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Abstract

An efficient computational scheme for using the relativistic and non-relativistic quasidegenerate perturbation theory with general mul-
ticonfigurational reference functions is implemented. The scheme is based on the matrix element between the reference and the zero- to
two-electron ionized determinants. Comparison with a previous scheme based on diagrams is made using the excitation spectra of
[PtCl4]2�, CH3I, and H2CO as examples, and the efficiency of the scheme is illustrated.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

Multireference perturbation theory (MRPT) has now
become a basic tool for studying the electronic structures
and chemical reactions of molecules. Today, we can use
MRPT through many quantum chemistry program pack-
ages. An advantage of MRPT compared with other
multireference methods, such as MR configuration interac-
tion (CI) and MR coupled cluster (CC) methods, is the fea-
sibility for relatively large active spaces and basis sets;
neither a long CI vector nor CC amplitude is necessary.
Another advantage is its efficiency as there are no large-
scale diagonalization or linear-equation problems. For
MRPT to take advantage of these features, an efficient
computational scheme is essential.

We have proposed an MRPT, which we call quasidegen-
erate perturbation theory with multiconfigurational refer-
ence functions (MC-QDPT) [1], and extended it to
general MC reference spaces [2,3]. This MC-QDPT with
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general MC reference functions (GMC-QDPT) has been
implemented using a scheme based on Goldstone diagrams.
In this Letter, we present a more efficient scheme based
on matrix elements between the reference and ionized
determinants.

There have been several computational schemes for
MRPTs. Andersson et al. used the internally contracted
configuration (ICC) scheme for their complete active space
(CAS) PT [4]. Hirao utilized bonded functions to realize his
MR Møller–Plesset PT [5]. Celani and Werner derived
matrix elements formulas involving ICC for their general
MRPT2 [6]. These three examples are all based on spin-
adapted configuration state functions. Kozlowski and
Davidson employed a determinant-based algorithm [7].
The scheme to be presented here is an intermediate scheme
between those of Celani–Werner and Kozlowski–David-
son. Our scheme uses spinor/spin-orbital based determi-
nants and matrix elements to be a common scheme to the
relativistic and non-relativistic MRPTs.

2. Method

Let jlæ and Eð0Þl be general multiconfigurational refer-
ence functions and their zeroth-order energies:
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jli ¼
X

A2GCS

Cl
AjAi; Eð0Þl ¼

X
p

hljaypapjliep;

(GCS stands for general configuration space), respectively.
Here ayp and ap are the creation and annihilation operators
for an electron in spin-orbital (or spinor) p, respectively,
and the orbital energies ep are defined by

ep ¼ hpp þ
X

rs

Dave
rs ½ðppjrsÞ � ðpsjrpÞ�;

where Dave
rs is the averaged one-particle density matrix. The

effective Hamiltonian up to the second-order H ð0�2Þ
eff of

GMC-QDPT [2,3] is given by

H ð0�2Þ
eff

� �
lm
¼ EGCS�CI

l dlm þ
1

2

X
I 62GCS

hljH jIihI jH jmi
Eð0Þm � Eð0ÞI

(

þ
X

I 62GCS

hljH jIihI jH jmi
Eð0Þl � Eð0ÞI

)
; ð1Þ

where I is a determinant outside the GCS.
We define the corresponding CAS (CCAS) as a CAS

constructed from the same active electrons and orbitals,
that is, the minimal CAS that includes the reference
GCS. The summation over I in Eq. (1) can be divided into
summations over determinants outside CCAS and over
determinants outside the GCS but inside CCAS, and then
the former term in the curly brackets of Eq. (1) can be writ-
ten as

H ð2Þeff

� �
lm
¼

X
I 62CCAS

hljH jIihI jH jmi
Eð0Þm � Eð0ÞI

þ
X

I2CCAS^I 62GCS

hljH jIihI jH jmi
Eð0Þm � Eð0ÞI

: ð2Þ

(The latter term can be simply obtained by taking the Her-

mite conjugate of H ð2Þeff

� �
lm

). The first term in Eq. (2) repre-

sents external excitations, while the second term represents
internal excitations [2].

The internal term is computed through matrix opera-
tions for the Hamiltonian matrix

H ð2Þinternal

� �
lm
¼ vyðlÞ � wðmÞ

with

vIðlÞ ¼
X

A2GCS

hI jH jAiCl
A;

wIðmÞ ¼
X

B2GCS

hI jH jBiCm
B Eð0Þm � Eð0ÞI

� �.
:

The intermediate determinants I are constructed by excit-
ing one or two electron(s) from the reference determinants
within the active orbital (spinor) space. In general, the
computational time for the internal term is small compared
with that for the external term.

The external term has been computed with a diagram-
matic scheme in the previous implementation [2,3]. Here,
we present another computational scheme. The external
term is expressed by
H ð2Þexternal

� �
lm
¼
X
XBM

hljHEX jBMihBM jEyX H jmi
Eð0Þm � Eð0Þ

XBM

;

where jBMæ are (ionized) determinants composed from M

active spin-orbitals, EX are operators that make holes in
core spin-orbitals and/or electrons in virtual spin-orbitals,
and Eð0Þ

XBM are zeroth-order energies of EXjBMæ. Possible
combinations of EX and jBMæ are as follows:

Eef BN�2i
��� �

; ðIÞ
Ee BN�1i
�� ; Eef

i BN�1i
��� �

; ðIIÞ
Ee

i BN i
�� ; Eef

ij BN i
��� �

; ðIIIÞ

Ei BNþ1i
�� ; Ee

ij BNþ1i
��n o

; ðIVÞ

Eij BNþ2i
��� �

; ðVÞ

where e and f are external spinor/spin-orbital labels, i and j

are core spinor/spin-orbital labels, and N is the number of
active electrons. The matrix elements for these combina-
tions are given through the normal ordering as

hljHEef jBN�2i ¼ 1

2

X
pr

X
A

ðpekrf ÞCl�
A hAjEprjBN�2i;

hljHEejBN�1i ¼
X

p

X
A

f core
pe Cl�

A hAjEpjBN�1i

þ 1

2

X
prs

X
A

ðpekrsÞCl�
A hAjEpr

s jBN�1i;

hljHEef
i jBN�1i ¼

X
p

X
A

ðpekif ÞCl�
A hAjEpjBN�1i;

hljHEe
i jBN i ¼

X
A

f core
ie Cl�

A hAjBN i þ
X

pq

X
A

ðpqkieÞCl�
A hAjEp

qjBN i;

hljHEef
ij jBN i ¼

X
A

ðiekjf ÞCl�
A hAjBN i;

hljHEijBNþ1i ¼ �
X

q

X
A

f core
iq Cl�

A hAjEqjBNþ1i

� 1

2

X
qrs

X
A

ðiqkrsÞCl�
A hAjEr

qsjBNþ1i;

hljHEe
ijjBNþ1i ¼ �

X
q

X
A

ðiqkjeÞCl�
A hAjEqjBNþ1i;

and

hljHEijjBNþ2i ¼ 1

2

X
qs

X
A

ðiqkjsÞCl�
A hAjEqsjBNþ2i;

where f core
pq is the core Fock matrix, (pqirs) are antisymmet-

rized two-electron integrals ((pqirs) = (pqjrs) � (psjrq)),
and Epr...

qs... are operators defined by

Epr...t
qs...u ¼ aypayr . . . ayt au . . . asaq:

A simplification can be obtained if we adopt Eef
ij mij instead

of Eef
ij BNi
�� in (III):

hljHEef
ij jmi ¼ ðiekjf Þhljmi ¼ ðiekjf Þdlm:

In this case, the contribution of Eef
ij mij to the effective Ham-

iltonian matrix becomes the second-order Møller–Plesset
formula for the diagonal elements and zero for the off-diag-
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onal elements. We use this simplified form in the applica-
tions in the next section.

We have used spin-orbital-based determinants and cou-
pling coefficients. In the non-relativistic case, the spin sym-
metry is only considered to treat integrals in the molecular
(spatial) orbital basis.

3. Applications

We applied the present computational scheme to some
molecular systems and measured CPU times (on a
3.4 GHz Pentium 4 processor) to illustrate its performance.
We calculated the excitation energies of [PtCl4]2� and CH3I
with four-component relativistic GMC-QDPT and the
excitation energies of H2CO with non-relativistic GMC-
QDPT. The spinors were determined with the Dirac–Har-
tree–Fock (DHF) method in the relativistic cases and the
orbitals were determined by the multiconfiguration self-
consistent field method in the non-relativistic case. The
emphasis in the discussions is placed mainly on the effi-
ciency of the schemes rather than the computed excitation
energies themselves.

3.1. d–d Excitation energies of [PtCl4]2�

The target states of our first example, [PtCl4]2�, were the
12 excited states due to d–d single excitations, as well as the
ground state. The reference space was a multireference sin-
gles (MRS) type space constructed from 20 electrons and
26 spinors. The determinants that spanned the reference
space were generated from 41 parent configurations
(DHF configuration and single excitation configurations
constructed from 20 occupied and the two lowest unoccu-
pied spinors) and selected according to their weight in the
reference functions. Only the determinants whose weights
Table 1
d–d Excitation energies of [PtCl4]2� (eV)

State GCS-CI GMC-QDPT Ref. weighta

(%)

2A1g 1.88 2.03 76.2
1A2g 1.96 2.13 76.3
1Eg 1.99 2.18 76.4

1B2g 2.08 2.42 76.7

1B1g 2.38 2.55 76.2
2Eg 2.40 2.60 76.4
3A1g 2.92 2.78 75.6
3Eg 2.98 2.92 75.9

2A2g 3.39 3.23 75.7

2B2g 3.29 3.42 76.1
4Eg 3.74 3.76 75.9
2B1g 3.74 3.94 76.4
5Eg – – –
3B2g – – –
3B1g – – –

a The reference weight of the ground state was 76.6%.
b Ref. [10].
c Ref. [11].
were greater than 10�8 (i.e. jCIj > 10�4) were selected.
The basis sets used were Dyall’s VDZ set [8] for Pt and
the cc-pVDZ-DK set of Patterson et al. [9] for Cl.

The computed excitation energies are summarized in
Table 1. The two-component time-dependent density func-
tional theory (TDDFT) results of Wang and Ziegler [10]
and experimental values of Patterson et al. [11] are also
listed for comparison. The assignment was done similarly
to that provided by Wang and Ziegler [10]. The GMC-
QDPT computed values for 1Eg (2.18 eV), 1B2g (2.42 eV),
1B1g (2.55 eV) [or 2Eg (2.60 eV)], 3Eg (2.92 eV), 2A2g

(3.23 eV), and 4Eg (3.76 eV) were in good agreement with
the peak values of band 1–6 (2.12, 2.24, 2.57, 2.97, 3.23,
and 3.67 eV, respectively). The values of the approximate
reference weight [2], which is a measure of the quality of
the reference wave functions, are also listed in Table 1.
The close values of the weight mean the qualities of the ref-
erence wave functions were well balanced.

Table 2 shows the CPU times for the diagrammatic and
the present matrix-element schemes. The notations zero- to
three-body mean the CPU times for zero- to three-body
terms in the diagrammatic scheme. The symbol Ee

i BNi
�� ,

for example, means the CPU time for the terms involving
Ee

i BN i
�� in the matrix-element scheme. The word internal

means the term involving active-to-active excitations,
which is common to the diagrammatic and matrix-element
schemes. There is no one-to-one correspondence between
the terms of the diagrammatic and matrix-element schemes
except for the internal term; hence, there is also no one-to-
one correspondence in CPU times. However, we can divide
the CPU time according to the integral types processed: all-
internal (ijikl), one-external (eiijk), and two-external (eiifj)
integrals (i, j,k, l: internal (core and active) spinor labels;
e, f: external spinor labels). Table 2 also shows the CPU
times according to this division.
TDDFTb Bandc Expt.c

2.30

1 2.06–2.14 (peak value: 2.12)2.34
2.38

2.49 2 2.16–2.29 (2.24)

2.59
3 2.42–2.60 (2.57)

2.69
2.98

4 2.84–3.05 (2.97)
3.03

3.19 5 3.08–3.33 (3.23)

3.43

6 3.41–3.91 (3.67)
3.50
3.53
3.53
3.71
3.74 7 4.09– (4.53)

�

�
�
9=
;



Table 2
CPU times for the [PtCl4]2� calculations (s)

Diagrammatic scheme Present scheme

All internal integral term All internal integral term
Internal 10 Internal 10

1 External integral terms 1 External integral terms
0-Body 199 Ee

i BN i
�� 143

1-Body 2162 EejBN�1æ 58
2-Body 6241 EijBN+1æ 6
3-Body 9955 Ee

ij BNþ1i
�� 107

EijjBN+2æ 1
Subtotal 18557 Subtotal 315

2 External integral terms 2 External integral terms
0-Body 0 Eef

ij

���mi 0
1-Body 2128 Eef

i BN�1i
�� 2610

2-Body 1839 EefjBN�2æ 866
Subtotal 3967 Subtotal 3476

Total time 22534 Total time 3801
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Because the CPU times for the internal term were small
and common to both schemes, we focus on the CPU times
for one- and two-external integral terms. The CPU times
for the one-external terms were quite different. The CPU
times for the diagrammatic and matrix-element schemes
were 18557 and 315 s, respectively. The present matrix-ele-
ment scheme was 58.9 times faster than the diagrammatic
Table 3
Vertical excitation energies of CH3I (eV)

State MRSD reference space

GCS-CI GMC-QDPT Ref. weighta

(%)

1E 5.36 4.18 82.8
2E 5.51 4.35 83.2
1A2 5.94 4.71 82.4
2A1 6.03 4.78 82.6
3E 6.27 5.14 84.0

a The reference weight of the ground state was 91.0% (MRSD) and 90.7% (

Table 4
CPU times for the CH3I calculations (s)

Diagrammatic scheme MRSD MRS

All internal integral term
Internal 9 49

1 External integral terms
0-Body 120 73
1-Body 1125 688
2-Body 3412 1334
3-Body 4373 1287

Subtotal 9030 3382

2 External integral terms
0-Body 0 0
1-Body 491 95
2-Body 453 104
Subtotal 944 199

Total time 9983 3630
scheme. On the other hand, the CPU times for the two-
external integral terms were not so different, being 3967
and 3476 s for the diagrammatic and matrix-element
schemes, respectively. Mainly because of the difference in
one-external integral terms, the total CPU time of the
matrix-element scheme was 5.93 times smaller than that
of the diagrammatic scheme.

3.2. Excitation energies of CH3I

The target excited states of CH3I were the lowest five
states (1E, 2E, 3E, 1A2, and 2A1), which come mainly from
n (iodine 5pp) to r* (CH antibonding) single excitations.
The 3E state roughly corresponds to the singlet n–r* state
in the non-relativistic case, whereas the other roughly cor-
respond to the triplet n–r* states. The basis set used was
Dyall’s VTZ set for I [12] and the cc-pVTZ-DK set for C
and H [9]. Two reference spaces of MRSD- and MRS-type
were used, which were constructed from 12 electrons and
20 spinors, and 12 electrons and 36 spinors, respectively.
Apart from the basis sets, the computational conditions
were the same as those in Ref. [3].

The computed excitation energies are summarized in
Table 3. The excitation energies at the GMC-QDPT level
were a little larger than those in a previous paper [3]
because of the difference in the basis sets. However, overall,
MRS reference space Expt.

GCS-CI GMC-QDPT Ref. weighta

(%)

4.44 4.20 89.8 –
4.62 4.36 89.7 4.13
4.99 4.74 89.7 –
5.12 4.81 89.5 4.75
5.45 5.13 89.4 5.17

MRS).

Present scheme MRSD MRS

All internal integral term
Internal 10 51

1 External integral terms
Ee

i BN i
�� 78 77

EejBN�1æ 21 62
EijBN+1æ 6 86
Ee

ij BNþ1i
�� 99 109

EijjBN+2æ 3 21
Subtotal 207 355

2 External integral terms
Eef

ij mij 0 0
Eef

i BN�1i
�� 526 124

EefjBN�2æ 97 23
Subtotal 623 147

Total time 840 553



Table 6
CPU times for the H2CO calculations (s)

Diagrammatic scheme Present scheme

All internal integral term All internal integral term
Internal 91 Internal 91

1 External integral terms 1 External integral terms
0-Body 17 Ee

i BN i
�� 102

1-Body 152 EejBN�1æ 327
2-Body 787 EijBN+1æ 720
3-Body 2388 Ee

ij BNþ1i
�� 55

EijjBN+2æ 43
Subtotal 3344 Subtotal 1247

2 External integral terms 2 External integral terms
0-Body 0 Eef

ij mij 0

1-Body 137 Eef
i BN�1i
�� 169

2-Body 1293 EefjBN�2æ 187
Subtotal 1430 Subtotal 356

Total time 4865 Total time 1694
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the values were close to each other; the present values were
larger than the previous ones by only 0.10 eV on average.
Similar to the previous calculation, GMC-QDPT repro-
duced the experimental values well. The deviations were
0.22 (0.23), 0.03 (0.06), and 0.03 (0.04) eV for the 2E,
2A1, and 3E states, respectively, in the case of the MRSD
(MRS) reference space.

Table 4 shows the CPU times for each term. The ten-
dency is similar to the [PtCl4]2� case. The present scheme
was much more efficient than the diagrammatic scheme
for the one-external integral terms. The ratios of CPU
times (TDiagrammatic/TPresent) were 43.6 and 9.53 for MRSD
and MRS reference spaces, respectively. On the other hand,
for the two-external integral terms, the ratios were only
1.52 (MRSD) and 1.35 (MRS). As a result, the ratios of
total CPU times were 11.88 and 6.56 for the MRSD and
MRS reference spaces, respectively.

3.3. Excitation energies of H2CO

The target states were the six lowest singlet excited states
(11A2, 11B2, 11B1, 21A1, 21A2, and 31A1) and the ground
state. The reference space used was almost the same as
the largest one constructed from eight electrons and 24 spi-
nors in a previous paper [2], but differs in the determinant
selection according to the reference CI coefficients
(jCIj > 10�4) in the present calculation. The basis set and
geometry were the same as those in the previous paper.
The seven target states were treated simultaneously, in con-
trast to the previous calculation, where states of the same
symmetry were treated simultaneously.

The excitation energies are listed in Table 5. The values
for GMC-QDPT were similar to those of a previous paper
[2], as expected from the similar computational conditions,
although the values were slightly smaller than the previous
values (by �0.11 eV on average). The 11A2 (4.00 eV), 11B1

(9.34 eV), and 31A1 (10.48 eV) excitation energies were
close to the available experimental values (4.07, 9.00, and
10.70 eV, respectively).

Table 6 shows the CPU times for this calculation. The
tendency is different from that of [PtCl4]2� and CH3I.
For one-external integral terms, the present scheme
(1247 s) was 2.7 times more efficient than the diagrammatic
scheme (3344 s). Similarly, for the two-external integral
terms, the ratio was 4.0 (1430 s/356 s). The present scheme
Table 5
Vertical excitation energies of H2CO (eV)

State Orbital picture MC-SCF GMC-QDPT Ref. weighta

(%)
Expt.

11A2 n! p* 4.21 4.00 95.5 4.07
11B2 n! 6a1(r*) 8.54 8.23 95.0
11B1 5a1(r)! p* 9.99 9.34 94.0 9.00
21A1 p! p*; n! r* 10.02 9.60 94.7
21A2 1b2(r)! p* 11.24 10.31 94.6
31A1 n! r*; p! p* 11.00 10.48 94.1 10.70

a The reference weight of the ground state was 96.0%.
was 2.9 times more efficient than the diagrammatic scheme
in total CPU time. This difference in tendency was not due
to the difference between the relativistic and non-relativistic
treatments, but mainly due to the difference in the number
of core spin-orbitals (or spinors) that were correlated in the
perturbation calculations. There were 20 core spinors
included in the perturbation calculations in both the
[PtCl4]2� and CH3I cases, whereas, in the H2CO case, there
were only two core spin-orbitals included. This difference
affected the ratio of the time for one- and two-external inte-
gral terms, thus giving the difference in tendency.

For these three examples, the present scheme was more
efficient than the diagrammatic scheme. However, we do
not claim that it is always the case. There were few but
some instances where the diagrammatic scheme was more
efficient. The I2 molecule reported in Ref. [3] was such an
instance (e.g. 1070 s (present) and 788 s (diagrammatic) at
R = Re).

4. Concluding remarks

An efficient computational scheme for GMC-QDPT has
been implemented in the present Letter, which is based on
the matrix element between the reference and ionized deter-
minants. This scheme was tested on the excitation energies
of [PtCl4]2�, CH3I (for the relativistic GMC-QDPT) and
H2CO (for the non-relativistic GMC-QDPT) and com-
pared with the previous diagrammatic scheme. The present
scheme was about 3–12 times more efficient than the dia-
grammatic scheme for these molecules. These results indi-
cate the effectiveness of the present scheme in both the
relativistic and non-relativistic cases.
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