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A quasidegenerate perturbation theory (QDPT) with Epstein—-Nesbet partitioning based on MCSCF reference functions is
presented. The formulas for CSF-based matrix operations are derived. They are applied to the systems Be-H, and CO, and
compared with other methods. The potential energy curves agree well with those of the full-CI or MR-CI methods.

1. Introduction

In understanding chemical reaction mechanisms it
is crucial to obtain the associated potential energy
surfaces. Much effort, therefore, has been spent in
developing reliable and practical methods for cal-
culating the surfaces. At present, the most reliable
and familiar method is the multireference configu-
ration interaction (MR-CI) method, which is stable
on the whole region of the potential surface and is
fairly accurate. However, MR-CI is difficult to ap-
ply, except for systems containing a small number of
atoms, because the order of the Hamiltonian matrix
increases rapidly for larger systems. The multicon-
figurational self-consistent field (MCSCF) method
is also popular, since it provides a qualitatively ac-
curate description of the potential surface. However,
it is not sufficient to obtain quantitative results within
chemical accuracy. A method which is as efficient as
the MCSCF method, yet is as accurate as MR-CI, is
needed.

Perturbation theories (PTs) based on the MCSCF
reference function [1-5] have been proposed and
are proving to be useful. Indeed, they have many at-
tractive features. First, they are more efficient than
the other multireference based methods such as MR-
CI and MR-CC (multireference coupled cluster)
methods, because they do not require iterations for
diagonalization or for solving linear equations. Sec-
ondly, they can yield results within chemical accu-

racy. Thirdly, they can describe open shell or excited
states as well as closed shell ground states in a single
framework.

In a previous paper [6], we proposed MCSCEF ref-
erence quasidegenerate perturbation theory (QDPT)
based on Magller-Plesset partitioning [ 7], which can
give the energies of several states simultaneously. This
method has the following advantages compared to
the single state MCSCF PTs: (1) it can be applied
to degenerate or quasidegenerate systems, and (2)
interstate matrix elements such as transition dipole
moments and nonadiabatic coupling elements can
be calculated. In the present Letter, we have devel-
oped a new MCSCEF reference QDPT based on the
Epstein—-Nesbet partitioning [8]. We derive here
formulae using the sum-over-states method instead
of the sum-over-orbitals method applied in the pre-
vious work [6]. Although the calculation of the third-
or higher-order effective Hamiltonian is difficult with
the sum-over-orbitals method, it is feasible with the
present procedure. Only single and double excited
configuration state functions (CSFs) from the ref-
erence space are necessary to obtain the third-order
effective Hamiltonian.

The organization of this Letter is as follows: In
section 2 the MCSCF reference QDPT is derived and
the computational formulae are shown. In section 3,
the method is applied to two systems: Be-H, and CO,
and the results are compared with the other meth-
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ods. Conclusions are made in section 4.

2. Theory

The zeroth-order wavefunctions (reference func-
tions) in the MCSCF reference QDPT, which define
P space, are the state-averaged MCSCF wavefunc-
tions for target states (i). The complementary ei-
genfunctions of the MCSCF CI Hamiltonian (ii) and
the CSFs generated by exciting electrons out of the
CSFs in MCSCF space (iii) are orthogonal to the
reference functions and define Q space. These func-
tions are used as the basis set to expand the exact
wavefunctions for the target states. For convenience,
we further denote the MCSCF space spanned by
functions (i) and (ii), and its orthogonal comple-
mentary space spanned by functions (iii), R space
and S space, respectively.

With this basis set and the Epstein-Nesbet parti-
tioning, the following relations are satisfied since the
Hamiltonian is diagonal in R space,

VRR=O’VPP=0; (1)
VQP=VSP ] VPQ=VPS . (2)

In the QDPT the Hamiltonian is block-diagonal-
ized by the similar transformation [9],

K=W-'HW, (3)

or in the matrix notation,

(pr Hpq)(pr qu)
Hoep Hoo/\Waor Waq

=(pr WPQ)(Keff 0) (4)
Wor Woo/\ 0 Koo/’

where K, is termed an effective Hamiltonian. The
energies of the target states are obtained by diagon-
alizing the effective Hamiltonian.

Splitting / into H° and V in eq. (4), we obtain
from the block-off-diagonal part of eq. (4)

[ WQP’ HO] = VQQ WQP + VSP WPP
—Wap(Kesr—HYp) , (5)

and from the block-diagonal part

Keg=H3p Wep + Ves Wep + (1 - Wpp) Kerr 5 (6)
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where we used eqgs. (1) and (2). The Wyp part can
be chosen arbitrarily, and this freedom allows us to
define the various versions of the QDPT (“‘normal-
ization condition”). To assure the hermiticity of the
effective Hamiltonian, we utilize the unitary nor-
malization [10],

wiw=1, (7)

through any order. Egs. (5), (6) and (7) are the ba-
sic equations of the present perturbation theory and
are equivalent to the Schrédinger equation.

Expanding the operators in a perturbation series,
recursive equations are obtained:

[ng), H°]= Vao Wéz'i;” +Vep WD
n—1
- Y WERKHF", (8)
k=0
[n/2] B k
W =— kZl (1—%5r,,21c)("Vl(>P)T 74

+WETWE, M
and
K@ =Ves W™D - [WP, Hepl
n—1
- T WEKG™. (10)
k=1

From these equations the effective Hamiltonians
at the lowest few orders are obtained:

K% =0, (11)
KR =4VesW& +he., (12)
KR =W Vs W, , (13)

K@ =W Vos W
AW WP (KR +Ves W)} +he.,  (14)

etc., where h.c. stands for the hermite conjugate
terms.

The matrix elements of the first- and the second-
order transformation operators Win eqs. (12)-(14)
are given by

a|WP | By =(EP —EL) "l VI
(aeSs, BeP) , (15)
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Ca|WR B> =(EP —EP)~!
X ZS CalVIyy < IWEP 18> (aeQ, BeP).
(16)

Using the sum-over-states method, the second-,
third-, and fourth-order effective Hamiltonians are
calculated with matrix operations by the following:

(1) The second order:

K& =iwiTv§p +hec., (17)
with

r§P =V Wi, (18)
(w§p) ;= (EfO —E{P) = (v§p);. (19)

The wid stores the eigenvectors of the MCSCF CI
Hamiltonian for the target states, and V is the CSF-
based perturbation matrix,

V=( , 20
Hox  (H—Haag)ss (20)

where H denotes the CSF-based Hamiltonian matrix
and Hg;,, is its diagonal part.
(2) The third order:

K& =wHTolp , (21)
with
o8 =Vsswip . (22)

(3) The fourth order:
KPP =4 [wP v
—iwPTw (KPR +o8TwlP 1 +he., (23)

with

v@ =w @ Veowsh) ' (24)
w&) = (EQ —E™) " (&), (25)
”é%) =VssW§%) +VSRW§(Q szp) s (26)

where the suffix C indicates the complementary space
of the P space in the active (R) space, and wi¥ stores
the eigenvectors of the MCSCF CI Hamiltonian other
than the reference functions, i.e. the functions (i1).

The perturbation matrix V is the full-CI matrix at
a general order; however in order to calculate the
second- and the third-order effective Hamiltonian,
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only single and double excited CSFs from the ref-
erence CSFs are necessary. In particular, for the sec-
ond-order effective Hamiltonian only the SR part of
the perturbation matrix is used. Moreover, full dia-
gonalization of the MCSCF CI Hamiltonian is not
necessary to obtain up to third-order energy. In sec-
tion 3, the second- and the third-order results are
presented.

3. Calculated results

The method developed in section 2 was applied to
the systems Be-H, and CO, in order to illustrate its
performance.

The state-averaged CASSCF calculation was car-
ried out to obtain the orbital sets corresponding to
the doubly occupied, the active, and the external
subspaces. The orbitals in each space were defined
$0 as to diagonalize the matrix [1-4],

foa=hpt Y, DE°[(pqlrs)—5(prigs)], (27)

where D2 is the state-averaged one-particle density
matrix.

The method was first applied to the lowest two A,
states on the C,, insertion pathway for Be-H,. The
geometries and basis set were identical to those in
refs. [11,12]. The orbitals 2a,, 3a,, lb,, 1b,, 2b,, and
4a, were regarded as active, and la, was frozen in
the perturbation calculation. The results are shown
in table 1.

At most geometries, the energies up to the second
order of the MCSCF reference QDPT with Epstein—
Nesbet partitioning (EN2) are closer to full-CI ener-
gies than those with Mpller—Plesset partitioning
(MP2). The averages of the difference from the full-
CI energies for MP2 are 1.35 and 1.67 mhartree for
the 1'A, and 2 'A; states, respectively; on the other
hand those by EN2 are 0.60 and 1.32 mhartree. The
energies were further improved by including the
third-order contribution (EN3): the averages of the
difference from full-CI were reduced to be 0.45 and
0.96 mhartree for the 1'A, and 2 A, states, respec-
tively.

In many cases, the relative energies between dif-
ferent geometries or different electronic states other
than the total energy itself are important to char-
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Geometry a b c d e f g h
1'A,
CASSCF  —15.77273  —15.73004 —15.66815 —15.61779 -15.59738 —15.61666 —15.68337 —15.72836
(0.00611) (0.00688) (0.00636) (0.00479) (0.00525) (0.00813) (0.00960) (0.00811)
MP2®) —15.77749  —15.73541 —15.67309 —15.62149 —15.60157 —15.62346 —15.69184 —15.73474
(0.00135) (0.00151) (0.00142) (0.00109) (0.00106) (0.00133) (0.00113) (0.00173)
EN2© -15.77811 —=15.73622 —15.67372 —15.62186 —15.60188 —15.62383 —15.69284 —15.73602
(0.00073) (0.00070) (0.00079) (0.00072) (0.00075) (0.00096) (0.00013) (0.00045)
EN3© —15.77853 —15.73641 —15.67396 —15.62210 —15.60215 —15.62403 -15.69246 —15.73622
(0.00031) (0.00051) (0.00055) (0.00048) (0.00048) (0.00076) (0.00051) (0.00025)
ful-CI® —15.77884 —15.73692 —~15.67451 —15.62258 —15.60263 —15.62479  —15.69297 —15.73647
2'A,
CASSCF  —15.40275 —15.40772 —15.43325 —15.51431 1554420 —15.52763 —15.45093 —15.44338
(0.00469) (0.00631) (0.00949) (0.01019) (0.00975) (0.00758) (0.01081) (0.00984)
MP2 —15.40614 —15.41235 —15.44100 —15.52244  —15.55202 —15.53393 —15.46010 —15.45040
(0.00130) (0.00168) (0.00174) (0.00206) (0.00193) (0.00128) (0.00164) (0.00282)
EN2 —15.40686 —15.41309 —15.44034 —15.52245 —15.55244 —15.53435 —15.46032 —15.45257
(0.00058) (0.00094) (0.00240) (0.00205) (0.00151) (0.00086) (0.00142) (0.00065)
EN3 —15.40714 —15.41340 —15.44150 —15.52335 —15.55295 —15.53449 —15.46005 —15.45274
(0.00030) (0.00063) (0.00124) (0.00115) (0.00100) (0.00072) (0.00169) (0.00048)
full-C1® —15.40744 ~15.41403 —15.44274 —15.52450 —15.55395 —15.53521 —15.46174 —15.45322

) Values in parentheses are differences from full-CI energies.

%) Second-order results of MCSCF reference QDPT with Mpller-Plesset partitioning [6].
) Second-(EN2) and third-(EN3) order results by the present method.

D Ref. [11]. * Ref. [12].

T T T T T

L o,

B .o, VAN
,0?10.0 e e o
e - / ol
e / o/ .
5 / ¥
< o Tl ]

g " o TTea /
—_— e \\ "
g 50 —D// \{ 7
=} i
4
£ ]
o A
= ]
w “
i

0.0

1 1 1 1 1

Be-H2 Distance (bohrs)

Fig. 1. Energy differences from full-CI result of CASSCF (W),
(O), MCSCF reference QDPT with Meller-Plesset partitioning
(2nd) (A), (A), and the present method ((¢), (<) 2nd and
(@), (O) 3rd) on the C,, insertion pathway for Be-H,('A,).
The filled symbols denote the ground state.

acterize the potential surfaces. The differences from
full-CI energies are drawn in fig. 1, where it can be
seen that by EN2 and EN3 fairly balanced potential
curves were obtained. In EN2 and EN3 method, the
change of the error along the path is only 2 mhartree;
on the other hand, in the CASSCF method the change
is about 5-6 mhartree.

In table 2, vertical excitation energies are sum-
marized with results by other methods. The results
by EN3 are better than those by the CASSCF at all
geometries a-h, and similarly the EN2 improved the
CASSCEF results except the value at geometry g. We
can say that the MCSCF reference QDPT with Ep-
stein—Nesbet partitioning provides a reliable esti-
mate for the excitation energies as well as the po-
tential energies of the reaction. The multi-
configurational coupled cluster method (CCMC)
[11,12] also provided accurate results comparable
to our method; however, its computational cost is

- much larger than that of the present method, since

iterations are necessary to solve the CCMC equa-
tion. The traditional quasidegenerate many-body
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Table 2
Vertical excitation energies for Be-H,('A,) in au
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Geometry a b c [ f g h

CASSCF 0.36998 0.32232 0.23490 0.10348 0.05318 0.08903 0.23244 0.28498
CcCMC® 0.37260 0.32415 0.23127 0.09745 0.04885 0.09025 0.23155 0.28461
QDMBPT » (2nd) - » - - 0.1030 0.0501 0.0764 - -

QDMBPT ® (3rd) - . - - 0.1180 0.0592 0.0818 - -

QDMBPT ©’ (2nd) 0.36909 0.32810 0.24138 0.10122 0.04879 0.08771 0.23306 0.26495
MP2 9 0.37135 0.32306 0.23209 0.09905 0.04955 0.08953 0.23174 0.28434
EN2 ) 0.37125 0.32313 0.23338 0.09941 0.04944 0.08948 0.23252 0.28345
EN3 0.37139 0.32332 0.23246 0.09875 0.04920 0.08954 0.23241 0.28348
full-CI® 0.37140 0.32289 0.23177 0.09808 0.04868 0.08958 0.23123 0.28325

») Estimated from refs. [11,12].
®) Estimated from ref. [13].
) Ref. [14]. @ Ref. [6].

perturbation theory (QDMBPT) [13,14] based on
the Hartree-Fock method did not give a better de-
scription than CASSCF for this system.

The second sample is carbon monoxide (CO). We
calculated the lowest two states in !X*, namely the
X !Z+* and B'X* states. The basis set used is a dou-

Table 3
Total energies for CO('Z+) inau®

ble zeta basis set: [4s2p] Dunning contraction of the
Huzinaga (9s5p) primitive set [15]. This is too small
to obtain quantitative results, but is sufficient for in-
vestigating the performance of the present pertur-
bation method. The six orbitals, 30, 40, 1n, and 2n,
were used as the active orbitals, and the s core or-

Distance (au)

2.0504 2.1504 2.2504 2.6880 3.2256 4.3008
Xzt
CASSCF —112.78144 —112.79744 —112.80004 —112.73833 —112.63484 —112.51691
(0.09577) (0.09657) (0.09748) (0.10195) (0.10632) (0.10353)
MP2 —112.86653 —112.88319 —112.88659 —112.82920 —112.73091 —112.61269
(0.01068) (0.01082) (0.01093) (0.01108) (0.01025) (0.00775)
EN2 © —112.88106 —112.89747 —112.90057 —112.84110 —112.73913 —112.61807
(-0.00385) (—0.00346) (—0.00305) (—0.00082) (0.00203) (0.00237)
EN3 —112.87034 —112.88711 —112.89059 —112.83339 —112.73410 —112.61426
(0.00687) (0.00690) (0.00693) (0.00689) (0.00706) (0.00618)
MR-SDCI —~112.87721 —112.89401 —112.89752 —112.84028 —112.74116 —112.62044
B!+
CASSCF —112.34886 —112.40701 —112.44814 —112.51839 —112.51600 —112.49039
(0.11034) (0.11070) (0.11119) (0.11391) (0.11495) (0.10288)
MP2 —112.44544 —112.50432 —112.54631 —112.62098 —112.62204 —112.58587
(0.01376) (0.01339) (0.01302) (0.01132) (0.00891) (0.00740)
EN2 —112.45442 —112.51336 —112.55538 —112.62972 —112.62949 —112.59230
(0.00478) (0.00435) (0.00395) (0.00258) (0.00146) (0.00097)
EN3 —112.45129 —112.51008 —112.55196 —112.62581 —112.62505 —112.58910
(0.00791) (0.00763) (0.00737) (0.00649) (0.00590) (0.00417)
MR-SDCI —112.45920 -112.51771 —112.55933 —112.63230 —112.63095 —112.59327

) Values in parentheses are differences Irom MR-SDCI energies.
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Fig. 2. (O) CASSCF, (A) MR-SDCI, and MCSCF reference

QDPT with Epstein-Nesbet partitioning potential curves of two
lowest states of CO('Z*), (¢) EN2, (@) EN3.

bitals of the O and C (1o and 2¢) and its corre-
sponding virtual orbitals were frozen. The MR-SDCI
calculation was also carried out with the same or-
bitals and reference space. The results are shown in
table 3, and the potential curves in fig. 2. As seen in
table 3, the EN2 gave a better description than the
MP?2 for both X 'Z* and B!Z* states, as well as in
the case of Be-H,. The third-order correction, how-
ever, did not improve EN2 energies, which indicates
that the convergence is not so rapid for this system.
Nevertheless, the third-order contribution gave bal-
anced potential curves compared with EN2 potential
curves, since the change of the error of the EN3 is
smaller than that of the EN2. The maximum devia-
tion of the error by EN3 is only 3.74 mhartree; in
other words, to an accuracy of 3.74 mhartree the
shape of MR-CI potential curves could be obtained
by EN3 method, where the computational cost is
much less than the MR-CI method. This feature of
the present method, EN2 and EN3, was found also
for other molecular systems: H,, NO and BN.

4. Summary

A new quasidegenerate perturbation theory based
on the MCSCF reference functions with Epstein—
Nesbet partitioning has been presented. Formulae
for CSF-based matrix operation have been derived,
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and the second- and third-order formulae were ap-
plied to the systems BeH, and CO. It was found that
the second-order energies were more accurate than
those by Moller-Plesset partitioning. The third-or-
der contributions decrease the errors of the energies
in the case of BeH,. On the other hand, for the case
of CO they did not improve the absolute energies,
but by including the third-order contribution we ob-
tained well-balanced potential curves being compa-
rable to those of MR-SDCI. A similar feature has
been confirmed in calculations for the molecules H,,
NO and BN.
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