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Ž .ABSTRACT: An algorithm for computing electron repulsion integrals ERIs oriented
to the general contraction scheme is presented. The accompanying coordinate expansion
Ž .ACE method of Ishida is utilized to derive an efficient algorithm. The performance

Ž . 2estimated with the floating-point operation FLOP count is about N times and more as
efficient as the conventional algorithm for the segmented contraction scheme, where N

Ž .indicates the number of contracted Gaussian-type orbitals GTOs contained in a set of
generally contracted GTOs. The efficiency is also confirmed by using a realistic molecular
system, the benzene molecule, with C:14 s9pr3s2 p, H:8 s4 pr2 s1 p, and C:14 s9pr6 s5p,

Ž .H:8 s4 pr4 s3 p basis sets. The measured central processing unit CPU time is in good
agreement with the FLOP count estimation. Q 2000 John Wiley & Sons, Inc. Int J Quant Chem
76: 396]406, 2000
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accompanying coordinate expansion method

Introduction

b initio calculations on large molecular sys-A tems containing thousands of atoms or tens
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of thousands of basis functions are a challenging
problem in current quantum chemistry. Such sys-
tems can be seen in many important chemical
models, such as surface]molecular interface sys-
tems in reactions on a surface or in solution and in
biological reactions. Although computational tech-

w xniques, such as the direct method 1 and parallel
computation, have made great progress, computa-
tion of the huge number of electron repulsion

( )International Journal of Quantum Chemistry, Vol. 76, 396]406 2000
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ELECTRON REPULSION INTEGRALS

Ž .integrals ERIs is still a major problem. Two as-
pects are crucial in achieving fast computation of
ERIs. One is the selection of an efficient basis set,
and the other is the adoption of a sophisticated
computational scheme. In the present work, we
propose an elaborate algorithm for ERIs involving
the advantages of the general contraction scheme

Ž . w xfor Gaussian-type orbitals GTOs 2 and the ac-
Ž .companying coordinate expansion ACE method

w xdeveloped by Ishida 3 .
The general contraction scheme was first pro-

w xposed by Raffenetti 2 in which the contracted
basis is treated as a linear combination of the
primitive basis, with each primitive function con-

Ž .tributing to several or all of the contracted func-
tions. Explorations of general contraction schemes
and applications to molecular problems were car-

w xried out by Raffenetti, Ruedenberg, and Bardo 4 .
General contraction was also utilized in the well-

w xtempered basis sets of Huzinaga 5 , but wider use
did not take place until two recent developments

Ž .of atomic natural orbital ANO basis sets by
w xAlmlof and Taylor 6 and correlation-consistent¨

w xbasis sets by Dunning 7 . Unlike most earlier basis
sets, which were determined on the basis of self-

Ž .consistent field SCF calculations, these new types
of generally contracted basis sets are designed
specifically to be effective in the treatment of
correlation. Performance comparisons with other
segmented contraction basis sets have been very
favorable and confirm that these general contrac-
tions fulfill their design objectives. The efficient
aspect of the general contraction scheme is that the
basis sets can describe the accurate atomic proper-
ties with small one-particle space and are simple
enough to treat the wave functions.

In spite of the advantages of the general con-
traction scheme, the computation of ERIs over
generally contracted basis functions is very expen-
sive if we use the conventional routines for the
segmented contraction scheme. Since the degree of
contraction of generally contracted basis sets is
usually much higher than that of segmentally con-
tracted basis sets, the calculation of ERIs over
them is very costly even if we use the best algo-
rithms. Another cause of the cost of the calculation
is that the conventional routines cannot utilize the
advantage of efficiency of the general contraction
scheme, since they treat the basis set for the gen-
eral contraction scheme in the same way as that for
the segmented contraction scheme.

In the present work, we present a refined algo-
rithm for calculating ERIs for the general contrac-
tion scheme so as to reduce significantly the cost
over that of the conventional algorithms. Our algo-
rithm employs the ACE-b3k3 formula derived by
Ishida, which is well-suited for the calculation of

w xERIs over highly contracted GTOs 3, 8, 9 . The
performance is supported by a theoretical measure

w xof the FLOP count 10, 11 .
In the following section, we show theoretically

our refined algorithm to adapt the ACE-b3k3 for-
mula to the general contraction scheme, comparing
it with the conventional method. The computa-
tional efficiency is discussed in the third section.
Our conclusion is given in the fourth section.

Method

ACE-b3k3 FORMULA

Several types of ACE formulas have been de-
rived by Ishida, such as ACE-b1k1, ACE-b2k1,

w xACE-b2k3, and ACE-b3k3 3 . The most efficient
type, namely the formula that gives the least FLOP
count, varies depending on the degree of the con-
traction. In the case of high contraction, the ACE-
b3k3 formula is most effective, and thus it is suit-
able for applying to the general contraction scheme.
In the present work, we focus on the ACE-b3k3
formula case.

First, we give a brief review of the ACE-b3k3
formulas. In the ACE-b3k3 method, a primitive
ERI over primitive GTOs is expressed as the sum-
mation of the products of an accompanying coor-
dinate part C A BC D and a core part H A BC D,4 4 lmnj

A B C Dw w N w wl m n j

A B C D A BC D� 4 A BC D� 4 Ž .s S S C N H N . 1Ýlm nj 4 3 4 lmnj 3
� 4N3

Here we omit the normalization factors. The GTOs,
w A, w B, w C, w D, are centered at coordinates A, B,l m n j

C, D and have the exponents, a A, a B, aC, a D, andl m n j

Ž .the quantum numbers, L s l m n , the sum ofA A A A

which, L , gives the angular momentum quantumA
� 4number. The set N represents summation in-3

dices,

� 4 � 4 Ž .N s M M M M i9 j9k9h9i0 j0 k0 h0 , 23 A B C D
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which obey the following restrictions:

0 F M F L , 0 F i9 F L y M ,A A A A

0 F i0 F i9,
0 F M F L , 0 F j9 F L y M ,B B B B

Ž .0 F j0 F j9, 3
0 F M F L , 0 F k9 F L y M ,C C C C

0 F k0 F k9,
0 F M F L , 0 F h9 F L y M ,D D D D

0 F h0 F h9.

The symbols S A B and SC D are the remaining partslm nj

� 4that do not depend on N ,3

2y1r4 3r2A B A BŽ . Ž .S s 2p prg exp ya a AB rg ,lm 1 l m 1ž /
Ž .4

2y1r4 3r2C D C DŽ . Ž .S s 2p prg exp ya a CD rg ,nj 2 n j 2ž /
Ž .5

with

A B C D Ž .g s a q a , g s a q a . 61 l m 2 n j

The accompanying coordinate part C A BC D,4
which is independent of the exponents
Ž A B C D.a , a , a , a , is given byl m n j

A BC D� 4 A3 B3 C3 D3 Ž .C N s D D D D , 7Ý4 3 i9i0 j9 j0 k 9k 0 h9h0
� 4M

with

A3 A3 x A3 y A3 z Ž .X Y X Y X YD s D D D 8Ý Ýi9i0 i i i i i ix x y y z z
� 4 � 4i9 i0

l l y M iX
A A A x xA3 x

X YD s X Yi ix x ž / ž / ž /M i iA x x x

lAyM A xyi x
X i x

X yi x
Y i x

Y Ž .= AB CD AC . 9x x x

� 4 � 4 � 4The sets M , i9 , and i0 are again summation
indices,

� 4 � 4M s M M M M ,A B C D Ž .10
Ž .M s M M M ,A A x A y A z

� 4 � X X X 4 � 4 � Y Y Y 4 Ž .i9 s i i i , i0 s i i i , 11x y z x y z

which obey the restrictions,

0 F M F l , 0 F iX F l y M ,A x A x A A x
Y X0 F i F i ,x x

X0 F M F m , 0 F i F m y M ,A y A y A A y
Y X Ž .120 F i F i ,y y

X0 F M F n , 0 F i F n y M ,A z A z A A z
Y X0 F i F i ,z z
???

M q M q M s M , iX q iX q iX s i9,A x A y A z A x y z
Y Y Yi q i q i s i0 ,x y z

??? Ž .13
Ž .M q M q M q M s even, . . . . 14A x B x C x D x

Note that C A BC D are determined only by the4
quantum numbers L , L , L , L , and the func-A B C D
tion centers A, B, C, D.

The core part is given by

A BC D� 4H N4 lmnj 3

M qM M qMA B C D

2 2
b qd a qc d qbA A B B C Cs G s s sÝ Ý i i A B C1 2

i i1 2

=s cDqa Ds MAqM Byi 1
D 1

My i yi1 2M qM yiC D 1 Ž .= s r s q s2 1 2

a qb c qdB A D C a q b c q ds qs1 2 B A D CŽ .= y1Ý Ý s sž / ž /1 2s s1 2

i9qj9qs k 9qh9qs1 2s s1 2
= ž / ž /s q s s q s1 2 1 2

Ž . Ž .=F z , 15zqs qs1 2

where

Ž . Ž . Ž .s s 1r 2g , s s 1r 2g , 161 1 2 2

s s a Arg , a s L y M y i9,A l 1 B A A

a s i9 y i0 ,D

s s a Brg , b s L y M y j9,B m 1 A B B

b s j9 y j0 ,C

C Ž .s s a rg , c s L y M y k9, 17C n 2 D C C

c s k9 y k0 ,B

s s a Drg , d s L y M y h9,D j 2 C D D

d s h9 y h0 ,A
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ELECTRON REPULSION INTEGRALS

Ž . Ž .M s M q M q M q M r2, 18A B C D

Ž .z s i9 q j9 q k9 q h9 q M y i y i , 191 2

and

Ž .M qM qMy i qiA B 1 2Ž . Ž .G s y1 g g g , 20Ýi i x y z1 2
� 4I

M q M M q MA x B x C x D x Ž .g s 2 i y 1 !!x 1 xž / ž /2 i 2 i1 x 2 x

Ž . Ž . Ž .= 2 i y 1 !! 2 M y 2 i y 2 i y 1 !!. 212 x x 1 x 2 x

The summation indices

� 4 � 4 Ž .I s i i i i i i 221 x 1 y 1 z 2 x 2 y 2 z

obey the restrictions,

w Ž . x0 F i F M q M r2 ,1 x A x B x
???

Ž .23
w Ž . x0 F i F M q M r2 ,2 x C x D x

???

Ž .i s i q i q i , i s i q i q i , 241 1 x 1 y 1 z 2 2 x 2 y 2 z

Ž .2 M s M q M q M q M . 25x A x B x C x D x

Ž . Ž .The function F z in Eq. 15 is the molecularm
incomplete gamma function defined by

1 2 m 2Ž . Ž . Ž .F z s t exp yzt dt 26Hm
0

2 Ž . Ž .with z s PQ r4d , d s 1r 4g q 1r 4g , P s1 2
s A q s B, Q s s C q s D.A B C D

Ž .One important advantage of Eq. 1 is that the
Ž Acore part depending on the exponents a ,l

B C D.a , a , a is identical for all integrals for them n j

shell-quadruplet, having a common set of angular
Ž .momentum quantum numbers, L , L , L , L .A B C D

Ž 4. ŽFor example, 81 s 3 individual integrals, p px y
. Ž .N p p , p p N p p , and so on, have a commonz x y z y x

set of angular momentum quantum numbers. Once
we calculate a core part for a set of angular mo-

Ž .mentum quantum numbers, L , L , L , L , it canA B C D
be used for all integrals for the shell-quadruplet
having the same set of angular momentum quan-
tum numbers. Utilizing this observation, we can
reduce dramatically the cost of the calculation in
the contraction step.

FLOP COUNT ESTIMATION FOR
CALCULATION OF GENERALLY
CONTRACTED ERIS

In this subsection, we give the FLOP count
expression for generally contracted ERIs. First, let
us consider the FLOP count expression for a usual

Ž .contracted ERI CERI .
Ž .A contracted GTO CGTO is a linear combina-

tion of primitive GTOs with all primitives having
the same angular momentum and function center
but different exponents,

KA
A A AŽ . Ž . Ž .f r s d w r , 27Ýp pl l

l

where K is the degree of contraction, and d A areA pl

Ž .the contraction coefficients. Combining Eqs. 1
Ž .and 27 , we obtain an expression for a contracted

ERI:

A B C D A BC D ¨ A BC D� 4 � 4 Ž .f f N f f s C N H N , 28Ž . Ýp q r s 4 3 4 p qr s 3
N3

¨ A BC Dwhere H is the contracted core part including4 p qr s
the factors S A B and SC D,lm nj

K KA B
A BC D A B A B¨ � 4H N s d d SÝÝ4 p qr s 3 pl q m lm

ml

K KC D
C D C D A BC D� 4 Ž .= d d S H N . 29ÝÝ rn sj nj 4 lmnj 3

n j

Ž .The quartet summation in Eq. 29 can be regarded
Ž .as the double summation for n , j in the double

Ž .summation for l, m . These double summations
are named the K and K summations, whereBRA KET
K s K K and K s K K . Then the KBRA A B KET C D BRA
and K summations can be split into two steps:KET

K KA B
A BC D A B A B A BC D¨ ˙� 4 � 4 Ž .H N s d d S H N , 30ÝÝ4 p qr s 3 pl q m lm 4 lm , r s 3

ml

K KC D
A BC D C D C D A BC D˙ � 4 � 4 Ž .H N s d d S H N . 31ÝÝ4 lm , r s 3 rn sj nj 4 lmnj 3

n j

Ž . Ž .Considering the FLOP count in Eqs. 28 , 30 , and
Ž .31 , the total FLOP count for calculating a CERI
can be expressed as a function of K and K ,BRA KET

Ž .xK K q yK q z . 32BRA KET BRA

The coefficients of x, y, and z are called FLOP
w xcount parameters 11 . The term, xK K , isBRA KET

the FLOP count for K summations for all in-KET
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� 4 Ž . Ž .dices in N , l 1 F l F K and m 1 F m F K .3 A B
The term yK is the FLOP count for K sum-BRA BRA

� 4mations for all indices in N after K summa-3 KET
tions are finished. The constant value z, depend-
ing on neither K nor K , is the FLOP countBRA KET
for calculating a CERI after K and K sum-BRA KET

� 4mations for all indices in N are finished. Sup-3
pose that all contraction lengths are equal, i.e.,
K s K s K s K s K , the FLOP count expres-A B C D
sion can then be given with K by

4 2 Ž .xK q yK q z , 33

which gives a plain representation of the order for
the FLOP count expression.

Again, note that the ACE-b3k3 formula gives
the best FLOP count parameters concerned with
the contraction length, that is, the values of the x

Ž .and y parameters in Eq. 33 are small, and thus
the total FLOP count for large K is reduced.

Now, let us consider the FLOP count expression
Ž .for generally contracted ERIs GCERIs . We here

introduce FLOP count expressions for the conven-
tional algorithm and for our refined algorithm.

Ž .A set of generally contracted GTOs GCGTOs ,

A Ž . Ž .f r N 1 F p F N 34� 4p A

is composed of N ’s GCGTOs. Each is a linearA
combination of the same set of primitive GTOs
with a different set of contraction coefficients. A
set of GCERIs is given by

f Af B N f Cf D N 1 F p F N , 1 F q F N ,½ Ž .p q r s A B

Ž .1 F r F N , 1 F s F N , 355C D

Ž . Žwhich contains N N ’s GCERIs. N sBRA KET BRA
.N N and N s N N .A B KET C D

In the conventional algorithm, to obtain a set of
GCERIs, all the GCERIs are calculated one by one,
with a routine for computing a single CERI. Thus
the FLOP count for calculating all the GCERIs is
given by

Ž . Ž .N N xK K q yK q z 36BRA KET BRA KET BRA

4 Ž 4 2 . Ž .s N xK q yK q z . 37

However, if we use the ACE-b3k3 formulas, we
C D A BC D� 4 Ž .can utilize the fact that S H N in Eq. 31nj 4 lmnj 3

is identical for each GCERI, since it includes no
parameters depending on the contraction coeffi-
cients. Therefore the above FLOP count expression

Ž . Ž .in Eqs. 36 and 37 can be reduced to

Ž . Žx N q x K K q y N N2 KET 0 BRA KET 4 BRA KET

. Ž .qy N q y K q z N N 382 BRA 0 BRA 4 BRA KET

Ž 2 . 4 Ž 4 2 .s x N q x K q y N q y N q y2 0 4 2 0

2 4 Ž .=K q z N . 394

Note that the FLOP count for the K summationKET
has been effectively reduced by 1rN 2 order. The
loop structures being used in conventional algo-
rithms and our algorithm are illustrated in Figures
1 and 2. It can be easily seen that the conventional
algorithm shown in Figure 1 wastes time by per-
forming the same K summations N times.KET BRA
On the other hand, in our refined algorithm, shown
in Figure 2, the necessary K summations areKET
performed just once outside the N loop andBRA
stored in the computer memory.

To show that the ACE-b3k3 method is suffi-
ciently adaptable to obtain GCERIs more effi-
ciently, we present some numerical estimations of
the FLOP count. Tables I and II list the FLOP
count parameters of all classes of four-centered
GCERIs over s and p GCGTOs for our algorithm
and the conventional algorithm with the ACE-b3k3
formula. The FLOP count for the molecular incom-

w Ž .xplete gamma function Eq. 26 is not included.

FIGURE 1. Loop structure of the conventional algorithm
to obtain GCERIs.

FIGURE 2. Loop structure of our algorithm to obtain
GCERIs.

VOL. 76, NO. 3400
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TABLE I
FLOP count parameters of algorithm with

a,bACE-b3k3 formula.

ERI class x x y y y z2 0 4 2 0 4

( )ss N ss 2 0 2 0 0 0
( )ps N ss 4 4 6 1 0 15
( )ss N ps 6 3 6 2 0 15
( )pp N ss 10 12 18 4 0 93
( )ss N pp 12 7 18 10 1 93
( )ps N ps 12 12 20 8 0 93
( )pp N ps 24 26 54 27 0 439
( )ps N pp 24 22 54 29 3 439
( )pp N pp 44 41 134 80 3 1908

a ( )Ignoring the calculation of F z .m
b ( )Total FLOP count is given by Eq. 38 .

TABLE II
FLOP count parameters of conventional algorithm

a,b, cwith ACE-b3k3 formula.

ERI class x y z

( )ss N ss 3 0 0
( )ps N ss 8 3 15
( )ss N ps 7 7 15
( )pp N ss 19 11 93
( )ss N pp 14 26 93
( )ps N ps 19 22 93
( )pp N ps 38 61 439
( )ps N pp 34 69 439
( )pp N pp 63 167 1908

a ( )Ignoring the calculation of F z .m
b ( )Total FLOP count is given by Eq. 36 .
c ( A B )( C D ) ( )Two FLOPs for d d d d F z are included into x,pl qm rn sj m

( )while these are counted for making F z in a previous workm
( [ ])Ref. 3 .

Table III shows the FLOP counts estimated by Eq.
Ž .39 for our algorithm in the case K s 10 and
3 F N F 6. The rates of speed-up over the conven-
tional algorithm are given in parentheses in the
table.

Our algorithm gives small values of the x and
y parameters throughout all classes of GCERIs.
This result is advantageous for GCGTOs, since
they are contracted to a high degree in many cases.
In the case of low-angular-momentum GCGTOs,
the calculation of the GCERIs speeds up by almost

2 Ž .N order. For the ss N ss class, the calculation of
which is fastest, the FLOP count expression by Eq.
Ž . Ž 2 4 4 2 .39 for the refined algorithm is 2 N K q 2 N K ,

Ž .while the FLOP count expression by Eq. 37 for
Ž 4 4.the conventional algorithm is 3N K . As seen

from these FLOP count expressions, most of the
Ž .calculation of ss N ss is spent on K summa-KET

tions. Therefore the performance by N 2 order
works more effectively when the values of the y
and z parameters are small. On the other hand,
when the angular momentum becomes higher, the
y and z parameters increase so sharply that the

Ž 4 2 4.term yN K q zN , which is included in both of
Ž . Ž .the FLOP count expressions by Eqs. 39 and 37 ,

becomes too large to be ignored.
Tables IV and V show the FLOP count parame-

Ž . Ž .ters of ps N ps and pp N pp for the case that some
of the four function centers, A, B, C, D, have the
same coordinates, namely overlap. There are 14

Ž .cases: the one-center case is AA N AA ; two-center
Ž . Ž . Ž . Žcases are AA N CC , AB N AB , AB N BA , AA N

. Ž . Ž . Ž .AD , AA N CA , AB N AA , and AB N BB ; three-
Ž . Ž . Ž .center cases are AA N CD , AB N AD , AB N CA ,

Ž . Ž . Ž . ŽAB N BD , AB N CB , and AB N CC . For AA N
.CD , the relation AB s 0 can be substituted for AB

Ž .in the accompanying coordinate part in Eq. 7 .

TABLE III
Total FLOP count of algorithm in case K = 10 and 3 F N F 6.a,b

ERI class N = 3 N = 4 N = 5 N = 6

( ) ( ) ( ) ( ) ( )ss N ss 196000 12.4 371000 20.7 625000 30.0 979000 39.7
( ) ( ) ( ) ( ) ( )ps N ss 451000 12.7 839000 21.5 1427000 31.0 2281000 40.2
( ) ( ) ( ) ( ) ( )pp N ss 1177000 9.8 2211000 16.5 3813000 23.4 6188000 29.9
( ) ( ) ( ) ( ) ( )ps N ps 1377000 11.3 2589000 19.0 4448000 27.0 7181000 34.7
( ) ( ) ( ) ( ) ( )pp N ps 2880000 9.8 5601000 15.9 9942000 21.8 16532000 27.2
( ) ( ) ( ) ( ) ( )pp N pp 5682000 9.2 11498000 14.4 21181000 19.1 36384000 23.1

a ( )Ignoring the calculation of F z .m
b The rate of speed-up over the conventional algorithm is given in parenthesis.
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TABLE IV
( )FLOP count parameters of our algorithm for ps N ps
a,bconsidering the overlaps of function centers.

Overlap type x x y y y z2 0 4 2 0 4

( )4 centers AB N CD 12 12 20 8 0 93
( )3 centers AA N CD 4 4 10 6 0 48
( )AB N AD 10 13 10 5 1 49
( )AB N CA 12 12 10 9 0 48
( )AB N BD 10 13 10 7 1 48
( )AB N CB 12 12 10 12 0 48
( )AB N CC 10 10 10 1 0 48
( )2 centers AA N CC 4 4 4 2 0 12
( )AB N AB 8 13 4 5 0 12
( )AB N BA 10 13 4 7 0 13
( )AA N AD 4 4 4 4 1 12
( )AA N CA 4 4 4 6 0 12
( )AB N AA 4 8 4 2 0 12
( )AB N BB 4 9 4 2 0 12

a ( )Ignoring the calculation of F z .m
b ( )Total FLOP count is given by Eq. 38 .

This simplifies the formula and, particularly,
makes the values of the y and z parameters much
smaller for high angular momentum. The case of
Ž .AA N CC is most effective as shown in Tables VI

Ž . Ž .and VII. For pp N pp , the FLOP count of AA N CC
is about six times smaller than that of the four-

Ž .center case. For ps N ps the FLOP count is about
three times smaller than that of the four-center
case. To calculate GCERIs faster, it should be effec-
tive, especially for high-order GCGTOs, to provide
individual routines for each case of overlapping.

TABLE V
( )FLOP count parameters of algorithm for pp N pp

a,bconsidering the overlaps of function centers.

Overlap type x x y y y z2 0 4 2 0 4

( )4 centers AB N CD 44 41 134 80 3 1908
( )3 centers AA N CD 12 11 42 33 3 570
( )AB N AD 44 42 66 91 3 885
( )AB N CC 40 40 22 13 0 576
( )2 centers AA N CC 12 11 12 8 1 87
( )AB N AB 38 46 18 79 0 142
( )AA N AD 12 11 12 25 5 101
( )AB N AA 14 35 12 7 1 103

a ( )Ignoring the calculation of F z .m
b ( )Total FLOP count is given by Eq. 38 .

Computational Results and Discussion

A program code based on our algorithm was
implemented and tested using some practical
molecular calculations. The loop structure of our
program is shown in Figure 3. The routines listed
in Figures 3 and 2 give the same total FLOP count.
However, considering memory caching, the
amount of memory required in what we call the
K 4 step has been reduced in the routine of Figure
3. In our program we use Ishida’s algorithm shown

w xin Ref. 3 to compute the molecular incomplete
gamma function.

Ž .The routines for calculating GCERIs for ss N ss ,
Ž . Ž . Ž . Ž . Ž .ps N ss , pp N ss , ps N ps , pp N ps , and pp N pp
have been implemented in the present case.

TABLE VI
( )Total FLOP count of algorithm for ps N ps considering the overlaps of function centers in case K = 10

aand 3 F N F 6.

Overlap type N = 3 N = 4 N = 5 N = 6

( )4 centers AB N CD 1377000 2589000 4448000 7181000
( )3 centers AA N CD 490000 958000 1710000 2860000
( )AB N AD 1119000 2007000 3298000 5108000
( )AB N CA 1121000 2009000 3303000 5113000
( )2 centers AA N CC 435000 788000 1302000 2021000
( )AB N AB 887000 1523000 2400000 3561000
( )AB N BA 1070000 1847000 2906000 4290000
( )AA N CA 439000 795000 1312000 2035000
( )AA N AD 436000 790000 1305000 2025000

a ( )Ignoring the calculation of F z .m
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TABLE VII
( )Total FLOP count of algorithm for pp N pp considering the overlaps of function centers in case K = 10 and

a3 F N F 6

Overlap type N = 3 N = 4 N = 5 N = 6

( )4 centers AB N CD 5682000 11497000 21177000 36377000
( )3 centers AA N CD 1606000 3304000 6174000 10731000
( )AB N AD 5068000 9522000 16325000 26286000
( )2 centers AA N CC 1302000 2372000 3934000 6127000
( )AB N AB 4108000 7163000 11371000 16941000
( )AA N AD 1318000 2404000 3986000 6207000

a ( )Ignoring the calculation of F z .m

FIGURE 3. Loop structure of our program to obtain
GCERIs.

Ž .We measured the central processing unit CPU
time for calculating a set of GCERIs over GCGTOs
to exhibit the computational performance of our
algorithm. The size of the GCGTOs used in the
calculations is the same as that of the GCGTOs
used in the FLOP count estimation. By doing so,
the theoretical and realistic computational effi-
ciency could be compared directly. All the calcula-
tions were carried out on a single node of IBM

Ž .SP2 133 MHz clusters. The CPU time does not
Ž .include inputroutput IrO operation time.

The four-center GCERIs are evaluated with the
GCGTOs K s 10 and 3 F N F 6. Table VIII lists
the CPU times of our algorithm and the rates of

Ž .speed-up in parentheses over the conventional
algorithm. It can be seen that the efficiency mea-
sured by CPU time far exceeds N 2 order, which is
the suggestion from theoretical assessments in the

Ž .previous section. Especially for ss N ss , the rates
of speed-up obey the order of almost N 4. A simi-
lar behavior is seen in the other results of CPU
time. This bonus improvement of the computa-
tional efficiency originates from the cost of com-
puting the molecular incomplete gamma function,
which is ignored in the FLOP count estimation in
the previous section. In our refined algorithm, the

TABLE VIII
( ) aCPU times of algorithm in case K = 10 and 3 F N F 6 in millisecond .

ERI class N = 3 N = 4 N = 5 N = 6

( ) ( ) ( ) ( ) ( )ss N ss 22 70.3 26 188 31 385 40 618
( ) ( ) ( ) ( ) ( )ps N ps 49 54.6 66 128 116 177 189 226
( ) ( ) ( ) ( ) ( )pp N pp 139 27.3 300 40.0 595 49.3 1090 55.8

aThe rate of speed-up over the conventional algorithm is given in parenthesis.
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necessary molecular incomplete gamma function is
computed just once in the K 4 step in Figure 3. On
the other hand, the conventional algorithm carries
out the same computation of the molecular incom-
plete gamma function N 4 times. If we use the
FLOP count for the molecular incomplete gamma
function, it can be added into the parameters x0

Ž .and y for Eq. 39 and the parameters x and y0
Ž .for Eq. 37 . In Ishida’s algorithm the FLOP count

for the molecular incomplete gamma function is
Ž . 4 2 Ž .given to be 16 q S K q 5K for ss N ss ,

Ž . 4 2 Ž . Ž . 429 q S K q5K for ps N ps , and 35 q S K q
2 Ž .5K for pp N pp , where the parameter S is the

FLOP count for one square-root calculation and
dependent on computer environments. We mea-
sured a CPU time for one square-root calculation
and for one floating-point multiplication, and then
estimated a condition S s 65 on our computer
environment. To show the numerical effect on the
FLOP count, including the calculation of the
molecular incomplete gamma function, Table IX
lists the rate of speed-up for the total FLOP count,
assuming the condition S s 65 compared with that
in the measured CPU time. It can be seen that the
rate of speed-up in FLOP count estimation show
good agreement with that in the computational
measurement. As this result shows, the computa-
tion of the incomplete gamma function is a vital
part of evaluating the ERIs for all segmented con-
traction methods. However, it is a trivial part in
the present method. This feature confers a very
important advantage, which can give an efficiency

4 Ž .of almost N order for ss N ss , when the GCGTOs
have low angular momentum, i.e., the values of
the y and z parameters are small.

Tables X and XI show the computation times of
Ž . Ž .GCERIs ps N ps and pp N pp considering the

overlaps of the function centers. Similarly to the

TABLE X
( )CPU times of our algorithm for ps N ps considering

the overlaps of the function centers in case K = 10 and
( )3 F N F 6 in milliseconds .

Overlap type N = 3 N = 4 N = 5 N = 6

( )4 centers AB N CD 49 66 116 189
( )3 centers AA N CD 38 45 64 103
( )AB N AD 46 58 80 130
( )AB N CA 45 58 80 123
( )2 centers AA N CC 38 43 52 70
( )AB N AB 42 50 64 86
( )AB N BA 44 55 72 94
( )AA N CA 37 41 53 66
( )AA N AD 36 43 52 68

TABLE XI
( )CPU times of algorithm for pp N pp considering the

overlaps of function centers in case K = 10 and
( )3 F N F 6 in milliseconds .

Overlap type N = 3 N = 4 N = 5 N = 6

( )4 centers AB N CD 139 300 595 1090
( )3 centers AA N CD 62 104 204 359
( )AB N AD 122 226 418 697
( )2 centers AA N CC 56 76 113 188
( )AB N AB 101 154 255 400
( )AA N AD 57 74 113 174

FLOP count estimation, we examine the case of
Ž .AA N CC . The CPU time shows a similar effi-
ciency as the FLOP count estimation. The case of
Ž . Ž .AA N CC is the fastest. For pp N pp , the CPU

Ž .time of AA N CC is about six times as fast as that
Ž .of the four-center case. For ps N ps the CPU time

is about three times as fast as that of the four-center
case. These results also show that the programs

TABLE IX
Comparision with theoretical efficiency, including the molecular incomplete gamma function calculation
and computational efficiency in case K = 10 and 3 F N F 6.

ERI class N = 3 N = 4 N = 5 N = 6

( )ss N ss FLOP rate 67.6 182 365 608
CPU time rate 70.3 188 385 618

( )ps N ps FLOP rate 39.6 82 131 180
CPU time rate 54.6 128 177 226

( )pp N pp FLOP rate 20.0 33.8 46.4 57.1
CPU time rate 27.3 40.0 49.3 55.8
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specific to each case may work with the good
performance predicted from the FLOP count.

Finally, we measured the CPU time for comput-
ing all the ERIs in a benzene molecule, as an

Ž .example of a realistic molecular orbital MO cal-
culation. Table XII shows the results given for two
kinds of basis sets for carbon and hydrogen atoms:
Ž . Ž .A C:14 s9 pr3 s2 p, H:8 s4 pr2 s1 p, and B
C:14 s9pr6 s5p, H:8 s4 pr4 s3 p. Here the basis sets

Ž . Ž . Ž . Ž .specified with the format, K s K pr N s N ps p s p
Ž . Ž .have N ’s s-type GCGTOs containing K ’ss s

Ž .primitive GTOs and N ’s p-type GCGTOs con-p
Ž .taining K ’s primitive GTOs. The number ofp

Ž . Ž .functions in the basis sets is A 84 and B 204.
The calculations were also performed with the ERI

w x Ž w xroutine of Gaussian94 12 using the PRISM 11
. w x Žmethod and HONDO 13 using the PH method

w x.10 . Since these routines can treat only a seg-
mented contraction scheme, we give these basis
sets as segmentally CGTO to the program. In Table
XII, the ratio of CPU time of the present routine to

Ž . Ž .that of the routine in Gaussian94 is A 2.5 and B
28. The performance of our program is very good
compared with conventional programs, especially
when the numbers of GCGTOs, namely N ands
N , are large. The ratio of the CPU time for the twop

Ž . Ž .basis sets, A and B , is about 2 in the present
program, about 23 in Gaussian94 and HONDO.
With our routine, fast calculation of ERIs over
high-quality basis sets can be performed.

Summary

We proposed a new algorithm and developed
programs for the efficient computation of a set of
GCERIs over s and p GCGTOs. We utilized the

ACE-b3k3 method developed by Ishida, which can
rapidly calculate a highly contracted ERI. In our
routine, the necessary K summation, or K 4

KET

summations, are performed just once outside the
N loop, and stored in computer memory. TheBRA

conventional calculation of GCERIs used in many
ab initio packages unnecessarily calculates the
identical K 4 terms N 2 times. By the described
refinement, we obtain efficiency by N 2 order for
the FLOP count estimation with s and p GCGTOs.
The FLOP count estimation shows that the calcula-
tion of GCERIs is effective when the GCGTOs
have low angular momentum.

The performance measured by CPU time ex-
ceeds that obtained by the theoretical estimation
and shows an efficiency of almost N 4 order in
Ž .ss N ss . Our program can work more effectively
than the theoretical estimation does, since it is a
trivial cost to compute the molecular incomplete
gamma functions in our algorithm.

When the function centers of GCGTOs overlap
each other, the relations of coordinates can sim-
plify the formulas and make the values of the y
and z parameters small. When the GCGTOs have
high angular momentum, this simplification of the
y and z parameters is very effective.

Very recently, Ishida has shown that the ACE-
b3k3 method becomes more effective with a high

w xorder of GTO 8, 9 , while the present work
demonstrates that the effectiveness with the gen-
eral contraction scheme works well even for a low
order of GTO.

We expect that our new algorithm and routine
for GCERIs will open a new world in the ab initio
molecular orbital calculation for large-scale sys-
tems.

TABLE XII
( )CPU times of algorithm for computing all ERIs in benzene molecule in seconds .

a, b a, cBasis sets Present Gaussian HONDO

C:14s9p / 3s2p
( )A 600 2450 5740

H:8s4p / 2s1p

C:14s9p / 6s5p
( )B 1180 57100 137800

H:8s4p / 4s3p
aIncluding prescreening, indexation, packing, and sorting.
b [ ]Using the PRISM method 11 .
c [ ]Using the PH method 10 .
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