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Abstract

A multi-configuration self-consistent field method is proposed in which a quasi-complete active space, which is the
product space of complete active spaces, is used as a variational space. The computational effort for wavefunctions is

Ž .significantly reduced compared with the complete active space self-consistent field CAS-SCF method. Efficient formulae
with segmented alpha and beta strings are derived. The scheme is tested on the spectroscopic constants and a potential
energy curve of CO, the transition state barrier height of the reaction, H CO™H qCO, and the energy difference between2 2

trans- and cis-butadiene. The results are in good agreement with the corresponding CAS-SCF results. q 2000 Elsevier
Science B.V. All rights reserved.

1. Introduction

Ž .In the study of chemical reaction mechanisms, the multi-configuration self-consistent field MC-SCF
method is a useful approach and hence frequently used, especially in the form of the complete active space

Ž . w xself-consistent field CAS-SCF method 1–5 . However, CAS-SCF often generates far too many configurations,
and the size of the active space outgrows the capacity of present technology. Even today, the size of the

Ž .configuration interaction CI space that can be routinely used has a dimension of about one million at most,
which roughly corresponds to 12–14 active orbitals.

Several methods have been proposed to overcome the problem of the CI dimension. One is the restricted
Ž . w xactive space RAS SCF method of Olsen et al. 6 . In RAS-SCF, the active orbitals are divided into three

subsets RAS1, RAS2, and RAS3. RAS1 is restricted to a minimum number of occupied spin orbitals, and RAS3
is restricted to a maximum number of such orbitals whilst RAS2 is unrestricted. RAS is an extension of the

Ž .usual CI spaces such as single and double excitation CI SDCI spaces as well as being an extension of CAS.
Another method for overcoming the CI dimension problem is the generalized valence bond with a complete

Ž . w xactive space GVB-CAS method of Clifford et al. 7 , which is a hybrid method of the GVB and CAS-SCF
methods. In GVB-CAS, the active orbitals are divided into some pairs of orbitals for GVB spaces and a set of
orbitals for CAS. The GVB-type excitations are allowed for a set of GVB orbitals, and CAS-CI is performed
among the remaining active orbitals.
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w x Ž .Before the RAS-SCF method, Walch et al. 8 used a ‘constrained CAS CCAS ’ as an MC-SCF variational
w xspace to study the electronic states of Cr and V . CCAS 9 is defined as a space that contains all2 2

configurations that can be formed by distributing the active electrons within certain groups of active orbitals
with a given occupation number in each group.

Ž .In this Letter, we propose an MC-SCF method with a quasi-complete active space QCAS , i.e., a
QCAS-SCF method.

QCAS is defined as a product space of complete active spaces constructed by active electrons and orbitals
within each group. This space is similar to CCAS, but differs in the spin-coupling scheme between the groups
and construction scheme of CI basis functions. CCAS includes all spin couplings constructed from singly
occupied orbitals, while QCAS includes only spin couplings generated as a product of spin functions of each

Ž .group. Furthermore, CI basis functions in CCAS are constructed with configuration state functions CSF by
w xlimiting some routes 9 in the distinct row table in the graphical unitary group approach, while functions in

Ž . Ž .QCAS are constructed from the product of segmented alpha and beta strings or as the product of CSF . This
construction scheme of QCAS allows us to take a string in a group independently of strings in the other groups,
making the computational scheme simple.

Note that an MC-SCF space yielded by valence-bond-like construction can be a sort of QCAS. For example,
w x Ž w x.McLean et al. 10 used such a space space E in Ref. 10 to approach a symmetry breaking problem in

molecular calculations.
QCAS-SCF is a natural extension of CAS-SCF, and therefore retains the advantages of CAS-SCF.

Furthermore, since the dimension of QCAS is generally much smaller than that of CAS, the computational
effort of QCAS-SCF is much less than that of CAS-SCF.

2. Method

In the MC-SCF method, we partition orbitals into core, active, and virtual, and then construct the CI space by
distributing active electrons among the active orbitals. Let us further divide the active electron and orbital sets
into N sub-sets and fix the number of active electrons, m , and orbitals, n , in each sub-set,i i

N N

m s m , n s n , 1Ž .Ý Ýact i act i
i i

where m and n denote the number of active electrons and orbitals, respectively. We define theact act

quasi-complete space as the product space of CAS spanned by the determinants or CSF as follows:

� 4 � 4QCAS m , n sCAS m ,n =CAS m ,n = PPP =CAS m ,n , 2Ž . Ž . Ž . Ž .Ž .i i 1 1 2 2 N N

Ž .such that the number of electrons in each orbital group satisfies the restriction in Eq. 1 .
The dimension of QCAS is much smaller than that of CAS for the same set of active electrons and orbitals.

Ž . ŽFor example, the dimension of CAS 16,16 spanned by the determinants with Ms0 is 165 636 900 throughout
this Letter, the dimension of an active space is expressed by the number of determinants with Ms0 and no

. Ž . Ž . Ž . Ž .symmetry . If we divide the active electrons and orbitals into five groups: 4e,4o q 4e,4o q 4e,4o q 2e,2o
Ž .q 2e,2o , where 4e and 4o denote 4 electrons and 4 orbitals in the group, respectively, the dimension of QCAS

Ž 3 2 .is 746 496 s36 P4 .
One of the most time-consuming steps in the MC-SCF procedure is the solution of the CI eigenvalue

problem. In particular, the computation of the s-vector,

1
² < < : < ² < < :ss H c s h I E J q ij kl I E E yd E J c , 3Ž .Ž .Ý Ý Ý ÝI J J i j i j i j k l jk i l J½ 52J J ij ijkl
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is an essential part of the problem. Here, H and c are the elements of the CI Hamiltonian and CI vector,I J J
Ž < . < :respectively, h and ij kl are the core Hamiltonian and electron repulsion integrals, respectively, and I andi j

Ž .E are the CI basis functions Slater determinants or CSF and the unitary group generators, respectively.i j

We adopt here Slater determinants as the basis functions of CI space rather than CSF. Furthermore, we split a
determinant into an alpha and beta string of each group,

< : < 1 N 1 N : < 1: < N : < 1: < N :I s I PPP I ; I PPP I s I PPP I I PPP I , 4Ž .a a b b a a b b

< : < G: < G:where I are now determinants and I and I are segmented alpha and beta strings of group G,a b

respectively. We can specify a string in a group independently of those in the other groups.
Let us consider the case where the numbers of alpha and beta electrons are equal in each group, and the case

Ž .where the unpaired alpha electrons take the highest spin coupling SsM/0 . In these cases, the number of
alpha and beta electrons, as well as the total number of electrons, in each group may be fixed. Then we can

² < a < : ² < b < : Ž .decompose one-body alpha coupling constants I E J and beta coupling constants I E J in Eq. 3 intoi j i j

the coupling constants for the strings of the groups as

² < < : ² < a < : ² < b < :I E J s I E J q I E Ji j i j i j

° G a G G b G² < < : ² < < :H H H H H H H HI E J d d q I E J d dŁ Ł Ł Ła i j a I J I J b i j b I J I Ja a b b a a b b

H/G H H H/G~s . 5Ž .i , jgGŽ .¢ 0 otherwiseŽ .

Using this relation, we obtain a s-vector formula,

s I 1 PPP I N ; I 1 PPP I N ss w1x qs w1x qs w2x qs w2x qs w2x , 6Ž .Ž .a a b b a b a a bb a b

where the first, third, and last terms of the right hand side are given by

s w1x I 1 PPP I N ; I 1 PPP I NŽ .a a a b b

1
G a G 1 G Gq1 1< ² < < :s h y ik kj I E J c I PPP J I PPP ; I PPP , 7Ž .Ž . Ž .Ý Ý Ý Ýi j a i j a a a a b2GG ijgG kgGJa

s w2x I 1 PPP I N ; I 1 PPP I NŽ .aa a a b b

1
G a G G a G 1 G Gq1 1< ² < < :² < < :s ij kl I E K K E J c I PPP J I PPP ; I PPPŽ . Ž .Ý Ý Ý Ý a i j a a k l a a a a b2 G GG ijklgGJ Ka a

G a G H a H< < ² < < :² < < :q ij kl y il kj I E J I E JŽ . Ž .Ý Ý Ý Ý a i j a a k l a

G HG)H ijgG klgHJ Ja a

=c I 1 PPP J GI Gq 1 PPP J HI Hq 1 PPP ; I 1 PPP , 8Ž .Ž .a a a a a b

and

w2x 1 N 1 N < ² G < a < G:² H < b < H :s I PPP I ; I PPP I s ij kl I E J I E JŽ .Ž . Ý Ý Ý Ýab a a b b a i j a b k l b

G HGH ijgG klgHJ Ja b

=c I 1 PPP J GI Gq 1 PPP ; I 1 PPP J HI Hq 1 PPP , 9Ž .Ž .a a a b b b

w1x w2x Ž . Ž .respectively. The other terms, s and s , are obtained by exchanging a and b in Eqs. 7 and 8 ,b bb

respectively. Similarly, the one- and two-particle density matrices used in orbital optimization in the MC-SCF
procedure are written by the coupling constants for the strings of the groups.
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Table 1
Ž w x.Bond length, vibrational frequency, and dissociation energy for CO molecule. The experimental values are taken from Ref. 12

Dimension r v De e e
y1 y1˚Ž . Ž . Ž .A cm kcal mol

Ž .CAS 12,12 48200 1.1325 2175 247.2
3wŽ . xQCAS 4,4 4 096 1.1324 2175 248.0

Exptl. – 1.128323 2169.8 255.8

The characteristic feature to be noted here is that both the s-vector and density formulae are written only
with one-electron coupling constants between strings in a group, and no intergroup coupling constants appear.
This fact makes the QCAS-CI eigenvector computation efficient. Note that by using CSF we cannot reach a
similar decoupling.

Let us consider the case where there are unpaired alpha electrons in a group and beta-electrons in another
Ž .group. To treat this case, we need to extend the definition Eq. 2 to the sum of the product spaces. We do not

treat such a case in this Letter, although it will be presented in a future paper.

3. Test calculations

We calculated with QCAS-SCF some spectroscopic constants and a potential energy curve of CO, the
transition state barrier height of the reaction H CO™H qCO, and the energy difference between trans- and2 2

cis-butadiene, and compared the results with those of CAS-SCF with corresponding active spaces.

3.1. Spectroscopic constants and ground state potential curÕe of CO

Ž .The basis set used is the correlation consistent polarized valence triple zeta cc-pVTZ basis set of Dunning
w x Ž X X .11 . The active spaces were constructed from 6 electrons and 12 5s–8s, 1p–4p, and 1p –4p orbitals. CAS
was used for comparison and was constructed by distributing these 6 electrons among all 12 orbitals. QCAS was

� 4 � 4 � X X4constructed by first dividing the orbitals into three groups, 5s–8s , 1p–4p , and 1p –4p , and then
wŽ .3 xdistributing two electrons among each group. Henceforth, we call this active space QCAS 2,4 . The

wŽ .3 x Ž .dimension of QCAS 2,4 is 4 096, while that of CAS 6,12 is 48 200.

Ž . Ž . Ž 1 q .Fig. 1. The QCAS-SCF v and CAS-SCF ` potential curves of the ground state X S of CO.
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Ž 1 q .Fig. 2. The energy difference between the QCAS-SCF and CAS-SCF methods in the ground state X S of CO.

Table 1 summarizes the results of some spectroscopic constants. All the constants, r , v , and D ofe e e

QCAS-SCF are in good agreement with those of CAS-SCF. The differences from CAS-SCF for r and v aree e
˚ y1 y1less than 0.001 A and 1 cm , respectively, and that in D is only 0.8 kcal mol . Fig. 1 shows the potentiale

curves of the ground state, X 1
S

q, calculated with the QCAS-SCF and CAS-SCF methods. Fig. 2 shows the
difference between QCAS-SCF and CAS-SCF energies. Although the QCAS-SCF curve is about 10 millihartree
above the CAS-SCF curve, QCAS-SCF reproduces the shape of the CAS-SCF potential curve well. This is

Žindicated by the difference being almost constant maximum deviation in energy difference is about 5
.millihartree for the entire bond length. It is the shape of potential curves that is important in chemical reaction

studies, not the absolute energy. Thus, it can be said that QCAS-SCF exhibits high performance.

3.2. Transition state barrier height of reaction H CO™H qCO2 2

w xThe equilibrium and transition structures used are the same as in a previous paper 13 . The complete active
Ž .space we used for comparison is CAS 12,10 , which is a full valence active space. We split the active orbitals

� Ž ) .4 � Ž ) .4 � Ž ) . Ž X X ) . Ž .4into CO s,s , CO p,p , and CH s,s ,CH s ,s ,O lp,lp , where lp denotes a lone pair orbital, and
wŽ .2 Ž .xthen we distributed 2, 2, and 8 electrons among the above groups, respectively, to construct QCAS 2,2 = 8,6 .

The dimension of the CAS is 44 100, while that of QCAS is 3 600.
w xThe results with cc-pVTZ and cc-pVQZ 11 are shown in Table 2. The QCAS-SCF results are very close to

the corresponding CAS-SCF results. Although differences in the energy itself between QCAS-SCF and
CAS-SCF are about 10 millihartree for both basis sets, the differences in the barrier height are 0.72 and 0.54

Ž y1 .millihartree 0.4 and 0.3 kcal mol for cc-pVTZ and cc-pVQZ, respectively.

Table 2
Transition state barrier height for H CO™H qCO2 2

Dimension Eq. Tr. D E
y1Ž . Ž . Ž .hartree hartree kcal mol

cc-pVTZ
Ž .CAS 12,10 44100 y114.05837 y113.91438 90.4

2wŽ . Ž .xQCAS 2,2 = 8,6 3 600 y114.04835 y113.90364 90.8

cc-pVQZ
Ž .CAS 12,10 44100 y114.06779 y113.92325 90.7

2wŽ . Ž .xQCAS 2,2 = 8,6 3 600 y114.05760 y113.91252 91.0
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Table 3
Energy difference between trans- and cis-butadiene

Dimension trans cis D E
y1Ž . Ž . Ž .hartree hartree kcal mol

Ž .CAS 10,10 63504 y155.10398 y155.09861 3.37
wŽ . Ž .xQCAS 6,6 = 4,4 14400 y155.09812 y155.09270 3.40

3wŽ . Ž .xQCAS 2,2 = 4,4 2 304 y155.09580 y155.09026 3.47
Ž .CAS 10,14 4 008004 y155.12602 y155.12025 3.62

3wŽ . Ž .xQCAS 2,2 = 4,8 50176 y155.10991 y155.10435 3.48

3.3. Energy difference between trans- and cis-butadiene

w xThe basis set used was cc-pVTZ 11 . For the polarization functions, the g function on C and d function on H
Ž .were omitted. The structures were determined by CAS 4,4 calculations with cc-pVDZ. The active orbitals used

Ž ) . Ž ) .were six C–C s s and four p p orbitals. In the QCAS-SCF calculations, we split up the active electrons
Ž . � Ž )

X X ) Y Y ) . 4 �and the active orbitals as follows: 1 6 elecs. in C–C s,s ,s ,s ,s ,s orbs. and 4 elecs. in
)

X X ) 4 Ž . � Ž ) . 4 � Ž X X ) . 4 �p,p ,p ,p orbs. , and 2 2 elecs. in C–C s,s orbs. , 2 elecs. in C–C s , s orbs. , 2 elecs. in C–C
Ž Y Y ) . 4 � )

X X ) 4s ,s orbs. and 4 elecs. in p,p ,p ,p orbs. . The QCAS constructed with these sets are denoted by
wŽ . Ž .x wŽ .3 Ž .x Ž .QCAS 6,6 = 4,4 and QCAS 2,2 = 4,4 , respectively. The dimension of CAS 10,10 is 63 504, while

wŽ . Ž .x wŽ .3 Ž .xthose of QCAS 6,6 = 4,4 and QCAS 2,2 = 4,4 are 14 400 and 2 304, respectively. Furthermore, we
carried out the calculations with QCAS constructed using the active orbitals and by adding four more diffuse

) Ž . wŽ .3 Ž .xp orbitals to the p orbital set in 2 , which is denoted by QCAS 2,2 = 4,8 . The dimension of
wŽ .3 Ž .x Ž .QCAS 2,2 = 4,8 is 50 176, and that of the corresponding complete active space, CAS 10,14 , is 4 008 004.

The results are summarized in Table 3. The difference in the relative energy is small. The differences in D E
Ž . y1 wŽ . Ž .x wŽ .3from the results in CAS 10,10 are only 0.03 and 0.10 kcal mol for QCAS 6,6 = 4,4 and QCAS 2,2 =

Ž .x4,4 , respectively. The doubled p orbitals decrease total energies by about 20 and 10 millihartree in CAS- and
QCAS-SCF, respectively, but the effect on D E is small. Again, the agreement of the results between QCAS and

wŽ .3 Ž .x Ž .the corresponding CAS is good. The difference in D E between QCAS 2,2 = 4,8 and CAS 10,14 is 0.14
kcal moly1.

4. Summary and conclusions

We proposed a new type of multi-configuration self-consistent field method, in which QCAS, the product
space of complete active spaces, is used as a variational space. QCAS-SCF is designed to circumvent the
large-scale CI problem in the CAS-SCF method. QCAS, with a physically sound partitioning of active space,
can reduce the computational effort without loss of accuracy. Furthermore, since QCAS-SCF is a natural
extension of CAS-SCF, it retains the advantages of CAS-SCF.

We derived efficient formulae with segmented alpha and beta strings and carried out some preliminary
QCAS-SCF calculations. In all the applications, the QCAS-SCF reproduced the results of corresponding
CAS-SCF quite well. The deviations from CAS-SCF were less than 1 kcal moly1 in relative energy. We expect
that the QCAS-SCF method is a useful approach for studying chemical reaction mechanisms.
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