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An efficient and stable method of searching for optimum structures of molecules containing cyclic parts is proposed, where
both the Cartesian and the internal coordinates are improved independently at each iteration of the optimization, and are used
for the next geometry of the cyclic parts and of the remaining parts, respectively. The utilization of the Cartesian coordinates at
the cyclic parts allows us to avoid the disastrous and irrecoverable distortions, which frequently occur if one uses the internal
coordinates. For the remaining parts, the internal coordinates are used, so that an efficient calculation is obtained. The present
method is tested in the search for the geometries of pyridine and ethylene oxide in the ground state and compared with the usual
methods which employ either the internal coordinates or the Cartesian coordinates as optimization variables; our new method is
found to be more efficient and more stable than the usual methods.

1. Introduction

The search for the structures of molecules in the
equilibrium and transition states is one of the essen-
tial steps in theoretical studies of physical properties
and chemical reactions of molecular systems. Since
Murtagh and Sargent [ 1] proposed the optimization
method and Mclver and Komornicki [2] first ap-
plied it to molecular systems, the method has been
extensively used. The method has also been im-
proved [3-10], as reviewed by Head and Zerner
[11], by appending the linear-search method to bring
the geometry far removed from the optimum struc-
ture into the range of convergence and by adopting
the rank-2 method to update the approximate sec-
ond derivative of the total energy. Though the
method is formulated for general coordinate sys-
tems, the internal coordinate system has been over-
whelmingly used rather than the Cartesian coordi-
nate system; this is because the former gives faster
convergence and is convenient in fixing some parts
of a molecule. Thus, the method has been equipped
fully for the optimization of non-cyclic molecules.
Problems, however, seem to remain for the opti-
mization of cyclic molecules since the use of the in-
ternal coordinates results in disastrous and irrecov-

erable distortions of cyclic parts, and the use of the
Cartesian coordinates demands a large number of it-
erations. A better method for the optimization of
molecules containing cyclic parts seems to be
necessary.

The drastic distortion occurring when one uses the
internal coordinates originates in the fact that some
internal coordinates are unnecessary to locate atoms
in the cyclic parts. The geometry of an N-membered
planar ring, for instance, can be specified without the
use of one of the bond distances and the two angles
at both corners of the bond. These unnecessary in-
ternal coordinates of course, do not participate in the
optimization variables. These coordinates are deter-
mined indirectly through the participating coordi-
nates, so that they may change drastically as a con-
sequence of accumulation of small changes of the
participating coordinates. In other words, such im-
portant interactions of atoms are not taken into ac-
count explicitly although they significantly affect the
structure of the cyclic parts. The absence of the strong
interactions is fatal in searching for the optimum
structures of molecules containing cyclic parts.

In order to circumvent this difficulty, we usually
use the Cartesian coordinates as optimization vari-
ables. In this case, the position of each atom in the
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Cartesian coordinate system is optimized depending
on the interactions with all the remaining atoms, so
that such a critical distortion does not take place. The
problems of this method are that (1) it is less effi-
cient than the method with the internal coordinates,
and (2) all the atoms should be optimized with these
coordinates even if the cyclic part is just a small por-
tion of the whole molecule. It is, therefore, desirable
to have a method where the non-cyclic parts are op-
timized with the help of the internal coordinates in
order to keep high efficiency, and the cyclic parts with
the Cartesian coordinates to get stability. The pur-
pose of the present work is to propose such an ef-
ficient and stable method for the optimization of
structures of molecules containing cyclic parts.

2. Method

In usual ab initio calculations, the optimum ge-
ometry is searched for by the pseudo-second-order
method [11], where the analytical first derivative g,
of the total energy, evaluated at the current coordi-
nates R,, and the approximate second derivative H,
which will be improved at each cycle of the opti-
mization, are used to get new coordinates R via

R=R,—~H"'g,. (1)

The internal coordinates are usually used as a co-
ordinate system of R and R,, and the Cartesian co-
ordinates are rarely employed. In the present method,
however, both the internal and the Cartesian coor-
dinates are used and optimized.

First of all, we classify the atoms in the cyclic parts
into groups; the first group includes only the atoms
constituting the first cyclic part, the second group
consists of those in the second cyclic part, and so on.
The atoms in the non-cyclic parts belong to neither
of the above groups. Then we sort the internal co-
ordinates into two groups; the first group R’ con-
sists of the internal coordinates defined only by the
atoms within the same group of atoms, and the sec-
ond group R® consists of the remaining coordi-
nates, such as those defined by atoms in different
groups, or in the non-cyclic parts.

Now, we give the present optimization method.
The method consists of the following steps, and they
are repeated until the optimum geometry is found:
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(1) The present geometry, expressed in terms of
the internal coordinate system Ry, and the Cartesian
coordinate system R, is improved independently
by the use of eq. (1) as

Ri=R—Hi 'gpo, (2)
Rc=Rco—Hc 'geo - (3)

(2) The new geometry R,c, in terms of the internal
coordinate system, is generated from the improved
ones R; and R; the internal coordinates in the first
group R{Y’ are set equal to those transformed from
the Cartesian coordinates R, and the remaining in-
ternal coordinates belonging to the second group
R{2 are set equal to those in R,

R{Y )
Ric= (
T ARR
_ (the first group coordinates of transformed RC>
- the second group coordinates of R,

(4)

(3) The Ry¢, thus obtained, are used as R, in the
next cycle of the optimization, are transformed into
the Cartesian coordinates and stored in R, for the
next calculation by eq. (3).

(4) The first derivatives g;, and g, are calculated
at the new geometry, and the second derivatives H,
and H: are improved by the usual method [11].

The second step corresponds to optimizing the
cyclic parts with the Cartesian coordinates and the
remaining parts with the internal coordinates. Thus,
the disastrous distortions of the cyclic parts can be
avoided, and high efficiency is anticipated for the
optimization of non-cyclic parts.

Other characteristic features of the present method
are as follows:

(1) The pseudo-second-order method is em-
ployed to get R; and R, and then the present method
also assumes the quality of the pseudo-second-order
convergence in so far as the coupling between the
groups R{& and R{@’ is small.

(2) A linear search, if one wishes, is possible by
the use of the R ¢ as

Ric(a)=Ryp+a(Rc—Ry) , (5

with a representing the step length to be determined.
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This search guarantees that the cyclic parts are not
drastically deformed.

(3) The advantages of employing the internal co-
ordinates, so as to be able to fix some parts of mo-
lecular structure, are retained since the internal co-
ordinate system is used to express the modified
geometry Ryc.

(4) The present method unifies the method em-
ploying only the internal coordinates and that em-
ploying only the Cartesian coordinates, since the
present method results in them if we intentionally
specify no atom to be in a cyclic part or a/l the atoms
to be in a cyclic part, respectively.

(5) The present method is applicable to any
method for obtaining the new R, and R, since the
key of our procedure is to combine the new coor-
dinates R; and R, independently of how they are
obtained.

The implementation of the present method can be
readily accomplished; the optimization procedures
with both the internal and the Cartesian coordinates
are usually installed in ab initio program systems,
and the evaluation of the internal coordinates from
the Cartesian coordinates, carried out at the second
step, is a simple task. The grouping of the internal
coordinates into R{& and R{Z’ can be easily per-
formed by the use of the grouping of atoms, which
is given beforehand. The grouping of atoms is in-
dependent of which distances, angles and dihedral
angles of bonds are chosen as the optimization vari-
ables and how the optimization variables are or-
dered, so that it is convenient in practical calcula-
tions to give the groups of atoms rather than those
of the internal coordinates.

It may be noteworthy that the transformation from
the Cartesian coordinate system to the internal co-
ordinate system is non-linear. This means that the
Taylor expansion of the energy up to the second or-
der at the optimum geometry with respect to the
Cartesian coordinates partly includes the higher-or-
der (generally up to infinite order) terms in the ex-
pansion with respect to the internal coordinates.
Hence, the drastic deformation of the cyclic parts is
avoided. Direct use of the expansion with respect to
the internal coordinates including higher-order terms
also allows us to avoid such deformation; however,
cumbersome calculations become necessary, such as
evaluating the higher-order derivatives of the energy
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Fig. 1. Recommended choice of internal coordinates. Internal co-
ordinates, indicated by thick lines rather than broken lines, should
be chosen to specify the location of the atom X.

and solving the non-linear equations. The use of the
Cartesian coordinates is a simple substitute for the
cumbersome calculations.

The internal coordinates defined by the atoms in
the cyclic parts should be used as much as possible
in order that the new position of these atoms may be
determined by the new Cartesian coordinates Rc
rather than the new internal coordinates R;. The rec-
ommended choice of internal coordinates is illus-
trated in fig. 1. This choice would also be effective
in reducing the coupling between groups R{’ and
R&.

3. Results and discussion

The present method is applied to the optimiza-
tions of geometries of pyridine and ethylene oxide in
the ground state, and is compared with the methods
where only the internal or the Cartesian coordinates
are used as optimization variables. The RHF wave-
functions with the basis set of MIDI-4 [12] are used,
since it is sufficient to check the performance of the
optimizations by these methods. The initial geom-
etries of these molecules are the optimum structures
with the basis set of MINI-4 [12]. The internal co-
ordinates used in the present calculations are shown
in the upper-right corners of figs. 2 and 3 with solid
lines. In pyridine, the atoms, except for C; and H;,
are constrained to take C,, symmetry, so that there
are twelve optimization variables. The fragment C,H,
in ethylene oxide is also constrained to C,, sym-
metry, and thus the number of the optimization vari-
ables is six. The bond distances and angles depicted



Volume 177, number 4,5

log, [(E; -E,,, Vo, u,1

=

2 4 6 8 10 12 iteration
Fig. 2. The change of the RHF energy of pyridine with the basis
set of MIDI-4 [12] in the present optimization method M, the
method with only the internal coordinates M;, and the method
with only the Cartesian coordinates M. The initial geometry is
optimum for the basis set of MINI-4 [12]. The optimization
variables are shown in the upper-right corner with solid lines. The
broken lines denote unnecessary bond distances and bond angles
for specifying the locations of atoms with the internal coordinate
system. The fragment without C; and Hj is constrained to take
C,, symmetry, so that the number of independent variables is
twelve. The dotted line denotes the energy difference of 10~ au.

logy,[(E; -E,,, V2, u.]

M

Mic Mo
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Fig. 3. The change of the RHF energy of ethylene oxide with the
basis set of MIDI-4 [12]. The C,H, fragment is constrained to
take C,, symmetry, so that the number of independent variables
is six. For the remaining, see the legend of fig. 2.
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with broken lines are unnecessary to locate the at-
oms in the cyclic parts, so that they are not used as
the optimization variables. Ali the internal coordi-
nates defined only by C, N, and O atoms belong to
the first group R{}’, and the coordinates including
hydrogen atoms belong to the second group R{&’. The
matrix H¢in eq. (3) is initialized to the unit matrix,
and the matrix H; in eq. (2) is the same diagonal
matrix as that used in GAUSSIAN 80 [13] #!, where
the diagonal elements are determined depending on
the kind of atoms and values of distances or angles
in the initial geometry. These matrices are improved
at each iteration by the use of the rank-1 method
[11].

In figs. 2 and 3, the differences of the total energies
E;’s at each iteration from the energy E,,, at the op-
timum structure are plotted for pyridine and ethyl-
ene oxide, respectively. M, means the present
method and M, (M) denotes the methods only with
the internal (Cartesian ) coordinates. The differences
are plotted until they converge to less than 10~ au,
which is usually used as one of the threshold values
of convergence.

In the optimization of pyridine, the method M; re-
sults in a drastic decrease of the C;—C, distance from
1.4 to 0.2 A at the first modification geometry, which
reflects the instability of the method, and further
search ceased automatically. On the contrary, the
present method M;c and the method M gave the
optimum structure in a stable manner after eight and
eleven iterations, respectively. The present method
is more efficient that the method M and more sta-
ble than the method M,.

The increase of energy at the fifth iteration of the
M method and the smaller decrease at the sixth it-
eration of the M- method relate, perhaps, to the use
of the rank-1 rather than the rank-2 method to up-
date the H matrices. Though the use of the rank-2
method might reduce the numbers of the iterations
in both the methods, we expect that the efficiency of
the M;c over the M method would remain.

In pyridine, the number of atoms optimized by the
use of the Cartesian coordinates is six out of a total

¥ The actually used program, GAUSSIAN 80, is the IMS Com-
puter Center Library Program No. 0482, which was converted
by K. Hori, H. Teramae, and K. Yamashita from the QCPE
version.
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of eleven atoms, so that the efficiency of the M
method does not appear clearly. On the other hand,
in ethylene oxide, the efficiency is clearer since the
number is three out of seven. In both cases, the M,
method converged in a smaller number of iterations
than the other methods.

It is interesting that the M, method also gave con-
vergence. In order to clarify the reason for this, we
investigated how the geometry was modified at each
cycle of the optimization. At the first modification,
the OCC angle increased too much, so that its change
was constrained to the maximum value of 0.2 rad.
At the second modification, the angle decreased too
much and its change was again constrained to the
maximum value. Thus, after two modifications, the
angle returned to the initial value, which is almost
the optimum value for the MIDI-4 basis set. The
other coordinates had improved during two itera-
tions, so that the optimization succeeded. The con-
vergence seems to be due to good luck, and such good
luck cannot be expected for a general cyclic molecule.

For some other molecules containing one or two
cyclic parts, such as pyrole, N-alkyl pyridine, and
several fragments of a free base porphine, we opti-
mized their geometries by using the present method,
and confirmed the efficiency and stability of the
present method.

4. Concluding remarks

In this paper, we have proposed an efficient and
stable method to determine the optimum structures
of molecules containing cyclic parts, where the in-
ternal coordinates are classified into two groups: one
group is a set of the coordinates defined only by the
atoms constituting the cyclic parts; and the other is
that of the remaining coordinates. The former set is
improved by the use of the Cartesian coordinates,
and the latter by the use of the internal coordinates.
The present method was tested in the search for the
optimum geometries of pyridine and ethylene oxide,
which have both the cyclic and the non-cyclic parts;
it has been found to be stable in contrast to the
method with only the internal coordinates and more
efficient than the method with only the Cartesian co-
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ordinates. The key of the present method is to com-
bine improved internal and Cartesian coordinates at
each cycle of the optimization; the procedure is in-
dependent of how the improved coordinates are ob-
tained. Therefore, the present approach is applicable
to any process for obtaining the improved coordi-
nates. We expect the present method to be useful for
a further expansion of ab initio theoretical studies of
molecular systems containing both the cyclic and the
non-cyclic parts.
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