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In response to Professor Liu’s Comment1 on our recently
published paper,2 this article provides our responses to the raised
questions. The Comment poses several questions, and the purpose
of this article is to address and resolve those questions. Specifically,
our focus encompasses three key aspects regarding the validity of
our paper, referred to as Paper 2 in accordance with the assigned
reference number (Ref. 2).

1. In Paper 2, we employed three types of contractions: the con-
stantly null contraction (CNC), the charge-conjugated con-
traction (CCC), and the conventional contraction (cC). These
contractions were utilized solely formally during the con-
struction (definition) process of the QED Hamiltonians from
the virtual pair approximation (VPA) Hamiltonian. Once the
QED Hamiltonians, for the MO-CNC case as an example,

HQED(MO−CNC)
=

all

∑
pq

hpq{a†
paq}

n
+

1
2

all

∑
pqrs
(pq∣rs){a†

pa†
r asaq}

n
,

(1)
were defined, subsequent operator manipulations were
consistently performed based on the usual fermion
(anti)commutation relations,

aiaj + ajai = 0,

a†
i a†

j + a†
ja

†
i = 0,

a†
i aj + aja†

i = δij ,

(2)

bibj + bjbi = 0, aibj + bjai = 0,

b†
i b†

j + b†
jb

†
i = 0, a†

i b†
j + b†

ja
†
i = 0,

b†
i bj + bjb†

i = δij , a†
i bj + bja†

i = 0,

b†
i aj + ajb†

i = 0,

(3)

where a†
i and ai represent the creation and annihilation opera-

tors for electrons, respectively, whereas b†
i and bi denote those

for positrons.
In the picture where only electrons are treated regardless

of their energy signs (i.e., the Dirac sea picture), the commu-
tation relations (2) were used for both positive and negative
energy electrons. [Equation (13) of Paper 2 was thus obtained
from Eq. (1) using relations (2). Equations (16) and (19) of
Paper 2 for the other contractions were also obtained through
the same procedure.] On the other hand, in the picture where
the holes in negative energy orbitals are replaced by posi-
tive energy positrons, commutation relations (2) and (3) were
used for the commutation of the creation and annihilation
operators of the positive energy particles. The Hamiltonians
treated through these commutation relations are naturally
(mathematically) equivalent to the original. In fact, difficulties
would arise if CNC or CCC is used instead of the commuta-
tion relations of fermions after the definition of Hamiltonian.
Appendix A is provided to supplement this fact. With respect
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to the derivation of Eq. (22) of Paper 2 from Eq. (13) of
Paper 2, the Comment mentions that it is an “inconsistence.”
However, in Paper 2, the equivalent deformations of Hamil-
tonian using the above-mentioned commutation relations
have been applied, which is, of course, not an inconsistency.
Consequently, the subsequent discussions including orbital
invariance and nonrelativistic limits remain unaffected.

In the QED-based formulation of the molecular orbital
method described in Sec. II C of Paper 2, identical expres-
sions of the second-order Møller–Plesset (MP2) perturbation
theory, the configuration interaction (CI) method, and the
multi-configurational quasi-degenerate perturbation theory
(MC-QDPT) can be derived from Eq. (13) and also from Eq.
(22). As a result, their formulation in Sec. II C of Paper 2 is
independent of the ordering of the operators.

In fact, as has been described in Paper 2, it is readily con-
firmed that the combination of Eq. (22) of Paper 2 and the
Hartree–Fock (HF) configuration, Eq. (65) of Paper 2,

∣Ψ0⟩ =

occ(ele.)

∏
i

a†
i

occ(pos.)

∏
p

b†
p ∣empty⟩, (4)

and the combination Eq. (13) of Paper 2 and the following HF
configuration:

∣Ψ0⟩ =

occ(ele.)

∏
i

a†
i

occ(pos.)

∏
p

ap∣0(MO)
⟩

=

occ(ele.)

∏
i

a†
i

occ(pos.)

∏
p

ap

(−)

∏
q

a†
q ∣empty⟩, (5)

both result in the identical energy expression as follows:

E = ⟨Ψ0∣HQED
∣Ψ0⟩

=

occ(ele.)

∑
i

hii −

occ(pos.)

∑
p

hpp +
1
2

occ(ele.)

∑
ij
[(ii∣ jj) − (ij∣ ji)]

−

occ(ele.)

∑
i

occ(pos.)

∑
p
[(ii∣pp) − (ip∣pi)]

+
1
2

occ(pos.)

∑
pq

[(pp∣qq) − (pq∣qp)]. (6)

This equivalence holds true for the MP2, CI, and MC-
QDPT cases. Appendix B provides examples for the CI
methods.

2. In Subsection II B 3 of Paper 2, we required that the limit
of the QED Hamiltonian when c→ +∞ agrees with the non-
relativistic multicomponent molecular orbital (NR-MCMO)
Hamiltonian3 except for a constant term, and it was shown
that only QED (MO-CNC) can satisfy this requirement. In
other words, the other eight QED Hamiltonians include oper-
ators that are independent of c and not included in the MCMO
Hamiltonian.

In the Comment, a different view on the nonrelativis-
tic limit of the Hamiltonian from our view has been shown.

The difference lies in the nonrelativistic limit of the Qq
p term

of QED(MO-CCC). In Paper 2, the limit was to be nonzero,
whereas in Eq. (45) of the Comment, the limit is to be zero.

The expression for Qq
p is as follows:

Qq
p =

(−)

∑
r

1
2
[(pq∣rr ) − (pr∣rq)]

−

(+)

∑
r

1
2
[(pq∣rr ) − (pr∣rq)]. (7)

From this expression, in the nonrelativistic limit, for
p, q ∈ {(+)},

Qq
p

c→+∞
ÐÐÐ→

(−)

∑
r

1
2
(ψ(ele.)

p ψ(ele.)
q ∣ψ(pos.)

r ψ(pos.)
r )

−

(+)

∑
r

1
2
[(ψ(ele.)

p ψ(ele.)
q ∣ψ(ele.)

r ψ(ele.)
r )

− (ψ(ele.)
p ψ(ele.)

r ∣ψ(ele.)
r ψ(ele.)

q )] = (Q(+)NR )
q

p
, (8)

and for p, q ∈ {(−)},

Qq
p

c→+∞
ÐÐÐ→

(−)

∑
r

1
2
[(ψ(pos.)

p ψ(pos.)
q ∣ψ(pos.)

r ψ(pos.)
r )

− (ψ(pos.)
p ψ(pos.)

r ∣ψ(pos.)
r ψ(pos.)

q )]

−

(+)

∑
r

1
2
(ψ(pos.)

p ψ(pos.)
q ∣ψ(ele.)

r ψ(ele.)
r ) = −(Q(−)NR )

q

p
,

(9)

neither of which generally vanish. Hence, Eq. (45) of the
Comment is not satisfied, and in the nonrelativistic limit, there
remains a one-electron operator that is not included in the
NR-MCMO method,

all

∑
pq

Qq
p{a†

paq}
c→+∞
ÐÐÐ→

(+)

∑
pq
(Q(+)NR )

q

p
{a†

paq}−

(−)

∑
pq
(Q(−)NR )

q

p
{a†

paq},

(10)
indicating that the QED Hamiltonian with the CCC still
does not give a nonrelativistic limit consistent with the
NR-MCMO. The typical QED effects have a negative order
of the speed of light, c, as can be seen in the Uehling poten-
tial,4 and should go to zero in the nonrelativistic limit. Thus,
we consider that it is unnatural to attribute the non-vanishing
effect in the nonrelativistic limit as a QED effect.

3. In Subsection II B 4 of Paper 2, the total energy diver-
gence arising from generalized electron correlations involving
electron–positron pair creations and the removal of the diver-
gence by a counter term were discussed. The Comment asserts
that the description in Subsection II B 4 in Paper 2, which
states, “the terms subtracted from the referenced Hamil-
tonians are single Slater determinants and cannot remove
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total energy divergence caused by the generalized electron
correlation” is a “complete misunderstanding.” However, the
content of the Comment does not lead us to conclude that
the description in Paper 2 is a misunderstanding. In fact, the
single-configuration vacuum in Eq. (49) of the Comment was
replaced by a multiconfigurational vacuum in Eq. (50) of the
Comment,

⟨0; Ñ∣H∣0; Ñ⟩→ ⟨Ψ(0; Ñ)∣H∣Ψ(0; Ñ)⟩. (11)

This does not contradict the description in Paper
2 quoted above. The procedures of subtracting the counter
term after the derivation of the Hamiltonian and replacing the
single-configuration vacuum with the multiconfigurational
vacuum are intended to be offset with respect to the vac-
uum state, and both give essentially the same total energy
expression,

⟨Ψ(N; Ñ)∣H′∣Ψ(N; Ñ)⟩ − ⟨Ψ(0; Ñ)∣H′∣Ψ(0; Ñ)⟩

= ⟨Ψ(N; Ñ)∣H∣Ψ(N; Ñ)⟩ − ⟨Ψ(0; Ñ)∣H∣Ψ(0; Ñ)⟩,
(12)

with

H′ = H − ⟨0; Ñ∣H∣0; Ñ⟩. (13)

Thus, it is not an essential issue which procedure is used to derive
the total energy expression.

In the papers5–7 indicated in the Comment as being on the
removal of total energy divergence, Refs. 5 and 6 actually mentioned
removal of the infinite energy value resulting from the normal order-
ing of the Hamiltonian. This is understood also from the fact that
the vacuum expectation value being subtracted in the equations [Eq.
(14) of Ref. 5 and Eq. (2.13) of Ref. 6] in these papers stems from
a single configuration vacuum. They differ in origin from the diver-
gence of the total energy due to generalized electron correlations and
its suppression of divergence using the counter term we presented
in Paper 2. Furthermore, Ref. 7 discusses variational stability with
respect to changes in the fine structure constant, which we also do
not think is related to the divergence of the generalized electron cor-
relation. In addition, Paper 2 provided initial numerical examples of
the divergence due to the generalized electron correlations and its
removal.

As indicated above, Paper 2 has no internal inconsistency that
the Comment raised. Other points raised in the Comment are not
explicitly addressed in this response, because they do not directly
pertain to the validity of Paper 2 (or are outside the scope of Paper
2 in the first place).

Paper 2 adopted the three criteria and examined the QED
Hamiltonian in accordance with them. However, it is important
to note that the consideration of alternative criteria for the QED
Hamiltonians is not ruled out. Exploring these possibilities, how-
ever, was not in the scope of Paper 2 and should be considered as
a subject for future research.

This work was supported by the Japan Society for the Pro-
motion of Science (JSPS) Kakenhi, Grant Nos. JP21K04980 and
JP21K18933.

APPENDIX A: ON THE INCOMPATIBILITY OF CNC
AND CCC WITH THE COMMUTATION RELATIONS
OF FERMIONS

In Appendix A, for the readers’ convenience, we briefly describe
the fact that CNC and CCC are incompatible with the commutation
relations of fermions.

Let c(ab) denote the contraction of operators a and b. The CNC
and CCC are defined as follows:

c(a†
paq) = 0, c(apa†

q) = 0, (A1)

and

c(a†
paq) = −(1/2)δpq sgn (εp), c(apa†

q) = (1/2)δpq sgn (εp). (A2)

The contraction is the difference between the product ab of two
creation/annihilation operators and their normal product {ab}n,

c(ab) = ab − {ab}n. (A3)

Therefore, in the case of CNC,

a†
pap + apa†

p = a†
pap + {apa†

p}
n
= a†

pap − a†
pap = 0, (A4)

for p such that εp > 0, and

a†
pap + apa†

p = {a†
pap}

n
+ apa†

p = −apa†
p + apa†

p = 0, (A5)

for p such that εp < 0. Thus, the commutation relations consistent
with CNC are

apaq + aqap = 0,

a†
pa†

q + a†
qa†

p = 0,

a†
paq + aqa†

p = 0,

(A6)

which are obviously contradictory to the commutation relations of
fermions,

apaq + aqap = 0,

a†
pa†

q + a†
qa†

p = 0,

a†
paq + aqa†

p = δpq.

(A7)

Similarly, in the case of CCC, the same procedure gives

a†
pap + apa†

p = a†
pap + [{apa†

p}
n
+ 1/2] = 1/2, (A8)

for p such that εp > 0, and

a†
pap + apa†

p = [{a†
pap}

n
+ 1/2] + apa†

p = 1/2, (A9)

for p such that εp < 0. However, CCC also gives c(a†
pap) = a†

pap

− {a†
pap}n

= −(1/2) (εp > 0). This relation seems inconsistent with
the usual normal product {a†

pap}n
= a†

pap (εp > 0). In either case,
Eqs. (A6), (A8), and (A9) are contradictory to the commutation
relations of fermions, Eq. (A7).
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This incompatibility can also be seen from the following exam-
ple, even without involving commutation relations. For a vac-
uum ∣vac ⟩ = a†

−1a†
−2 ⋅ ⋅ ⋅ a

†
−N ∣empty ⟩, if we annihilate a negative

energy electron with the annihilation operator a−1 and then cre-
ate a negative energy electron with the creation operator a†

−1, we
obtain

a†
−1(a−1 ∣vac ⟩) = a†

−1a−1 ∣vac ⟩ = ∣vac ⟩, (A10)

by the nature of creation/annihilation operators. However, with
CNC, a†

−1a−1 = {a†
−1a−1}n

+ c(a†
−1a−1) = −a−1a†

−1, we have

a†
−1a−1 ∣vac ⟩ = 0, (A11)

and with CCC, a†
−1a−1 = {a†

−1a−1}n
+ c(a†

−1a−1) = −a−1a†
−1 + 1/2,

we have

a†
−1a−1 ∣vac ⟩ = (1/2) ∣vac ⟩, (A12)

both of which clearly differ from the result of the cre-
ation/annihilation operators of fermions, Eq. (A10).

Therefore, CNC, CCC, and the standard commutation rela-
tions of fermions cannot coexist within a single framework.
Since electrons/positrons are fermions, a physical system of
electrons/positrons must be described by creation/annihilation
operators satisfying the commutation relations (and the stan-
dard contractions compatible with these commutation relations). If
Eq. (A11) or Eq. (A12), for example, occurs during the computation
in many-body theory calculations, it is evident that proper calcula-
tions cannot be performed. For this reason, we strictly separate the
use of CNC or CCC from the use of standard commutation rela-
tions of fermions. That is, the use of CNC or CCC is limited to the
purely formal-theoretical process of constructing the Hamiltonians,
and the commutation relations of fermions are used for many-
body theory calculations once the definition of the Hamiltonian is
established.

APPENDIX B: MATRIX ELEMENTS FOR CI METHOD

In response to a request during the review process, this
appendix shows that matrix elements of the CI method for the
Hamiltonians (13) and (22) of Paper 2 are equivalent.

1. Diagonal elements
First, we present the most basic diagonal element “DHF

total energy.” It was shown in Paper 2 that the total energy (6)
is derived using Hamiltonian (22) of Paper 2 and Slater deter-
minant (4). In this appendix, we show that total energy (6)
is also derived using Hamiltonian (13) of Paper 2 and Slater
determinant (5),

⟨Ψ0∣HQED(MO−CNC)
(Eq. (13) of Paper 2)∣Ψ0⟩ =

occ(ele.)

∑
i

hii +
⎛

⎝

(−)

∑
p

hpp −

occ(pos.)

∑
p

hpp
⎞

⎠

+
1
2

occ(ele.)

∑
ij
[(ii∣ jj) − (ij∣ ji)] +

1
2

(−)

∑
pq
[(pp∣qq) − (pq∣qp)]

+
1
2

occ(pos.)

∑
pq
[(pp∣qq) − (pq∣qp)] +

occ(ele.)

∑
i

(−)

∑
p
[(ii∣pp) − (ip∣pi)]

−

(−)

∑
p

occ(pos.)

∑
q
[(pp∣qq) − (pq∣qp)]

−

occ(ele.)

∑
i

occ(pos.)

∑
p
[(ii∣pp) − (ip∣pi)]

−

(−)

∑
q

hqq +
1
2

(−)

∑
pq
[(pp∣qq) − (pq∣qp)]

−

occ(ele.)

∑
i

(−)

∑
r
[(ii∣rr) − (ir∣ri)] −

(−)

∑
pr
[(pp∣rr) − (pr∣rp)]

+

occ(pos.)

∑
p

(−)

∑
r
[(pp∣rr) − (pr∣rp)]

= (Eq. (6)). (B1)

In the same way as in Eq. (B1), it can be shown that for the other
diagonal elements, identical elements [Eq. (80) of Paper 2] result
from the combinations of Hamiltonian (22) of Paper 2 and the
general Slater determinant,

∣ΨJ ⟩ =

occJ(ele.)

∏
i

a†
i

occJ(pos.)

∏
p

b†
p ∣empty ⟩, (B2)

as well as from the combination of Hamiltonian (13) of Paper 2 and
the general Slater determinant,

∣ΨJ ⟩ =

occJ(ele.)

∏
i

a†
i

occJ(pos.)

∏
p

ap

(−)

∏
q

a†
q ∣empty⟩. (B3)

2. Off-diagonal elements
Second, we present examples of off-diagonal matrix elements.

Note that in the following, it is assumed that the phase of ∣ΨJ ⟩ in the
case of Hamiltonian (13) is adjusted to match the phase of ∣ΨJ ⟩ in
the case of Hamiltonian (22).

● Matrix element between ∣ΨI ⟩ and one-electron excitation
determinant ∣ΨJ ⟩.
For Hamiltonian (22) of Paper 2, ∣ΨI ⟩ is given by Eq. (B2),
and ∣ΨJ ⟩ = a†

i ab ∣ΨI ⟩,
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HIJ = ⟨ΨI ∣HQED(MO−CNC)
(Eq. (22) of Paper 2)∣ΨJ⟩

=

(+)

∑
q

(−)

∑
p
⟨ΨI ∣a†

paqa†
i ab∣ΨI⟩hpq

+
1
2

(+)

∑
pqrs
⟨ΨI ∣a†

pa†
r asaqa†

i ab∣ΨI⟩(pq∣rs)

= hbi +

occI(ele.)

∑
a
[(bi∣aa) − (ba∣ai)] −

occI(pos.)

∑
p
[(bi∣pp) − (bp∣pi)].

(B4)

For Hamiltonian (13) of Paper 2, ∣ΨI ⟩ is given by Eq. (B3),
and ∣ΨJ ⟩ = a†

i ab ∣ΨI ⟩ (b ∈ {occI(ele.)}),

HIJ = ⟨ΨI ∣HQED(MO−CNC)
(Eq. (13) of Paper 2)∣ΨJ⟩

=
all

∑
pq
⟨ΨI ∣a†

paqa†
i ab∣ΨI⟩

⎧⎪⎪
⎨
⎪⎪⎩

hpq −

(−)

∑
r
[(pq∣rr) − (pr∣rq)]

⎫⎪⎪
⎬
⎪⎪⎭

+
1
2

all

∑
pqrs
⟨ΨI ∣a†

pa†
r asaqa†

i ab∣ΨI⟩(pq∣rs)

= hbi −

(−)

∑
r
[(bi∣rr) − (br∣ri)] +

occI(ele.)

∑
a
[(bi∣aa) − (ba∣ai)]

+

(−)

∑
p
[(bi∣pp) − (bp∣pi)] −

occI(pos.)

∑
p
[(bi∣pp) − (bp∣pi)]

= hbi +

occI(ele.)

∑
a
[(bi∣aa) − (ba∣ai)] −

occI(pos.)

∑
p
[(bi∣pp) − (bp∣pi)]

= (Eq. (B4)). (B5)

● Matrix element between ∣ΨI ⟩ and pair creation determinant
∣ΨJ ⟩.
For Hamiltonian (22) of Paper 2, ∣ΨI ⟩ is given by Eq. (B2),
and ∣ΨJ ⟩ = a†

i b†
b ∣ΨI ⟩,

HIJ = ⟨ΨI ∣HQED(MO−CNC)
(Eq. (22) of Paper 2)∣ΨJ⟩

=

(+)

∑
q

(−)

∑
p
⟨ΨI ∣bpaqa†

i b†
b∣ΨI⟩hpq

+

(+)

∑
pqs

(−)

∑
r
⟨ΨI ∣a†

pbrasaqa†
i b†

b∣ΨI⟩(pq∣rs)

= hbi +

occI(ele.)

∑
a
[(bi∣aa) − (ba∣ai)] −

occI(pos.)

∑
p
[(bi∣pp) − (bp∣pi)].

(B6)

For Hamiltonian (13) of Paper 2, ∣ΨI ⟩ is given by Eq. (B3),
and ∣ΨJ ⟩ = a†

i ab ∣ΨI ⟩ (b ∈ {(−)}),

HIJ = ⟨ΨI ∣HQED(MO−CNC)
(Eq. (13) of Paper 2)∣ΨJ⟩

=
all

∑
pq
⟨ΨI ∣a†

paqa†
i ab∣ΨI⟩

⎧⎪⎪
⎨
⎪⎪⎩

hpq −

(−)

∑
r
[(pq∣rr) − (pr∣rq)]

⎫⎪⎪
⎬
⎪⎪⎭

+
1
2

all

∑
pqrs
⟨ΨI ∣a†

pa†
r asaqa†

i ab∣ΨI⟩(pq∣rs)

= hbi −

(−)

∑
r
[(bi∣rr) − (br∣ri)] +

occI(ele.)

∑
a
[(bi∣aa) − (ba∣ai)]

+

(−)

∑
p
[(bi∣pp) − (bp∣pi)] −

occI(pos.)

∑
p
[(bi∣pp) − (bp∣pi)]

= hbi+

occI(ele.)

∑
a
[(bi∣aa) − (ba∣ai)] −

occI(pos.)

∑
p
[(bi∣pp) − (bp∣pi)]

= (Eq. (B6)). (B7)

Similarly, the agreement of the matrix elements between ∣ΨI ⟩ and
two-particle difference determinants ∣ΨK ⟩ can be confirmed. For
Hamiltonian (13) of Paper 2, determinants ∣ΨK ⟩ = a†

jaca†
i ab ∣ΨI ⟩ are

the two-electron excitation (b, c ∈ {occI(ele.)}), the one-pair cre-
ation and one-electron excitation (b ∈ {occI(ele.)} and c ∈ {(−)}),
and the two-pair creation (b, c ∈ {(−)}),

HIJ = ⟨ΨI ∣HQED(MO−CNC)
(Eq. (13) of Paper 2)∣ΨK⟩

=
1
2

all

∑
pqrs
⟨ΨI ∣a†

pa†
r asaqa†

jaca†
i ab∣ΨI⟩(pq∣rs)

= (bi∣cj) − (bj∣ci), (B8)

which is also obtained from Hamiltonian (22) of Paper 2 and deter-
minants ∣ΨK ⟩ = a†

jaca†
i ab ∣ΨI ⟩, a†

jb
†
c a†

i ab ∣ΨI ⟩, and a†
jb

†
c a†

i b†
b ∣ΨI ⟩.
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