-

electron Hamiltonian approximation should be chosen preferentially.

The total energies of the helium-like ion with Z = 100 obtained

using several selected methods are shown in Table 4. IOTC/IOTC,

X2C/X2C, and X2C(N2)/X2C(N2), in which the one-electron Hamilto-

nian and the two-electron operator were transformed by the same

method, gave identical energies. Although these three methods apply

the exact bX in Equation (12), the error mentioned in the last paragraph

of Section 2.3 remains. In fact, IOTC/IOTC, X2C/X2C, and X2C(N2)/

X2C(N2) have quite a small but non-zero difference of �0.0035 a.u.

from the four-component method.

Let us consider the errors that arise when the two-electron oper-

ator approximation was changed to the NR approximation for IOTC/

IOTC, X2C/X2C, and X2C(N2)/X2C(N2), that is, IOTC/NR, X2C/NR,

and X2C(N2)/NR. In these cases, at first glance, it appears that the

only new error arising is the error from the NR approximation of

the two-electron operator. However, this does not explain the fact

that IOTC/NR, X2C/NR, and X2C(N2)/NR gave different total ener-

gies. The errors were 10.3692, 9.4853, and �23.6423 a.u., respec-

tively. This indicates that the NR approximation of the two-electron

operator introduced another new error in addition to the error directly

introduced by this approximation. This new error, which gave differ-

ent energies even when exact transformations for the one-electron

Hamiltonian and the common transformation for the two-electron

operator were used, was due to the difference of the transformations

applied to the one-electron Hamiltonian and the two-electron opera-

tor and can be viewed as picture change errors in the two-electron

operator with respect to the one-electron Hamiltonian picture. We

refer to these differences caused by the different transformations

between the one-electron Hamiltonian and the two-electron operator

as the “picture difference error (PDE).” The PDE always occurs when

the transformation methods used for the one- and two-electron inte-

grals are different. In particular, the PDE can occur even when any ofbX, bUþ, and the GFW types are different. In fact, X2C/IOTC and IOTC/

X2C gave different total energies despite having the same bX and

GFW type. Thus, PDE even resulted only from the bUþ difference. The

F IGURE 3 Hartree–Fock total energy difference of helium-like
ions from the four-component method computed with several
selected two-component methods. The symbol A/B means (method
for one-electron Hamiltonian)/(method for two-electron operator).
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PDE lead a larger error (�0.6734 a.u. for X2C/IOTC and 0.6772a.u.

for IOTC/X2C) than the approximation for determining bX without

considering the two-electron operator (�0.0035 a.u. for IOTC/IOTC

and X2C/X2C).

The effect on accuracy of the two-electron operator Hermiti-

zation was not examined in this paper, but the following consider-

ations predict that the two-electron operator Hermitization has a

negative impact on accuracy. The two-electron operator Hermiti-

zation is necessary only for GFW(N3), and to prevent PDE, Her-

mitization is also necessary for the one-electron Hamiltonian.

However, we have seen that Hermitization is not a good treat-

ment for approximating a two-component transformation of the

one-electron Hamiltonian. Moreover, there is no practical reason

to actively use X2C(N3) instead of X2C or X2C(N2) for the one-

electron Hamiltonian. Thus, it is theoretically predicted that the

Hermitization of the two-electron operator and PDE prevention

are incompatible.

4 | SUMMARY

We have proposed the GFW transformation, which is a generalization

of the FW transformation for the Dirac Hamiltonian. The GFW trans-

formation is a generic term for four types of transformations (the

combinations of unitary/nonunitary and Hermitian/non-Hermitian

transformations) and includes an additional transformation rotating

only positive energy orbitals. This transformation form can express all

existing two-component methods. We showed that the existing two-

component methods are derived from the GFW-transformed Hamilto-

nian and furthermore systematically derived two-component methods

that have not been previously derived based on this transformation.

We then applied various two-component methods to the

hydrogen-like ion (Z = 100) and the helium-like ions (Z = 10, 20, …,

130) and systematically evaluated the numerical errors in the two-

component method by organizing the approximations based on the

GFW transformation. The results showed that the errors of the two-

component methods could be classified as follows:

1. An error due to the approximation of the one-electron Hamiltonian

transformation, resulting from (a) the approximation of bX, (b) series
truncation, or (c) Hamiltonian Hermitization,

2. an error due to the approximation of the two-electron operator

transformation, resulting from (a) the approximation of bX, (b) series
truncation, and (c) Hamiltonian Hermitization,

3. the PDE, and

4. the error from the determination of the transformation using only

the one-electron Hamiltonian.

The additional transformation bUþ in the GFW transformation

does not directly affect the accuracy of the two-component methods.

To reduce the error in the transformed one-electron Hamiltonian and

ensure high accuracy of the two-component methods, it is required

that the methods have correct relativistic kinetic energy when the

potential is zero. The LO-NESC, BPA, and RA methods do not satisfy

this requirement. Furthermore, the Hermitization of non-Hermitian

Hamiltonians amplifies the approximation error in bX.
The accuracy of the approximation for multi-electron systems is

mostly determined by the transformation applied to the one-electron

Hamiltonian. By contrast, applying a high-accuracy method to the

two-electron operator has little effect when a low-accuracy method is

applied to the one-electron Hamiltonian. Different transformations

for the one-electron Hamiltonian and the two-electron operator result

in PDE and, in some cases, produce not a small error. When two dif-

ferent methods are used unavoidably, it should be noted that PDE

occurs. The fourth error in the aforementioned classification resulting

from the transformation to the two components by the one-electron

Hamiltonian is quite smaller compared with errors 1–3.

In conclusion, the GFW transformation is a powerful tool that can

represent all existing two-component methods and can be used to

systematically derive new two-component methods. In the future, it is

expected to be applicable to the analysis of two-component method

calculations for practical molecules with a large number of atoms.
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TABLE 4 Hartree–Fock energy of the Z = 100 helium-like ion by
several selected two-component methods.

Methoda ΔE (a.u.) from E4-comp.b

IOTC/IOTC �0.0035

X2C/X2C �0.0035

X2C(N2)/X2C(N2) �0.0035

X2C/IOTC �0.6734

IOTC/X2C 0.6772

IOTC/DK3 0.1065

IOTC/DK2 0.0964

IOTC/DK1 2.3386

IOTC/BPA �25.5287

IOTC/NR 10.3692

X2C/NR 9.4853

X2C(N2)/NR �23.6423

ZORA/NR �2215.8968

RFW/NR �196.5770

IORA/NR �225.4527

DK3/NR 4.0459

DK2/NR 75.7278

DK1/NR �1045.3359

aThe symbol A/B means (method for one-electron Hamiltonian)/(method

for two-electron operator).
bThe reference total energy of the four-component method is

E4-comp. = �11796.8563 a.u.
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