

# Si(IV) complexes of 10,20-diaryl-5,15-diazaporphyrin and 5,10,20-triaryl-5,15-diazaporphyrinoids: Evaluation of charge effect on the optical, redox, and magnetic properties

Kanta Sasaki<sup>a</sup>, Yui Murata<sup>b</sup>, Hiroya Suzuki<sup>b</sup>, Mao Minoura<sup>c</sup>, Rio Kitakado<sup>d</sup>, Yoshifumi Kimura<sup>d</sup>, Ko Furukawa<sup>e</sup>, Haruyuki Nakano<sup>f</sup>, and Yoshihiro Matano<sup>\*,a</sup>

<sup>a</sup>Department of Chemistry, Faculty of Science, Niigata University, Nishi-ku, Niigata 950-2181, Japan <sup>b</sup>Department of Fundamental Sciences, Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan <sup>c</sup>Department of Chemistry, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan <sup>d</sup>Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, 610-0321, Japan <sup>e</sup>Center for Coordination of Research Facilities, Institute for Research Administration, Niigata University, Nishi-ku, Niigata 950-2181, Japan <sup>f</sup>Department of Chemistry, Graduate School of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan

Received 21 January 2025 Accepted 19 February 2025

Dedicated to Prof. Karl M. Kadish on the occasion of his 80<sup>th</sup> birthday

**ABSTRACT:** The central metals in group 14 metalloporphyrins significantly influence the optical, redox, and magnetic properties of the porphyrin  $\pi$ -electron systems. This study reports the first examples of Si(IV) complexes of 10,20-diaryl-5,15-diazaporphyrin (Ar<sub>2</sub>DAP) and 5,10,20-triaryl-5,15-diazaporphyrin (Ar<sub>3</sub>DAP), designed to explore the effects of *meso*-nitrogen atoms and net charge on these fundamental properties of the porphyrin ring. Reacting the free base of Ar<sub>2</sub>DAP with HSiCl<sub>3</sub>, followed by metathesis of axial ligands, yielded the corresponding Si(IV) complexes (Ar<sub>2</sub>DAPSiX<sub>2</sub>; X=OH, F). Copper-catalyzed *N*-phenylation of Ar<sub>2</sub>DAPSiF<sub>2</sub> and subsequent redox reactions produced 18 $\pi$ - and 19 $\pi$ -electron derivatives of Ar<sub>3</sub>DAPSiF<sub>2</sub>. Nuclear magnetic resonance spectroscopy, cyclic voltammetry, and density functional theory calculations revealed that the diatropic ring-current effects derived from the aromatic 18 $\pi$ -electron systems of Ar<sub>2</sub>DAPSiX<sub>2</sub> and Ar<sub>3</sub>DAPSiF<sub>2</sub> strongly depend on the net charge and dipole moment of the DAP ligand. All Si(IV) complexes exhibited fluorescence, with Stokes shifts of 120–310 cm<sup>-1</sup>. Measurements of fluorescence quantum yields and lifetimes indicated that *N*-phenylation primarily reduced the nonradiative decay rate constant. These findings provided insights into the influence of net charge on the aromatic character, as well as the optical and redox properties, of six-coordinate Si(IV) complexes of DAP derivatives.

KEYWORDS: diazaporphyrin, silicon complex, fluorescence, radical

<sup>\*</sup>Correspondence to: Yoshihiro Matano, Department of Chemistry, Faculty of Science, Niigata University, Nishi-ku, Niigata 950-2181, Japan; Tel: +81-25-262-7734; Fax: +81-25-262-7734; E-mail: matano@chem.sc.niigata-u.ac.jp

# **INTRODUCTION**

The central metals in group 14 metalloporphyrins play a crucial role in determining the optical, redox, and magnetic properties of porphyrin  $\pi$ -electron systems, as these properties are closely linked to the electronegativity, oxidation number, and axial ligands of the metal. Additionally, the chemical shifts of nuclear magnetic resonance (NMR)-active isotopes, such as <sup>29</sup>Si and <sup>119</sup>Sn, with a nuclear spin quantum number of <sup>1</sup>/<sub>2</sub>, are often used as indices to evaluate the magnitude of ring currents induced by porphyrin ligands. Silicon(IV) porphyrin (Si porphyrin) complexes generally feature a hypervalent, six-coordinate Si center with two axial ligands. Their structure-property relationships and reactivities have been studied extensively [1–7]. For instance, Lemke et al. investigated a series of Si porphyrins with various axial ligands and peripheral substituents, revealing their crystal structures, optical and redox properties, and reactivities [3]. Multinuclear (<sup>29</sup>Si and <sup>19</sup>F) NMR spectroscopy demonstrated the effects of the diamagnetic ring currents originating from the porphyrin ligand and the throughbond electronic influence of axial fluorine atoms on the metal center and porphyrin ligand. Similarly, Adler et al. observed that the identity of axially substituted silyloxy groups affects the planarity of the porphyrin ring in the solid state and influences the redox potentials [6]. Vaid et al. developed a unique approach leveraging group 14 elements, including Si, to stabilize the  $20\pi$ -electron porphyrins (isophlorins) [7]. They synthesized a Si(IV) isophlorin complex via the 2e-reduction of Si(IV) complex of the  $18\pi$ -electron aromatic 5,10,15,20-tetraphenylporphyrin (TPP) with sodium metal in tetrahydrofuran (THF). They observed that the highly ruffled isophlorin ligand exhibited strong paramagnetic ring-current effects in the <sup>1</sup>H and <sup>29</sup>Si NMR spectra. While these studies elucidated the structure-property relationships and reactivities of neutral Si porphyrins and related macrocycles, limited experimental data exist on the correlation between net charge and the fundamental properties of Si(IV) porphyrin complexes due to the scarcity of accessible ionic  $18\pi$ -electron systems.

We have synthesized redox-switchable 5,10,15,20-tetraaryl-5,15-diazaporphyrin (Ar<sub>4</sub>DAP) [8] and 5,10,20-triaryl-5,15-diazaporphyrin (Ar<sub>3</sub>DAP) [9] as new families of 5,15-diazaporphyrin (DAP) to examine the effects of meso-nitrogen atoms and net charge on the optical and redox properties and reactivities of the porphyrin ring. Notably, the number of meso-N-substituents alters the net charge of the isoelectronic DAP ring. For example, in the same  $18\pi$ -electron state, 10,20-diaryl-5,15-diazaporphyrin (Ar<sub>2</sub>DAP) is neutral, Ar<sub>3</sub>DAP is cationic (+1), and Ar<sub>4</sub>DAP is dicationic (+2). Recently, we established a convenient method of synthesizing free bases of Ar<sub>4</sub>DAP and reported the first difluorosilicon(IV) complexes of  $Ar_4DAP$  ( $Ar_4DAPSiF_2$ ) **P1**, obtained as dication (18 $\pi$ ), radical cation (19 $\pi$ ), and neutral (20 $\pi$ ) species (Scheme 1) [10]. Importantly, the electron-withdrawing Si(IV) center stabilized the neutral 20n-electron DAP ligand in P1 while maintaining planarity. The <sup>1</sup>H, <sup>29</sup>Si, and <sup>19</sup>F NMR chemical shifts of the closed-shell derivatives of P1 indicated weaker aromaticity compared to the isoelectronic porphyin ring in the difluorosilicon(IV) complex of TPP [3d]. Herein, we report novel sixcoordinate Si(IV) complexes of Ar<sub>2</sub>DAP (Ar<sub>2</sub>DAPSiX<sub>2</sub>; X=OH, F) and Ar<sub>3</sub>DAP (Ar<sub>3</sub>DAPSiF<sub>2</sub>) to elucidate the effects of axial ligands and net charge on the optical and redox properties, as well as on diatropic ring-current effects derived from closed-shell  $18\pi$ -electron systems. Additionally, the neutral 19n-electron Ar<sub>3</sub>DAPSiF<sub>2</sub> radical was isolated and characterized.

# **RESULTS AND DISCUSSION**

Scheme 2 illustrates the synthesis of new Si(IV) complexes of DAP derivatives. Treatment of the free base of 10,20-dimesityl-5,15-diazaporphyrin (mesityl=2,4,6-trimethylphenyl) 1 [11] with excess trichlorosilane in the presence of triethylamine in CH<sub>2</sub>Cl<sub>2</sub> for 24h at room temperature, followed by stirring with an aqueous NaOH solution, afforded the dihydroxysilicon(IV) complex  $(Ar_2DAPSi(OH)_2)$  **2** as a reddish-purple solid in 47% yield after alumina column chromatography. The metathesis reaction of 2 with SbF<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> was complete after 24 h at room temperature, yielding the difluorosilicon(IV) complex  $(Ar_2DAPSiF_2)$  3 as a reddish-purple solid in 89% yield after recrystallization from CH<sub>2</sub>Cl<sub>2</sub>-hexane. Heating a mixture of 3, diphenyliodonium hexafluorophosphate, and a catalytic amount of copper(II) benzoate in chlorobenzene for 2h at 130 °C, followed by treatment with aqueous KPF<sub>6</sub> solution at room temperature,



**P1** (Mes = 2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>; Ar = 4-MeOC<sub>6</sub>H<sub>4</sub>)

Scheme 1. Previously reported Ar<sub>4</sub>DAPSiF<sub>2</sub> derivatives P1.



Scheme 2. Synthesis of Si(IV) complexes of DAP derivatives 2-5.



Fig. 1. ORTEP diagrams (50% probability ellipsoids), selected bond lengths, and root-mean-square deviations ( $\Delta d_{RMS}$ ) of (a) 2 and (b) 3. Hydrogen atoms are omitted for clarity except for the hydroxy groups of 2.

afforded the difluorosilicon(IV) complex of 10,20-dimesityl-5-phenyl-5,15-diazaporphyrinium hexafluorophosphate ([Ar<sub>3</sub>DAPSiF<sub>2</sub>][PF<sub>6</sub>]) **4** as a dark green solid in 71% yield after silica-gel column chromatography. Single-electron reduction of the  $18\pi$ -electron cationic DAP ring in **4** with cobaltocene (CoCp<sub>2</sub>) in THF quantitatively furnished the corresponding  $19\pi$ -electron neutral radical (Ar<sub>3</sub>DAPSiF<sub>2</sub>) **5**, isolated as a dark greenish-yellow solid in 84% yield.

The new compounds were characterized by NMR and infrared (IR) spectroscopy, along with high-resolution electrospray ionization mass spectrometry (ESIMS). Positive-mode ESIMS profiles showed intense peaks corresponding to  $[M+Na]^+$  (for 2 and 3),  $[M-PF_6]^+$  (for 4), and  $[M]^+$  (for 5), while negative-mode profiles displayed peaks corresponding to  $[M]^-$  (for 2 and 3) and  $[PF_6]^-$  (for 4). The IR spectra of 2 and 4 revealed O–H and P–F stretching bands at  $v_{max}$  values of 3501 and 832 cm<sup>-1</sup>, respectively.

The structures of 2 and 3 were unambiguously confirmed by X-ray crystallography. Figure 1 presents the crystal structures and selected bond lengths, and Fig. S1 and Table S1 (in the Supporting Information) summarize supplementary details. In both compounds, the Si(IV) centers exhibit octahedral geometry, with oxygen or fluorine atoms occupying axial positions. The mesomesityl groups are significantly twisted from the DAP ring (dihedral angles= $89.0-89.6^{\circ}$  for 2 and  $72.6^{\circ}$  for 3), suggesting negligible  $\pi$ -conjugation between them. The Si–N bond lengths in **3** [1.9228(10)–1.9300(10) Å] are slightly shorter than those in 2 [1.9392(13)–1.9530(13) Å], reflecting differences in electron density at the silicon center; replacing the axial ligands with more electronegative F atoms can relatively reduce the electron density of the silicon center. Similarly, the  $N_{meso}$ -C<sub> $\alpha$ </sub> bond lengths in 2 [1.3261(19)–1.3289(19) Å] are slightly longer than those in **3** [1.3197(16)–1.3234(16) Å], suggesting elongation of Si–N bonds induces elongation of  $N_{meso}$ – $C_{\alpha}$  bonds.

The Si-N and Si-F bond lengths in 3 [Si-F: 1.6507(7) Å] are comparable to those observed in isoelectronic difluorosilicon(IV) complexes of 5,10,15,20-tetraarylporphyrins  $[aryl=p-MeC_6H_4 \ p-CF_3C_6H_4; Si-N:$ 1.911(2)–1.925(2) Å, Si–F: 1.628(2)–1.652(2) Å] [3c]. The Si–F bond length in 3 is much closer to that in a sixcoordinate, octahedral SiF<sub>6</sub><sup>2-</sup> (1.706Å) [12, 13] than that in four-coordinate, tetrahedral SiF<sub>4</sub> (1.5598Å) [13, 14], supporting the hypervalent nature of the Si(IV) centers in Ar<sub>2</sub>DAPSiX<sub>2</sub>. Both compounds exhibit highly planar DAP rings, with root-mean-square deviations ( $\Delta d_{\text{RMS}}$ ) of 0.015-0.033 Å. The average values of the harmonic oscillator model of aromaticity (HOMA) [15], determined from the 18C-X (X=C, N) bonds making up the  $18\pi$ -electron network, for 2 (0.752) and 3 (0.741) indicate aromatic character comparable to previously reported nickel(II), palladium(II), and platinum(II) complexes of  $18\pi$ -electron Ar<sub>2</sub>DAP with the same *meso*-mesityl groups (M=Ni, HOMA=0.734; M=Pd, HOMA=0.753; M=Pt, HOMA=0.735) [11, 16].

The <sup>1</sup>H NMR spectra of **2**, **3**, and **4** are shown in Fig. 2. The pyrrolic- $\beta$  proton signals for **2** and **3** in CDCl<sub>3</sub> appeared as two doublets (each, 4H) at 9.37/8.99 and 9.44/9.07 ppm, respectively, while those for **4** in CD<sub>2</sub>Cl<sub>2</sub> appeared as four doublets (each, 2H) at 9.55/9.06/9.05/8.57 ppm. These downfield-shifted <sup>1</sup>H signals reflect significant diatropic ring currents derived from the 18 $\pi$ -electron DAP rings. The <sup>29</sup>Si{<sup>1</sup>H} NMR signals for **2**, **3**, and **4** were observed at -205.7, -209.4 (t,  $J_{Si-F}$ =199 Hz), and -207.5 ppm (t,  $J_{Si-F}$ =204 Hz), respectively, whereas the <sup>19</sup>F{<sup>1</sup>H} NMR signals for **3** and **4** were

observed at -119.1 and -117.3 ppm (vs. CFCl<sub>3</sub>), respectively. The upfield-shifted <sup>29</sup>Si and <sup>19</sup>F signals reflected the aromatic nature of the DAP  $\pi$ -electron systems. Notably, the <sup>29</sup>Si and <sup>19</sup>F chemical shifts of the neutral Ar<sub>2</sub>DAPSiF<sub>2</sub> 3 and the cationic Ar<sub>3</sub>DAPSiF<sub>2</sub> 4 differed significantly. The <sup>29</sup>Si and <sup>19</sup>F resonances of 4 shifted slightly downfield relative to the corresponding resonances of 3, attributed to two main factors affecting the magnetic shielding and deshielding of these resonances. One factor is the inductive effect from the DAP ligands through the Si-N and Si-F bonds, and the other is the diatropic ring-current effect due to the DAP  $18\pi$ -electron system. Thus, the decrease in both the electron density of the Si and F atoms and ring-current density of the DAP  $\pi$ -ligand weakens the shielding effects on these nuclei, resulting in the downfield shifts of the corresponding signals (vide infra).

To further understand the ring-current effects of DAP ligands, density functional theory (DFT) calculations were conducted on model compounds **3m** and **4m** (with *meso*-mesityl groups replaced by phenyl groups). Figure 3a shows the frontier orbitals and energies of the optimized structures. Compared to **3m**, both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of **4m** are significantly stabilized, reflecting the positive charge of the DAP ring in **4m**. The LUMO energy is more affected by the *N*-phenyl group than the HOMO because the LUMO has a large MO coefficient on the *meso*-nitrogen atom, resulting in a narrow HOMO–LUMO gap ( $\Delta E_{H-L}=2.37 \text{ eV}$  for **4m** vs. 2.65 eV for **3m**). Thus, the *N*-phenyl substituent has



**Fig. 2.** <sup>1</sup>H NMR (400 MHz; 10–1.5 ppm) and <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz; -110 - 125 ppm) spectra of (a) **2** in CDCl<sub>3</sub>, (b) **3** in CDCl<sub>3</sub>, and (c) **4** in CD<sub>2</sub>Cl<sub>2</sub>. Asterisks indicate the residual solvent peaks.



**Fig. 3.** (a) Selected Kohn-Sham orbitals and their energies (in eV) of **3m** and **4m** calculated by the DFT method. H=HOMO, L=LUMO. (b) NICS(0) values (in ppm) calculated for **3m**, **4m**, and **P1m** ( $18\pi$  dication) at positions *a*–*e*. (c) Selected bond lengths and torsion angles of **3m** and **4m**.

a substantial amount of the positive charge and acts as an electron-withdrawing group (Fig. S2). Nuclear independent chemical shifts (NICSs) [17] were calculated at multiple positions in the  $\pi$ -planes and compared for **3m**, **4m**, and **P1m** [10]. As shown in Fig. 3b, **3m** exhibits more negative NICS(0) values at positions a, b, and c (-20.22, -20.69, and -20.22 ppm) than **4m** (-16.25, -15.86, and -15.30 ppm) and P1m (-17.20, -17.65, and -17.20 ppm, respectively), indicating a stronger macrocyclic diatropic ring-current effect in 3m. These differences are attributed to variations in ring-current density, with the neutral DAP ring in 3m generating a larger density than the positively charged DAP rings in 4m and **P1m**. The calculated dipole moment of **4m** (7.34D) suggests that its polarized structure localizes  $\pi$ -electron density on the *meso*-nitrogen at position 15, weakening the diatropic ring-current effects compared to P1m. The <sup>19</sup>F chemical shifts of the three models, calculated at the

DFT level with gauge-including atomic orbital, shifted upfield in the order **3m** (–169.5 ppm), **4m** (–166.0 ppm), **P1m** (–162.8 ppm), supporting the trend observed for **3**, **4**, and **P1** [18]. The <sup>19</sup>F chemical shifts followed the same trend as the Mulliken charges of F atoms (–0.482 for **3m**, –0.470 for **4m**, –0.459 for **P1m**; see Table S1) in contrast to the trend of the NICS(0) values, which shifted positively in the order **3m** <**P1m** <**4m** (vide supra). This highlighted the dominance of inductive effect over ring-current effect on the <sup>19</sup>F chemical shift. These findings emphasize how net charge influences the ring-current effects in DAP 18 $\pi$ -electron systems.

The redox properties of **2**, **3**, and **4** in CH<sub>2</sub>Cl<sub>2</sub> were analyzed using cyclic voltammetry (CV) with Bu<sub>4</sub>NPF<sub>6</sub> as the supporting electrolyte. As shown in Fig. 4, Ar<sub>2</sub>DAPSi(OH)<sub>2</sub> **2** and Ar<sub>2</sub>DAPSiF<sub>2</sub> **3** exhibited three reversible redox processes at  $E_{1/2}$ =-1.72, -1.20, and +1.03V for **2**, and  $E_{1/2}$ =-1.70, -1.10, and +1.08V for **3** 



**Fig. 4.** Cyclic voltammograms of **2**, **3**, and **4** in CH<sub>2</sub>Cl<sub>2</sub> with Bu<sub>4</sub>NPF<sub>6</sub> as the supporting electrolyte. Scan rate =  $60 \text{ mV s}^{-1}$ . Half-wave potentials ( $E_{1/2}$ ) vs. Fc/Fc<sup>+</sup> are indicated.

(vs. the ferrocene/ferrocenium couple; Fc/Fc<sup>+</sup>). The  $E_{1/2}$  values of **3** were positively shifted compared to those of **2**, likely due to the electron-withdrawing nature of axial fluorine ligands in **3**. In contrast, [Ar<sub>3</sub>DAPSiF<sub>2</sub>][PF<sub>6</sub>] **4** displayed two reversible DAP-centered redox couples at  $E_{1/2}$ =-0.95 (20 $\pi$ /19 $\pi$ ) and -0.33 V (19 $\pi$ /18 $\pi$ ), significantly shifted to the positive side (by 0.76–0.79 V) compared to **3**, reflecting the stabilization of DAP frontier orbitals induced by *N*-phenylation.

The ultraviolet/visible/near infrared (UV/vis/NIR) absorption and emission spectra of 2, 3, 4, and 5 in CH<sub>2</sub>Cl<sub>2</sub> are shown in Fig. 5 and the corresponding optical data are summarized in Table 1. The Soret and Q bands, with absorption maxima ( $\lambda_{abs}$ ) of 396/386 and 579/579 nm, respectively, were observed in the absorption spectra of  $Ar_2DAPSiX_2$  2/3, while the corresponding absorption bands of the  $18\pi$ -electron [Ar<sub>3</sub>DAPSiF<sub>2</sub>][PF<sub>6</sub>] 4 were observed at longer wavelengths ( $\lambda_{abs}$ =392 and 621 nm, respectively). The absorption bands of **3** and **4** were assigned from the time-dependent DFT (TD-DFT) calculations for the model compounds, 3m and 4m, respectively, which revealed that the lowest excited states were primarily comprised of the HOMO-to-LUMO  $\pi$ - $\pi$ \* transitions of the corresponding DAP chromophores (Table 2). Compounds 2 and 3 emitted fluorescence with maxima ( $\lambda_{em}$ ) of 586 and 583 nm, respectively, whereas **4** emitted red-shifted fluorescence with  $\lambda_{em}$  of 633 nm. From the absorption and fluorescence spectra, the optical HOMO–LUMO gaps of **2**, **3**, and **4** were determined to be 2.13, 2.13, and 1.98 eV, respectively. As supported by the DFT calculations for the models (Fig. 3), adding a positive charge to the 18 $\pi$ -electron system greatly stabilized the LUMO relative to the HOMO, resulting in a decrease in the HOMO–LUMO gap. The Stokes shifts increased in the order: **3** (120 cm<sup>-1</sup>)<**2** (260 cm<sup>-1</sup>)<**4** (310 cm<sup>-1</sup>), reflecting slight differences in the reorganization energies of the molecules in the excited states. The UV/vis/NIR absorption spectrum of the 19 $\pi$ -electron Ar<sub>3</sub>DAPSiF<sub>2</sub> radical **5** exhibited an intense NIR absorption band ( $\lambda_{abs}$ =782 nm) originating from the



**Fig. 5.** UV/vis/NIR absorption (solid line) and emission (dotted line) spectra of (a) **2** and (b) **3**, **4**, and **5** in CH<sub>2</sub>Cl<sub>2</sub>.

| DAP | $\lambda_{abs} \; [nm] \; (log\epsilon)^b$ | $\lambda_{em} \; [nm]^c \; (\Phi_{em}{}^d; \tau_f \; [ns]^e)$ | $k_{\rm r}  [{ m s}^{-1}]^{ m f}$ | $k_{\rm nr}  [{ m s}^{-1}]^{ m g}$ |
|-----|--------------------------------------------|---------------------------------------------------------------|-----------------------------------|------------------------------------|
| 2   | 396 (5.02), 579 (4.72)                     | 586 (0.050; 1.46)                                             | 3.4×10 <sup>7</sup>               | 6.5×10 <sup>8</sup>                |
| 3   | 386 (4.98), 579 (4.76)                     | 583 (0.050; 1.01)                                             | 5.0×10 <sup>7</sup>               | 9.4×10 <sup>8</sup>                |
| 4   | 392 (4.67), 621 (4.68)                     | 633 (0.127; 2.48)                                             | $5.1 \times 10^{7}$               | $3.5 \times 10^{8}$                |
| 5   | 406 (4.47), 782 (4.08)                     | N.m.                                                          | N.d.                              | N.d.                               |

Table 1. Optical and photophysical data for 2, 3, 4, and 5

<sup>a</sup>Measured in CH<sub>2</sub>Cl<sub>2</sub>. N.m.=Not measured. N.d.=Not determined. <sup>b</sup>Absorption maxima and logarithms of molecular extinction coefficients (in parentheses). <sup>c</sup>Emission maxima:  $\lambda_{ex}$ =395 nm (for 2), 390 nm (for 3 and 4). <sup>d</sup>Absolute emission quantum yields:  $\lambda_{ex}$ =395 nm (for 2), 390 nm (for 3 and 4). <sup>c</sup>Fluorescence lifetimes:  $\lambda_{ex}$ =400 nm (for 2, 3, and 4). <sup>f</sup>Radiative decay rate constants. <sup>g</sup>Non-radiative decay rate constants.

| State | Excitation energy [eV/nm]<br>(Oscillator strength) | Excitation (Weight [%])                                                                    |  |
|-------|----------------------------------------------------|--------------------------------------------------------------------------------------------|--|
|       | 3m                                                 |                                                                                            |  |
| 1     | 2.35/527 (0.206)                                   | HOMO => LUMO (80.9), HOMO-1 => LUMO+1 (18.7)                                               |  |
| 3     | 3.22/385 (0.500)                                   | HOMO-1 => LUMO (35.5), HOMO-1 => LUMO+1 (33.6)                                             |  |
| 5     | 3.32/373 (1.332)                                   | HOMO-1 => LUMO+1 (68.7), HOMO => LUMO (16.4)                                               |  |
| 9     | 3.43/361 (0.268)                                   | HOMO-5 => LUMO (67.8)                                                                      |  |
| 15    | 3.76/330 (0.164)                                   | HOMO-5 => LUMO+1 (87.0)                                                                    |  |
| 17    | 3.77/329 (0.367)                                   | HOMO-9 => LUMO (69.5)                                                                      |  |
|       | 4m                                                 |                                                                                            |  |
| 1     | 2.18/569 (0.337)                                   | HOMO => LUMO (90.7)                                                                        |  |
| 11    | 3.16/393 (0.502)                                   | $HOMO-1 \implies LUMO+1 (65.3)$                                                            |  |
| 13    | 3.22/386 (0.357)                                   | HOMO-4 => LUMO+1 (25.4), HOMO => LUMO+1 (22.1)                                             |  |
| 18    | 3.48/356 (0.857)                                   | HOMO-11 => LUMO (29.9), HOMO => LUMO+1 (17.2)                                              |  |
| 19    | 3.68/337 (0.445)                                   | HOMO-5 => LUMO+1 (66.9), HOMO-9 => LUMO+1 (18.8)                                           |  |
|       | 5m                                                 |                                                                                            |  |
| 2     | 1.76/703 (0.177)                                   | $HOMO(\beta) \Longrightarrow SOMO(\beta) (92.1)$                                           |  |
| 10    | 3.10/399 (0.104)                                   | HOMO–9( $\beta$ )=> SOMO( $\beta$ ) (47.0)                                                 |  |
| 11    | 3.13/396 (0.469)                                   | HOMO( $\alpha$ ) => LUMO( $\alpha$ ) (14.2), HOMO( $\beta$ ) => LUMO( $\beta$ ) (13.5)     |  |
| 20    | 3.36/369 (0.340)                                   | HOMO–9( $\beta$ ) => SOMO( $\beta$ ) (45.6)                                                |  |
| 21    | 3.38/366 (0.461)                                   | HOMO-1( $\alpha$ ) => LUMO( $\alpha$ ) (43.7), HOMO-1( $\beta$ ) => LUMO( $\beta$ ) (20.4) |  |

Table 2. Excitation energies and oscillator strengths of 3m, 4m, and 5m calculated by the TD-DFT method.<sup>a</sup>

 $^{a}B3LYP/6-311G(d,p)$  (PCM, CH<sub>2</sub>Cl<sub>2</sub>) at the optimized structures. The states whose oscillator strengths are less than 0.1 are not included.

HOMO( $\beta$ )-to-SOMO( $\beta$ ) transition, where SOMO stands for singly occupied molecular orbital. This absorption band was blue-shifted compared with a similar NIR absorption band observed for the isoelectronic Ar<sub>4</sub>DAP-SiF<sub>2</sub> cation radical **P1** ( $\lambda_{abs}$ =865 nm).

To reveal the excited-state dynamics of the present  $Ar_nDAP$  derivatives, the fluorescence quantum yields ( $\Phi_f$ ) and lifetimes ( $\tau_f$ ) of **2**, **3**, and **4** in CH<sub>2</sub>Cl<sub>2</sub> were measured. The radiative and nonradiative rate constants ( $k_r$  and  $k_{nr}$ ) obtained from the  $\tau_f$  and  $\Phi_f$  values are summarized in Table 1. Single-exponential decay profiles were observed for **2** and **3**, with  $\tau_f$  of 1.46 and 1.01 ns, respectively, when excited at the Soret band ( $\lambda_{ex}$ =400 nm). The  $k_r$  and  $k_{nr}$  values of **3** are larger than the corresponding values of **2**, although the reason is not clear. A single-exponential decay profile was also observed for **4**, revealing that the cationic DAP ring in **4** existed as a single emissive component in solution.

Figure 6a shows the electron paramagnetic resonance (EPR) spectrum of a  $CH_2Cl_2$  solution of **5** at room temperature. The neutral 19 $\pi$ -electron radical **5** exhibited an EPR signal at g=2.0023, close to the g value observed



**Fig. 6.** (a) EPR spectrum of **5** in  $CH_2Cl_2$  observed at room temperature. (b) Spin density distribution at the optimized structure (left) and spin densities at the DAP ring (right) of **5m** calculated by the DFT method.

for the isoelectronic  $Ar_4DAPSiF_2$  cation radical **P1** (*g*=2.00195). Hyperfine coupling was observed for **5** and was well simulated by the DFT calculations for the model, **5m**, revealing that the unshared electron spin was fully delocalized over the DAP ring (Fig. 6b). The high air-stability of **5** in the solid state was attributed to this efficient delocalization of the electron spin over the DAP ring.

In summary, the first examples of Si(IV) complexes of Ar<sub>2</sub>DAP were synthesized via the reaction of the corresponding free base with HSiCl<sub>3</sub> and subsequent metathesis of the axial ligands. Si(IV) complexes of the Ar<sub>3</sub>DAP derivatives were also synthesized as both the  $18\pi$ -electron cation and the  $19\pi$ -electron neutral radical, using coppercatalyzed N-phenylation and subsequent redox reaction. The six-coordinate Si(IV) center and highly planar DAP ligand in  $Ar_2DAPSiX_2$  (X=OH, F) were elucidated by X-ray crystallography. NMR spectroscopy and DFT calculations revealed that the diatropic ring-current effects decreased with an increase in the positive charge and dipole moment of the DAP ligands. Furthermore, UV/ vis/NIR absorption and emission spectroscopy revealed that the positive charge introduced onto the  $18\pi$ -electron DAP ring by N-phenylation induced red-shifts in the absorption and emission maxima of the Ar<sub>n</sub>DAPSiF<sub>2</sub> chromophores. CV supported the stronger stabilizing effect of adding a positive charge on the LUMO level compared to the HOMO level, resulting in a decrease in the HOMO–LUMO gap of the  $18\pi$ -electron DAP ligand. The 19 $\pi$ -electron neutral radical of Ar<sub>3</sub>DAPSiF<sub>2</sub> was found to be air-stable in the solid state due to the efficient delocalization of the unshared electron spin. The series of Si(IV) complexes of  $Ar_n DAP$  (n=2, 3, and 4) synthesized in this study provides a promising platform for obtaining valuable information about the effects of net charge on the optical, redox, and magnetic properties of the porphyrin 18 $\pi$ -electron system.

# **EXPERIMENTAL**

#### General

All melting points were recorded on a Yazawa micro melting point apparatus (BY-1) and are uncorrected. The <sup>1</sup>H NMR, <sup>13</sup>C{<sup>1</sup>H} NMR, <sup>19</sup>F{<sup>1</sup>H} NMR, and <sup>29</sup>Si{<sup>1</sup>H} NMR spectra were recorded on a Bruker 400 MHz spectrometer using CDCl<sub>3</sub> or CD<sub>2</sub>Cl<sub>2</sub> as a solvent. Chemical shifts are reported as relative values vs tetramethylsilane (0ppm in CDCl<sub>3</sub>) or a residual solvent peak (5.32 ppm in CD<sub>2</sub>Cl<sub>2</sub>). High-resolution mass spectra (HRMS) were measured on a Thermo Fisher Scientific EXACTIVE Plus Fourier-transform orbitrap mass spectrometer (ESI). IR (Attenuated Total Reflection; ATR) spectra were obtained on a JASCO FT/IR4600 spectrometer. UV/vis/ NIR absorption and emission spectra were measured at room temperature on JASCO V-530 and EP-8300 spectrometers, respectively. Absolute fluorescence quantum yields were measured on a Hamamatsu Photonics Quantaurus-QY spectrometer. Thin-layer chromatography was performed with Alt. 5554 DC-Alufolien Kieselgel 60 F254 (Merck), and preparative column chromatography was performed using Silica Gel 60 spherical, neutrality (Nacalai tesque). All reactions were performed under an argon atmosphere. Compound **1** was prepared according to the literature method [11]. Other chemicals and solvents were of reagent grade quality and used without further purification unless otherwise noted. The synthetic procedures and characterization data of new compounds are described below. The IR, mass, and <sup>1</sup>H NMR spectra are shown in the Supporting Information.

#### Synthesis and characterization

#### Synthesis of 2

To a well dried Schlenk tube containing 1 (99.5 mg, 0.181 mmol) was added CH<sub>2</sub>Cl<sub>2</sub> (20 mL), Et<sub>3</sub>N (800 µL, 5.74 mmol), and HSiCl<sub>3</sub> (400  $\mu$ L, 4.08 mmol), and the mixture was stirred at room temperature under Ar atmosphere. After 24h, the reaction mixture was quenched with 1 M NaOHaq at 0 °C, and the separated organic phase was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure to leave a solid residue, which was subjected to alumina column chromatography ( $CH_2Cl_2/acetone=20/1$ ). The bright pink fraction  $(R_{\rm f}=0.18; CH_2Cl_2/MeOH=20/1)$  was collected and evaporated to leave a solid, which was reprecipitated from CH<sub>2</sub>Cl<sub>2</sub>-hexane to afford 2 as a reddish purple crystalline solid (51.4 mg, 47%). Mp >300 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta_{\rm H}$ , ppm 9.37 (d, 4H, J=4.8 Hz, pyrrole- $\beta$ ), 8.99 (d, 4H, J=4.8Hz, pyrrole-β), 7.31 (s, 4H, Mesmeta), 2.64 (s, 6H, para-Me), 1.83 (s, 12H, ortho-Me). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 176 MHz):  $\delta_{c}$ , ppm 152.5, 145.3, 139.2, 138.9, 134.6, 133.2, 132.8, 128.2, 120.1, 21.58, 21.46. <sup>29</sup>Si{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 139 MHz):  $\delta_{Si}$ , ppm -205.7. HRMS (ESI) positive mode: *m*/*z* 631.2239 (calcd. for  $C_{36}H_{32}N_6O_2Si+Na$ : 631.2248,  $[M+Na]^+$ ); negative mode: m/z 608.2359 (calcd. for C<sub>36</sub>H<sub>32</sub>N<sub>6</sub>O<sub>2</sub>Si: 608.2361, [*M*]<sup>-</sup>). IR (ATR): ν, cm<sup>-1</sup> 3501 (OH).

#### Synthesis of 3

To a poly(tetrafluoroethylene) vessel containing a  $CH_2Cl_2$  solution (15 mL) of **2** (50.1 mg, 0.0823 mmol) was added SbF<sub>3</sub> (28.7 mg, 0.161 mmol) at room temperature. The mixture was stirred for 24h at room temperature and then filtered through a Celite bed. The organic layer separated from the filtrate was washed with a saturated NaH- $CO_3aq$  and brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure to leave a solid residue, which was reprecipitated from CH<sub>2</sub>Cl<sub>2</sub>—hexane to afford **3** as a reddish

purple solid (44.9 mg, 89%). Mp>300 °C.  $R_f$ =0.89; (CH<sub>2</sub>Cl<sub>2</sub>/MeOH=20/1). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz): δ<sub>H</sub>, ppm 9.44 (d, 4H, *J*=4.8 Hz, pyrrole-β), 9.07 (d, 4H, *J*=4.8 Hz, pyrrole-β), 7.31 (s, 4H, Mes-*meta*), 2.63 (s, 6H, *para*-Me), 1.83 (s, 12H, *ortho*-Me). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 176MHz): δ<sub>c</sub>, ppm 152.9, 145.8, 139.3, 139.1, 134.2, 133.6, 133.1, 128.3, 120.2, 21.51, 21.47. <sup>19</sup>F{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 376MHz): δ<sub>F</sub>, ppm -119.1. <sup>29</sup>Si{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 139MHz): δ<sub>Si</sub>, ppm -209.4 (t, *J*<sub>Si-F</sub>=199Hz). HRMS (ESI) positive mode: *m/z* 635.2153 (calcd. for C<sub>36</sub>H<sub>30</sub>F<sub>2</sub>N<sub>6</sub>Si+Na: 635.2161, [*M*+Na]<sup>+</sup>); negative mode: *m/z* 612.2267 (calcd. for C<sub>36</sub>H<sub>30</sub>F<sub>2</sub>N<sub>6</sub>Si: 612.2275, [*M*]<sup>-</sup>).

#### Synthesis of 4

A mixture of 3 (41.0 mg, 0.0669 mmol), Cu(OCOPh)<sub>2</sub> (2.29 mg, 0.00749 mmol), Ph<sub>2</sub>IPF<sub>6</sub> (86.8 mg, 0.204 mmol), and chlorobenzene (7 mL) was stirred for 2h at 130 °C. After cooling to room temperature, AgPF<sub>6</sub> (3.85 mg, 0.0152 mmol) and an aqueous solution of KPF<sub>6</sub> were subsequently added, and the mixture was vigorously stirred. After the anion was completely exchanged (checked by TLC), the organic layer was separated, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure to leave a solid residue, which was subjected to silicagel column chromatography (CH<sub>2</sub>Cl<sub>2</sub>/MeOH=200/1). The dark green fraction ( $R_f = 0.25$ ; CH<sub>2</sub>Cl<sub>2</sub>/MeOH=20/1) was collected and evaporated to leave a solid, which was reprecipitated from CH<sub>2</sub>Cl<sub>2</sub>-cyclohexane to afford 4 as a dark green solid (39.7 mg, 71%). Mp>300 °C. <sup>1</sup>H NMR  $(CD_2Cl_2, 400 \text{ MHz})$ :  $\delta_H$ , ppm 9.55 (d, 2H, J=5.2 Hz, pyrrole- $\beta$ ), 9.06 (d, 2H, J=5.2 Hz, pyrrole- $\beta$ ), 9.05 (d, 2H,  $J=4.8\,\text{Hz}$ , pyrrole- $\beta$ ), 8.57 (d, 2H,  $J=5.2\,\text{Hz}$ , pyrrole-β), 8.24-8.22 (m, 2H, Ph), 8.16-8.13 (m, 1H, Ph), 8.05-8.00 (m, 2H, Ph), 7.36 (s, 4H, Mes-meta), 2.62 (s, 6H, para-Me), 1.84 (s, 12H, ortho-Me).  ${}^{13}C{}^{1}H{}$ NMR (CD<sub>2</sub>Cl<sub>2</sub>, 176 MHz): δ<sub>c</sub>, ppm 154.7, 150.1, 147.2, 145.9, 140.8, 140.3, 138.7, 137.3, 137.0, 135.0, 133.0, 131.8, 130.2, 129.8, 129.1, 128.7, 126.3, 26.90, 21.2. <sup>19</sup>F{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>, 376 MHz):  $\delta_{F}$ , ppm -117.3. <sup>29</sup>Si{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>, 139 MHz):  $\delta_{si}$ , ppm -207.5 (t,  $J_{\text{Si-F}}=204 \text{ Hz}$ ). <sup>31</sup>P{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>, 162 MHz):  $\delta_{\text{P}}$ , ppm -144.5 (sept,  $J_{P-F}=710$  Hz). HRMS (ESI) positive mode: *m/z* 689.2652 (calcd. for C<sub>42</sub>H<sub>35</sub>F<sub>2</sub>N<sub>6</sub>Si: 689.2655,  $[M-PF_6]^+$ ; negative mode: m/z 144.9646 (calcd. for PF<sub>6</sub>: 144.9647, [PF<sub>6</sub>]<sup>-</sup>). IR (ATR): ν, cm<sup>-1</sup> 832 (P–F).

#### Synthesis of 5

A mixture of **4** (20.4 mg, 0.0224 mmol), cobaltocene (9.63 mg, 0.0509 mmol), and THF (10 mL) was stirred for 5 min at room temperature. The reaction mixture was evaporated to leave a solid, which was reprecipitated from MeOH-CH<sub>2</sub>Cl<sub>2</sub> to afford **5** as a dark yellow green solid (14.1 mg, 84%). Mp >300 °C.  $R_{\rm f}$ =0.89 (CH<sub>2</sub>Cl<sub>2</sub>/MeOH=20/1). HRMS (ESI) positive mode: *m/z* 689.2649 (calcd. for C<sub>42</sub>H<sub>35</sub>F<sub>2</sub>N<sub>6</sub>Si: 689.2655, [*M*]<sup>+</sup>).

### X-ray crystallographic analysis

Single crystals of 2 and 3 were grown from chloroform-octane at room temperature. CCDC Deposition Numbers-2415645–2415646 contain the supplementary crystallographic data for these compounds. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe. Selected structure parameters are as follows. 2•H<sub>2</sub>O:  $C_{36}H_{34}N_6O_3Si$ , MW=626.78, 0.010×0.010×0.010mm, monoclinic,  $P2_1/c$ , a=13.894(5) Å, b=27.056(9) Å, c=7.986(3) Å,  $\beta=97.895(7)^{\circ}$ , V=2973.6(17) Å<sup>3</sup>, Z=4,  $\rho_{calcd} = 1.400 \, \text{g.cm}^{-3}, \quad \mu = 0.47 \, \text{cm}^{-1}, \quad \text{collected} \quad 67338,$ independent 6832, parameters 431,  $R_w = 0.1306$  (all data),  $R_1 = 0.0449 \ (I > 2.0\sigma(I))$ , GOF=1.081. 3:  $C_{36}H_{30}F_{-1}$  $_{2}N_{6}Si$ , MW=612.75, 0.100×0.100×0.100 mm, monoclinic,  $P2_1/n$ , a=7.9220(4) Å, b=21.6343(12) Å, c=9.1833(5) Å,  $\beta=112.900(2)^{\circ}$ , V=1449.85(14) Å<sup>3</sup>, Z=2,  $\rho_{calcd}=1.404$  g.cm<sup>-3</sup>,  $\mu=1.33$  cm<sup>-1</sup>, collected 34736, independent 3336, parameters 208,  $R_w = 0.0965$  (all data),  $R_1 = 0.0359 (I > 2.0\sigma(I)), \text{GOF} = 1.080.$ 

#### Computational details

The geometries of model compounds were optimized with the DFT method. The basis sets used for the optimization were 6-311G(d,p) basis set [19]. The functional of DFT was the Becke, three-parameter, Lee-Yang-Parr (B3LYP) exchange-correlation functional [20]. The optimized geometries were confirmed to be minima by vibrational analysis. We confirmed that the optimized geometries were not in a saddle but in stable points. The Cartesian coordinates and computed total energies of calculated models are summarized in Table S1 in the Supporting Information. The excitation energies and oscillator strengths listed in Table 2 were computed with the TD-DFT method. The solvent effect was incorporated in both the DFT and TD-DFT calculations using the polarizable continuum model (PCM) with the integral equation formalism variant [21]. The NICS [17] were calculated at the Hartree-Fock level with gauge-including atomic orbitals (GIAOs) at the DFT optimized geometries. The basis set used for the NICS calculations was 6-31+G(d) [19c, 22]. The solvent effect was not included in the NICS calculations. The <sup>19</sup>F chemical shifts were calculated at the DFT level with GIAOs, including solvent effect, at the DFT optimized geometries. The functional, basis sets, and solvent model used for the chemical shift calculations were the same as those used for the geometry optimization. All the calculations were carried out using the Gaussian 16 suite of programs [23].

#### Fluorescence lifetime measurements

The fluorescence lifetimes of 2, 3 and 4 were measured using a streak camera as a fluorescence detector. The excitation pulse (400 nm) was generated by taking the second harmonic pulse of the fundamental output of an amplified Ti:Sapphire laser system (Spectra Physics, Spitfire XPpro). Compounds **2**, **3**, and **4** showed singleexponential decay profiles with the lifetimes indicated in the text.

#### EPR measurements

The electron paramagnetic resonance (EPR) spectrum was measured at room temperature by using a JEOL JES-FA200 spectrometer equipped with an OXFORD ESR900 He-flow cryostat. A sample was prepared as a 0.1 mM solution in CH<sub>2</sub>Cl<sub>2</sub>. After three freeze-pump-thaw cycles, the solution sample in a quartz tube was sealed by a frame. Spectral simulation was performed using EasySpin [24], which is a MATLAB toolbox meant for this. The static magnetic field and microwave frequency were measured by an Echo Electronics EFM-2000 gauss meter and a TakedaRiken TR5212 microwave counter, respectively.

#### Acknowledgments

This work was supported by JSPS KAKENHI (23K23329 to YM, 21K04980 to HN) from MEXT, Japan. We thank Prof. Tomohiro Higashino and Prof. Hiroshi Imahori for their assistance with the HRMS measurements. We would also like to express our gratitude to the SPring-8 synchrotron facility, where synchrotron-radiation experiments were performed at the BL02B1 beamlines with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) under proposal numbers 2023B1682, 2024B1931, 2024B1757, and 2024A1948.

#### **Supporting information**

Additional data are given in the supplementary material. This material is available free of charge *via* the Internet at http://www.worldscientific.com/doi/ suppl/10.1142/S1088424625500397

Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under the numbers CCDC-2415645 and CCDC-2415646. Copies can be obtained on request, free of charge, *via* https://www.ccdc.cam.ac.uk/structures/ or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223-336-033 or email: deposit@ccdc.cam.ac.uk).

# REFERENCES

- Boylan DB and Calvin M. J. Am. Chem. Soc. 1967; 89: 5472–5473.
- 2. Pia JE, Hussein BA, Skrypai V, Sarycheva O and Adler MJ. *Coord. Chem. Rev.* 2021; **449**: 214183.
- 3. (a) Kane KM, Lemke FR and Petersen JL. *Inorg. Chem.* 1995; **34**: 4085–4091; (b) Lorenz CR,

Dewald HD and Lemke FR. *J. Electroanal. Chem.* 1996; **415**: 179–181; (c) Kane KM, Lemke FR and Petersen JL. *Inorg. Chem.* 1997; **36**: 1354–1359; (d) Kane KM, Lorenz CR, Heilman DM and Lemke FR. *Inorg. Chem.* 1998; **37**: 669–673.

- Zheng JY, Konishi K and Aida T. *Inorg. Chem.* 1998; **37**: 2591–2594.
- (a) Ishida S, Yoshimura K, Matsumoto H and Kyushin S. *Chem. Lett.* 2009; **38**: 362–363; (b) Ishida S, Hatakeyama T, Nomura T, Matsumoto M, Yoshimura K, Kyushin S and Iwamoto T. *Chem. Eur. J.* 2020; **26**: 15811–15815.
- Hussein BA, Shakeel Z, Turley AT, Bismillah AN, Wolfstadt KM, Pia JE, Pilkington M, McGonigal PR and Adler MJ. *Inorg. Chem.* 2020; 59: 13533–13541.
- (a) Cissell JA, Vaid TP and Rheingold AL. J. Am. Chem. Soc. 2005; 127: 12212–12213; (b) Cissell JA, Vaid TP and Yap GPA. J. Am. Chem. Soc. 2007; 129: 7841–7847; (c) Cissell JA, Vaid TP, DiPasquale AG and Rheingold AL. Inorg. Chem. 2007; 46: 7713–7715.
- (a) Satoh T, Minoura M, Nakano H, Furukawa K and Matano Y. Angew. Chem. Int. Ed. 2016; 55: 2235–2238; (b) Sudoh K, Satoh T, Amaya T, Furukawa K, Minoura M, Nakano H and Matano Y. Chem. Eur. J. 2017; 23: 16364–16373; (c) Sudoh K, Satoh Y, Furukawa K, Nakano H and Matano Y. J. Porphyrins Phthalocyanines 2020; 24: 286–297; (d) Satoh Y, Fujita Y, Muramatsu N, Furukawa K, Ikoma T, Minoura M, Nakano H and Matano Y. ChemPlusChem 2021; 86: 1476–1486; (e) Ochiai H, Furukawa K, Nakano H and Matano Y. J. Org. Chem. 2021; 86: 2283–2296; (f) Satoh Y, Kudoh Y, Furukawa K and Matano Y, Org. Lett. 2022; 24: 3839–3843.
- (a) Sudoh K, Hatakeyama T, Furukawa K, Nakano H and Matano Y. *J. Porphyrins Phthalocyanines* 2018; **22**: 542–551; (b) Murata Y, Sudoh K, Furukawa K, Nakano H and Matano Y. *Chem. Asian J.* 2024; **19**: e202401370.
- 10. Suzuki H, Furukawa K, Minoura M, Nakano H and Matano Y. *Bull. Chem. Soc. Jpn.* 2024; **97**: uoad022.
- 11. Matano Y, Shibano T, Nakano N, Kimura Y and Imahori H. *Inorg. Chem.* 2012; **51**: 12879–12890.
- 12. Hamilton WC. Acta Crystallogr. 1962; 15: 353–360.
- 13. Ou X and Janzen AF. *Inorg. Chem.* 1997; **36**: 392–395.
- McDowell RS, Reisfeld MJ, Patterson CW, Krohn BJ, Vasquez MC and Laguna GA. J. Chem. Phys. 1982; 77: 4337–4343.
- (a) Krygowski TM. J. Chem. Inf. Comput. Sci. 1993; 33: 70–78; (b) Krygowski TM, Ciesielski A, Bird CW and Kotschy A, J. Chem. Inf. Comput. Sci. 1995; 35: 203–210; (c) Cyrañski MK, Krygowski TM, Wisiorowski M, van Eikema Hommes NJR

and Schleyer PvR. *Angew. Chem. Int. Ed.* 1998; **37**: 177–180.

- 16. Matano Y, Shibano T, Nakano H and Imahori H. *Chem. Eur. J.* 2012; **18**: 6208–6216.
- 17. (a) Schleyer PvR, Maerker C, Dransfeld A, Jiao H and van Eikema Hommes NJR. *J. Am. Chem. Soc.* 1996; **118**: 6317–6318; (b) Chen Z, Wannere CS, Corminboeuf C, Puchta R and Schleyer PvR. *Chem. Rev.* 2005; **105**: 3842–3888.
- 18. The <sup>19</sup>F chemical shift of **P1** (18 $\pi$ ) is -114.1 ppm (vs. CFCl<sub>3</sub>). See ref. 10.
- (a) Krishnan R, Binkley JS, Seeger R and Pople JA. J. Chem. Phys. 1980; 72: 650–654; (b) McLean AD and Chandler GS. J. Chem. Phys. 1980; 72: 5639–5648; (c) Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ and Pople JA. J. Chem. Phys. 1982; 77: 3654–3665.
- 20. (a) Becke AD. J. Chem. Phys. 1993; 98: 5648–5652;
  (b) Lee C, Yang W and Parr RG. Phys. Rev. B 1988;
  37: 785–789.
- 21. Cancès E, Mennucci B and Tomasi J. J. Chem. *Phys.* 1997; **107**: 3032–3041.
- (a) Hehre WJ, Ditchfield R and Pople JA. J. Chem. Phys. 1972; 56: 2257–2261; (b) Hariharan PC and Pople JA. Theor. Chim. Acta 1973; 28: 213–222; (c) Clark T, Chandrasekhar J, Spitznagel GW and Schleyer PvR. J. Comput. Chem. 1983; 4: 294–301;

(d) Gordon MS, Binkley JS, Pople JA, Pietro WJ and Hehre WJ. *J. Am. Chem. Soc.* 1982; **104**: 2797– 2803; (e) Spitznagel GW, Clark T, Schleyer PvR and Hehre WJ. *J. Comput. Chem.* 1987; **8**: 1109–1116.

- 23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB and Fox DJ. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2019.
- Stoll S and Schweiger A. J. Magn. Reson. 2006; 178: 42–55.