Synthesis, Structure, and Reactions of (Acylimino)triaryl- λ^{5}-bismuthanes: First Comparative Study of the (Acylimino)pnictorane Series

Yoshihiro Matano, ${ }^{*, \dagger}$ Hazumi Nomura, ${ }^{\dagger}$ Hitomi Suzuki, ${ }^{\dagger, \hbar}$ Motoo Shiro, ${ }^{\S}$ and Haruyuki Nakano ${ }^{\text {II }}$
Contribution from the Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, Rigaku Corporation, Akishima-shi, Tokyo 196-8666, Japan, and Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

Received October 9, 2000

Abstract

The synthesis, structure, and reactions of (acylimino)triaryl- λ^{5}-bismuthanes and a comparative study of the structure and reactivity of a series of (acylimino)pnictoranes are reported. Treatment of ortho-substituted triarylbismuth dichlorides $\mathbf{1}\left(\mathrm{Ar}_{3} \mathrm{BiCl}_{2} ; \mathrm{Ar}=2-\mathrm{MeC}_{6} \mathrm{H}_{4}, 2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$ with amides $\mathbf{2}\left(\mathrm{H}_{2^{-}}\right.$ NCOR; $\left.\mathrm{R}=\mathrm{CF}_{3}, \mathrm{CCl}_{3}, 3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ in the presence of 2.2 equiv of $\mathrm{KO}-t$ - Bu in dichloromethane afforded (acylimino)triaryl- λ^{5}-bismuthanes $3\left(\mathrm{Ar}_{3} \mathrm{Bi}=\mathrm{NCOR}\right.$) in yields of $77-96 \%$. The ortho-substituted aryl ligands and the electron-withdrawing N -substituents afford kinetic and thermodynamic stabilization, respectively, to the reactive $\mathrm{Bi}=\mathrm{N}$ bond. The structures and properties of a series of (acylimino)pnictoranes $\left(\mathrm{Ar}_{3} \mathrm{M}=\mathrm{NCOR}\right.$ and $\mathrm{H}_{3} \mathrm{M}=\mathrm{NCOCF}_{3} ; \mathrm{M}=\mathrm{P}$, As, Sb, Bi) are compared by IR and ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ NMR, X-ray crystallography, and ab initio molecular orbital calculations. It was found that the contribution of the $\mathrm{M}^{+}-\mathrm{N}=\mathrm{C}-\mathrm{O}^{-}$canonical form becomes more prominent and the single-bond character of the $\mathrm{M}=\mathrm{N}$ bond increases progressively as the pnictogen atom becomes heavier. The $\mathrm{Bi}=\mathrm{N}$ bond of (acylimino) $-\lambda^{5}$-bismuthanes $\mathbf{3}$ possesses a highly polarized single-bond character, probably due to the differences in orbital size and electronegativity between the bismuth and nitrogen atoms. Thermal decomposition of (aroylimino)triaryl- λ^{5}-bismuthane $\mathbf{3 f}\left(o-\mathrm{Tol}{ }_{3} \mathrm{Bi}=\mathrm{NCOAr}\right.$; Ar $\left.=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ produces a gel in dry conditions or aniline $\mathbf{1 2}\left(\mathrm{ArNH}_{2}\right)$ in slightly wet conditions with a good recovery of tris(2-methylphenyl)bismuthane (4a). It is likely that the aryl isocyanate $\mathbf{1 3}(\mathrm{ArNCO})$ is produced during the thermolysis via a concerted $\mathrm{C} \rightarrow \mathrm{N}$ migration of the Ar group with an elimination of the triarylbismuthonio group as bismuthane $\mathbf{4 a}$. (Acylimino)triaryl- λ^{5}-bismuthanes $\mathbf{3}$ oxidize 1,1,2,2-tetraphenylethanediol, benzenethiol, methanol, and ethanol to benzophenone, diphenyl disulfide, methyl formate, and acetaldehyde, respectively, in two different reaction pathways depending on the structure of the substrates. Compound 3d $\left(o-\mathrm{Tol}_{3} \mathrm{Bi}=\mathrm{NCOCCl}_{3}\right)$ transfers the nitrenoid moiety to triphenylphosphane, triphenylarsane, and tris(2-methylphenyl)stibane to give the corresponding (acylimino)pnictoranes ($\mathrm{Ar}_{3} \mathrm{M}=\mathrm{NCOCl}_{3} ; \mathrm{M}=\mathrm{P}$, As, Sb) and $\mathbf{4 a}$, suggesting that $\mathbf{3 d}$ is thermodynamically much less stable than their lighter pnictogen counterparts. The copper-catalyzed decomposition of $\mathbf{3}\left(o-\mathrm{Tol} \mathrm{l}_{3} \mathrm{Bi}=\mathrm{NCOR}\right)$ afforded N-acyl-o-toluidines $\mathbf{1 8}$ (o-TolNHCOR) via a $\mathrm{Bi} \rightarrow \mathrm{N}$ migration of the tolyl group. The observed reactivities of (acylimino)triaryl-λ^{5}-bismuthanes $\mathbf{3}$ demonstrate a good leaving ability of the bismuthonio group.

Introduction

Iminopnictoranes $\left(\mathrm{R}_{3} \mathrm{M}=\mathrm{NR}^{\prime} ; \mathrm{M}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}\right)^{1}$ are a class of compounds that include a formal double bond between the pnictogen (V) and nitrogen atoms and are structurally related to ylides ($R_{3} M=C R^{\prime} R^{\prime \prime}$) and oxides ($R_{3} M=O$). The chemistry of iminopnictoranes has received considerable interest because of their importance for both organic and inorganic reactions as they form bonds to nitrogen. ${ }^{2}$ Since the discovery of the Staudinger reaction, ${ }^{3}$ numerous applications for organic syn-

[^0]thesis have been reported for iminophosphoranes $\left(\mathrm{R}_{3} \mathrm{P}=\mathrm{NR}^{\prime}\right)$, which can convert the $\mathrm{C}=\mathrm{O}$ group in various carbonyl compounds to the $\mathrm{C}=\mathrm{NR}^{\prime}$ group (aza-Wittig reaction) by abstracting carbonyl oxygen atoms as phosphane oxides

[^1]$\left(\mathrm{R}_{3} \mathrm{P}=\mathrm{O}\right) .{ }^{2 \mathrm{a}-\mathrm{h}}$ Iminophosphoranes also undergo metathesis with metal-oxo complexes to afford the corresponding metal-imido complexes. ${ }^{21,4}$ Although the number of examples is rather limited, iminoarsoranes $\left(\mathrm{R}_{3} \mathrm{As}=\mathrm{NR}^{\prime}\right)^{5}$ and imino- λ^{5}-stibanes $\left(\mathrm{R}_{3} \mathrm{Sb}=\mathrm{NR}^{\prime}\right)^{6}$ have been used as alternative nitrene sources for aza-Wittig type reactions. On the other hand, little is thus far known about the synthetic utility of imino- λ^{5}-bismuthanes $\left(\mathrm{R}_{3} \mathrm{Bi}=\mathrm{NR}^{\prime}\right)$. ${ }^{7}$

The bonding properties of the $\mathrm{M}=\mathrm{N}$ bond in iminopnictoranes have been a subject of considerable interest. The $\mathrm{M}=\mathrm{N}$ bond of iminopnictoranes is often described as a hybrid with the ionic canonical form $\mathrm{M}^{+}-\mathrm{N}^{-}$but with its bonding characteristics such as bond order, polarization, and energy being strongly dependent on a relevant pnictogen atom. Until now, much attention has been paid to iminophosphoranes, in which the observed $\mathrm{P}=\mathrm{N}$ bond lengths ${ }^{8}$ are significantly shorter than an ideal value for the $\mathrm{P}-\mathrm{N}$ single bond length. ${ }^{9}$ This bond shortening has been explained by the $\mathrm{p} \pi-\mathrm{d} \pi$ orbital interaction, ${ }^{10,11}$ the $\mathrm{n}-\sigma^{*}$ negative hyperconjugation, ${ }^{12,13}$ and the electrostatic interaction ${ }^{12,13}$ between phosphorus and nitrogen atoms. Among them, the $\mathrm{p} \pi-\mathrm{d} \pi$ orbital interaction has become a classical concept for representing the $\mathrm{P}=\mathrm{N}$ bond, ${ }^{14}$ but its contribution, if any, to the shortened $\mathrm{P}=\mathrm{N}$ bond is now believed to be very small. ${ }^{12,13}$ Recent theoretical studies on a parent iminophosphorane $\left(\mathrm{H}_{3} \mathrm{P}=\right.$ $\mathrm{NH})^{12,13}$ have concluded that the contribution of an ionic canonical form $\mathrm{P}^{+}-\mathrm{N}^{-}$would be more important than that of a neutral canonical form $\mathrm{P}=\mathrm{N}$ with $\mathrm{n}-\sigma^{*}$ negative hyperconjugation. ${ }^{15}$ By contrast, very little information is available about the bonding properties of the $\mathrm{M}=\mathrm{N}$ bonds in other iminopnic-

[^2]toranes. In 1997, Koketsu and co-workers calculated the geometry and energy of a series of imaginary iminopnictoranes, $\mathrm{H}_{3} \mathrm{M}=\mathrm{NH}(\mathrm{M}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$, by ab initio molecular orbital calculations. ${ }^{12}$ They concluded that it is hard for $\mathrm{n}-\sigma^{*}$ negative hyperconjugation in iminopnictoranes with heavier pnictogen atoms to take place, resulting in smaller double-bond character. To the best of our knowledge, however, no attempt has been made to compare the structure and reactivity of iminopnictoranes on the basis of experimental results. This may largely be due to a lack of information regarding the final family members, imino- λ^{5}-bismuthanes ($\mathrm{R}_{3} \mathrm{Bi}=\mathrm{NR}^{\prime}$). Thus, to systematically understand the nature of the $\mathrm{M}=\mathrm{N}$ bond in iminopnictoranes, it is necessary to elucidate the chemistry of imino- λ^{5}-bismuthanes so as to complete the iminopnictoranes family list.

Since the first report by Wittig and Hellwinkel in 1964, ${ }^{16}$ imino- λ^{5}-bismuthanes have been prepared by oxidative nitrene transfer from Chloramine-T or (tosylimino)phenyl- λ^{3}-iodinane to triarylbismuthanes ${ }^{7,16}$ and by a Kirsanov-type reaction ${ }^{17}$ of triarylbismuth dihalides with sulfonamides. ${ }^{18,19}$ Therefore, all known imino- λ^{5}-bismuthanes are of the type $\mathrm{Ar}_{3} \mathrm{Bi}=\mathrm{NSO}_{2} \mathrm{R}$ and are thermally stabilized by an electron-withdrawing sulfonyl group on the imido nitrogen. This means that information of the structure and reactivity of imino- λ^{5}-bismuthanes is limited to thermally stabilized N -sulfonyl derivatives.

Recently, it has been found that bismuthonium ylides $\left(\mathrm{R}_{3} \mathrm{Bi}=\mathrm{CR}^{\prime} \mathrm{R}^{\prime \prime}\right)$, isoelectronic analogues of imino- λ^{5}-bismuthanes, exhibit a wide range of reactivity depending on the structure of the alkylidene moiety ${ }^{20}$ and that observed modes of reaction differ considerably from those of their lighter pnictogen counterparts. For instance, monocarbonyl ylides of the type $\mathrm{Ph}_{3} \mathrm{M}=\mathrm{CHCOR}(\mathrm{M}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$ undergo Wittig-type olefination with a variety of carbonyl compounds, ${ }^{2 \mathrm{aj}, 20 \mathrm{~g}}$ whereas the corresponding bismuthonium ylides $\left(\mathrm{Ph}_{3} \mathrm{Bi}=\mathrm{CHCOR}\right)$ undergo Corey-Chaycovsky-type epoxidation, ring expansion, or acyl transposition, depending on the structure of the carbonyl compounds. ${ }^{20 \mathrm{~g}, 21}$ These findings have led us to investigate the properties and reactivities of imino- λ^{5}-bismuthanes bearing an N -substituent other than the sulfonyl group. Thus, we first set out to prepare (acylimino)triaryl- λ^{5}-bismuthanes of the type $\mathrm{Ar}_{3}{ }^{-}$ $\mathrm{Bi}=\mathrm{NCOR}$ because the acyl group is commonly used as an N -substituent for lighter iminopnictoranes and it was expected to reflect the intrinsic properties of the $\mathrm{Bi}=\mathrm{N}$ bond.

In this paper, we first describe the synthesis of (acylimino)-triaryl- λ^{5}-bismuthanes, then provide a structural comparison with other (acylimino)pnictoranes of lighter family members, and

[^3]
Scheme 1

1a, $\mathrm{Ar}=2-\mathrm{MeC}_{6} \mathrm{H}_{4}$	2a, $\mathrm{R}=\mathrm{CF}_{3}$
1b, $\mathrm{Ar}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	2b, $\mathrm{R}=\mathrm{CCl}_{3}$
1c, $\mathrm{Ar}=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	2c, $\mathrm{R}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
1d, $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	2d, $\mathrm{R}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$
1e, $\mathrm{Ar}=\mathrm{Ph}$	2e, $\mathrm{R}=\mathrm{Ph}$

Table 1. Synthesis of (Acylimino)triaryl- λ^{5}-bismuthanes

entry	1	2	(acylimino)triaryl λ^{5}-bismuthane (3) ${ }^{\text {a }}$	yield (\%)
1	1a	2 a	$o-\mathrm{Tol}_{3} \mathrm{Bi}=\mathrm{NCOCF}_{3}(\mathbf{3 a})$	93
2	1b	2 a	$o-\mathrm{Ans}_{3} \mathrm{Bi}=\mathrm{NCOCF}_{3}(\mathbf{3 b})$	91
3	1 c	2 a	$\mathrm{Mes}_{3} \mathrm{Bi}=\mathrm{NCOCF}_{3}(\mathbf{3 c})$	86
4	1a	2b	$o-\mathrm{Tol}_{3} \mathrm{Bi}=\mathrm{NCOCCl}_{3}(\mathbf{3 d})$	77
5	1b	2b	$o-\mathrm{Ans}_{3} \mathrm{Bi}=\mathrm{NCOCCl}_{3}(\mathbf{3 e})$	96
6	1a	2 c	$o-\mathrm{Tol}_{3} \mathrm{Bi}=\mathrm{NCOC}_{6} \mathrm{H}_{3}-3,5-\left(\mathrm{CF}_{3}\right)_{2}(\mathbf{3 f})$	95
7	1b	2 c	$o-\mathrm{Ans}_{3} \mathrm{Bi}=\mathrm{NCOC}_{6} \mathrm{H}_{3}-3,5-\left(\mathrm{CF}_{3}\right)_{2}(\mathbf{3 g})$	94
8	1a	2 d	$o-\mathrm{Tol}_{3} \mathrm{Bi}=\mathrm{NCOC}_{6} \mathrm{H}_{4}-4-\mathrm{NO}_{2}(\mathbf{3 h})$	b, c
9	1a	2 e	$o-\mathrm{Tol}_{3} \mathrm{Bi}=\mathrm{NCOPh}(\mathbf{3 i})$	b, c
10	1d	2 a	$p-\mathrm{Tol}_{3} \mathrm{Bi}=\mathrm{NCOCF}_{3}(\mathbf{3 j})$	b, d
11	1e	2 a	$\mathrm{Ph}_{3} \mathrm{Bi}=\mathrm{NCOCF}_{3}(\mathbf{3 k})$	b, d

${ }^{a}{ }_{o}$-Tol $=2-\mathrm{MeC}_{6} \mathrm{H}_{4} ; o-\mathrm{Ans}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4} ; \mathrm{Mes}=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} ;$ p-Tol $=4-\mathrm{MeC}_{6} \mathrm{H}_{4} .{ }^{b}$ Not isolated. ${ }^{c}$ Decomposed thermally at room temperature. ${ }^{d}$ Hydrolyzed in air.
finally discuss the reactivity of (acylimino)triaryl- λ^{5}-bismuthanes. ${ }^{22}$ The single-bond character of the $\mathrm{M}=\mathrm{N}$ bond as well as the contribution of the $\mathrm{M}^{+}-\mathrm{N}=\mathrm{C}-\mathrm{O}^{-}$canonical form becomes more prominent as the pnictogen atom becomes heavier. The unique reactivities of (acylimino)triaryl- λ^{5}-bismuthanes observed demonstrate their potential utility in organic synthesis.

Results and Discussion

Synthesis. As depicted in Scheme 1, treatment of orthosubstituted triarylbismuth dichlorides $\mathbf{1 a}-\mathbf{c}$ with α, α, α-trihaloacetamides $\mathbf{2 a}, \mathbf{b}$ in the presence of 2.2 equiv of $\mathrm{KO}-t-\mathrm{Bu}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave [(trihaloacetyl)imino]triaryl- λ^{5}-bismuthanes $\mathbf{3 a}-\mathbf{e}$ as air-stable solids in $77-96 \%$ yields (Table 1, entries 1-5). A similar reaction of tris(4-methylphenyl)bismuth dichloride (1d) or triphenylbismuth dichloride (1e) with 2a gave the expected (acylimino)- λ^{5}-bismuthanes $\mathbf{3 j}, \mathbf{k}$, but the product was so sensitive to moisture that it decomposed during attempted recrystallization under air to give an insoluble substance and 2a (entries 10,11). The insoluble solid obtained from 1d showed a sharp IR absorption at $625 \mathrm{~cm}^{-1}$, which may be assigned as an asymmetric $\mathrm{Bi}-\mathrm{O}-\mathrm{Bi}$ stretching mode. ${ }^{23}$ Its FABMS spectrum in 3-nitrobenzyl alcohol matrix showed a strong peak at $m / z 634$ in accord with a $\left[\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right){ }_{3} \mathrm{BiOCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{NO}_{2}\right]^{+}$ ion. When treated with aqueous HCl , the substance was converted to dichloride 1d. These results indicate that the insoluble solid is a polymeric triarylbismuthane oxide, $\left(\mathrm{Ar}_{3}{ }^{-}\right.$ $\mathrm{Bi}=\mathrm{O})_{n},{ }^{23,24}$ probably derived from hydrolysis of the initially formed imino- λ^{5}-bismuthane. ${ }^{25}$ The ortho-substituents in 3a-

[^4]
Scheme 2

e, therefore, afford significant kinetic stabilization ${ }^{26}$ to the moisture-sensitive $\mathrm{Bi}=\mathrm{N}$ bond in imino- λ^{5}-bismuthanes. ${ }^{27}$

Dichlorides 1a,b also reacted with 3,5-bis(trifluoromethyl)benzamide ($2 \mathbf{c}$) to yield the corresponding (aroylimino) $-\lambda^{5}$ bismuthanes $\mathbf{3 f}, \mathbf{g}$ as moderately stable solids (entries 6,7). The reaction between 1a and p-nitrobenzamide ($\mathbf{2 d}$) gave the desired imino- λ^{5}-bismuthane $\mathbf{3 h}$, but the product gradually decomposed during recrystallization (entry 8). (Benzoylimino)- λ^{5}-bismuthane 3i prepared from 1a and benzamide (2e) decomposed more rapidly at room temperature to afford a mixture of tris(2methylphenyl)bismuthane (4a), amide 2e, aniline, and others (entry 9). The formation of aniline suggests the probable involvement of phenyl isocyanate as an intermediate during the thermal decomposition of $\mathbf{3 i}$ (vide infra). These results revealed the ability of electron-withdrawing acyl groups to enhance the thermal stability of (acylimino)triaryl- λ^{5}-bismuthanes.
Compounds $\mathbf{3 a}-\mathbf{g}$ are colorless or pale yellow solids and soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and benzene but are insoluble in hexane. Compounds $\mathbf{3 a}-\mathbf{e}$ can be stored in the solid state for over 1 month in a refrigerator, whereas $\mathbf{3 f}, \mathbf{g}$ decompose over the course of 1 day, even in a refrigerator (at $4^{\circ} \mathrm{C}$).
To compare the structure of $\mathbf{3}$ with those of lighter pnictogen counterparts, an iminophosphorane $\mathbf{6},{ }^{28}$ an iminoarsorane $\mathbf{8},{ }^{29}$ and imino- λ^{5}-stibanes $\mathbf{1 0 a}-\mathbf{c}$ were prepared by the oxidative condensation ${ }^{30}$ of triphenylphosphane (5), triphenylarsane (7), and tris(2,4,6-trimethylphenyl)stibane (11) with 2b in the presence of diethyl azodicarboxylate and by treating triarylstibane oxides $\mathbf{9 a}, \mathbf{b}$ with trichloroacetonitrile in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 2). Despite the presence of ortho-substituent groups, compounds $\mathbf{1 0 a}, \mathbf{b}$ are extremely moisture sensitive and readily decompose to give the corresponding oxides $\mathbf{9 a} \mathbf{a} \mathbf{b}$ under ambient conditions. Thus, 10a,b were characterized by ${ }^{1} \mathrm{H}$ NMR, FABMS, and IR analyses as well as by chemical transformations to other $\mathrm{Sb}(\mathrm{V})$

[^5]Table 2. IR and ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ Spectral Data for (Acylimino)triarylpnictoranes and $\mathbf{2 b}$

compd	$v_{\mathrm{C}=\mathrm{O}^{a}}$ $\left(\Delta v_{\mathrm{C}=0}\right)$	${ }^{13} \mathrm{C}^{c}$		${ }^{15} \mathrm{~N}^{d}$
$o-\mathrm{Ans}_{3} \mathrm{Bi}=\mathrm{NCOCCl}_{3}(\mathbf{3 e})$	$1561(137)$	172.2	225.3	
$\mathrm{Mes}_{3} \mathrm{Sb}=\mathrm{NCOCCl}_{3}(\mathbf{1 0 c})$	$1583(115)$	171.5	184.3	
$\mathrm{Ph}_{3} \mathrm{As}=\mathrm{NCOCCl}_{3}(\mathbf{8})$	$1611(87)$	173.0	149.3	
$\mathrm{Nh}_{3} \mathrm{P}=\mathrm{NCOCCl}_{3}(6)$	$1638(60)$	170.1	$117.6\left(\left\|J_{\mathrm{PN}}\right\|=41.35 \mathrm{~Hz}\right)$	
$\mathrm{H}_{2} \mathrm{NCOCCl}_{3}(\mathbf{2 b})$	1698	163.8	95.3	

${ }^{a}$ IR absorption of the $\mathrm{C}=\mathrm{O}$ group on KBr pellets, reported in cm^{-1}. ${ }^{b}$ Difference in frequency from $v_{\mathrm{C}=\mathrm{O}}$ of the parent amide $\mathbf{2 b}$ (1698 cm^{-1}). ${ }^{c}{ }^{13} \mathrm{C}$ Chemical shifts of the carbonyl carbon atom, referenced to $\mathrm{CDCl}_{3}(77 \mathrm{ppm}) .{ }^{d}{ }^{15} \mathrm{~N}$ Chemical shifts of the nitrogen atom of the ${ }^{15} \mathrm{~N}$-labeled derivatives. Recorded at 50.55 MHz in CDCl_{3} (ca. 0.01 M), referenced to $\mathrm{NH}_{3}(1)$.
compounds. ${ }^{31}$ Compound 10c is much more stable toward atmospheric moisture than 10a,b.

Structural Comparison of (Acylimino)pnictoranes. The structures of a series of (acylimino)pnictoranes were studied by means of IR and ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ NMR, as well as by X-ray analysis and ab initio molecular orbital calculations.
(a) IR and ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ NMR Spectra. The $\mathrm{C}=\mathrm{O}$ stretching frequencies ($v_{\mathrm{C}}=0$) and ${ }^{13} \mathrm{C}_{\mathrm{C}=0}$ and ${ }^{15} \mathrm{~N}$ chemical shifts of [(trichloroacetyl)imino]triarylpnictoranes $\mathbf{3 e}, \mathbf{6}, \mathbf{8}$, and $\mathbf{1 0 c}$ are summarized in Table 2. The $\mathrm{C}=\mathrm{O}$ absorptions of these iminopnictoranes were observed at lower frequencies compared to that of amide $\mathbf{2 b}$. The differences in frequency $\left(\Delta v_{\mathrm{C}=0}\right)$ from 2b increase progressively from iminophosphorane 6, iminoarsorane 8 , imino- λ^{5}-stibane 10c, to imino- λ^{5}-bismuthane $\mathbf{3 e}$, indicating that the double-bond character of the $\mathrm{C}=\mathrm{O}$ bond decreases as the pnictogen atom becomes heavier. There are only slight differences among the ${ }^{13} \mathrm{C}_{\mathrm{C}=0}$ chemical shifts of $\mathbf{3 e}$, $\mathbf{6}, \mathbf{8}$, and $\mathbf{1 0 c}$. By contrast, the ${ }^{15} \mathrm{~N}$ peaks shift significantly downfield as the pnictogen atom becomes heavier: the ${ }^{15} \mathrm{~N}$ peaks of $\mathbf{2 b}-{ }^{15} \mathrm{~N}, \mathbf{6}-{ }^{15} \mathrm{~N}, 8-{ }^{-15} \mathrm{~N}, \mathbf{1 0}-{ }^{15} \mathrm{~N}$, and $\mathbf{3 e}-{ }^{-15} \mathrm{~N}$ were observed at $\delta 95.3,117.6,149.3,184.3$, and 225.3 , respectively, relative to $\mathrm{NH}_{3}(\mathrm{l}) .{ }^{32}$ The ${ }^{15} \mathrm{~N}$ chemical shift and coupling constant (J_{PN}) of $\mathbf{6}$ are close to those previously reported for $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{NCOAr}^{33}$ ($\mathrm{Ar}=p$-substituted phenyl). The nitrogen nucleus is known to be deshielded when the bonding electrons are in the orbitals of high s character and/or when multiple bonding to nitrogen is present or enhanced. ${ }^{34}$ Thus, the lowfield appearance of the ${ }^{15} \mathrm{~N}$ peak of $3 \mathrm{e}-{ }^{-15} N$ suggests that the $\mathrm{Bi}^{+}-\mathrm{N}=\mathrm{C}-\mathrm{O}^{-}$character makes a greater contribution than that of $\mathrm{Bi}^{+}-\mathrm{N}^{-}-\mathrm{C}=\mathrm{O}$.
(b) X-ray Crystallographic Analyses. The crystal structures of [(trichloroacetyl)imino]triarylpnictoranes 3e, 6, 8, and 10c were compared by X-ray crystallography. ORTEP diagrams are provided in Figures 1-4, crystallographic data are summarized in Table 3, and selected bond lengths and angles are listed in Table 4. These iminopnictoranes $\left(\mathrm{Ar}_{3} \mathrm{M}=\mathrm{NCOCCl}_{3}\right)$ exist in a monomeric form, and there is no intermolecular interaction between the pnictogen center and the neighboring molecules. The pnictogen atom possesses a distorted tetrahedral geometry with average $\mathrm{C}-\mathrm{M}-\mathrm{C}$ and $\mathrm{N}-\mathrm{M}-\mathrm{C}$ bond angles of $107.9-$ 110.7 and $108.0-110.9^{\circ}$, respectively.

[^6]

Figure 1. ORTEP diagram for $\mathbf{3 e}$ (30% probability ellipsoids). Selected bond lengths (\AA) and angles (deg): $\mathrm{Bi}-\mathrm{C}(3), 2.198(4) ; \mathrm{Bi}-\mathrm{C}(10)$, 2.204(4); $\mathrm{Bi}-\mathrm{C}(17)$, 2.196(4); $\mathrm{C}(3)-\mathrm{Bi}-\mathrm{C}(10), 109.4(1) ; \mathrm{C}(3)-\mathrm{Bi}-$ $\mathrm{C}(17)$, 109.3(1); $\mathrm{C}(10)-\mathrm{Bi}-\mathrm{C}(17), 106.2(1) ; \mathrm{N}-\mathrm{Bi}-\mathrm{C}(3), 106.9(1)$; $\mathrm{N}-\mathrm{Bi}-\mathrm{C}(10), 108.8(1) ; \mathrm{N}-\mathrm{Bi}-\mathrm{C}(17), 116.1(1)$.

Figure 2. ORTEP diagram for 6 (30% probability ellipsoids). Selected bond lengths (\AA) and angles (deg): $\mathrm{P}-\mathrm{C}(3), 1.800(2) ; \mathrm{P}-\mathrm{C}(9), 1.796-$ (2); $\mathrm{P}-\mathrm{C}(15), 1.799(2) ; \mathrm{C}(3)-\mathrm{P}-\mathrm{C}(9), 106.9(1) ; \mathrm{C}(3)-\mathrm{P}-\mathrm{C}(15)$, 108.1(1); $\mathrm{C}(9)-\mathrm{P}-\mathrm{C}(15), 108.8(1) ; \mathrm{N}-\mathrm{P}-\mathrm{C}(3), 115.1(1) ; \mathrm{N}-\mathrm{P}-\mathrm{C}(9)$, 105.2(1); $\mathrm{N}-\mathrm{P}-\mathrm{C}(15), 112.3(1)$.

The observed $\mathrm{M}=\mathrm{N}$ bond lengths primarily reflect the orbital size of the respective pnictogen atom. ${ }^{35}$ Therefore, the multiplicity of the $\mathrm{M}=\mathrm{N}$ bond in iminopnictoranes is discussed by comparison with known $\mathrm{M}-\mathrm{N}$ bond lengths of the corresponding tricoordinate pnictogen(III) amides. The $\mathrm{Bi}=\mathrm{N}$ bond length of $2.125(3) \AA$ in 3 e is comparable to that $[2.13(1) \AA$] of $(p$ $\mathrm{Tol})_{2} \mathrm{ArBi}=\mathrm{NSO}_{2} \mathrm{CF}_{3}[\mathrm{Ar}=2$-(4,4-dimethyl-4,5-dihydrooxazol2 -yl)phenyl] ${ }^{19}$ and is slightly shorter than known $\mathrm{Bi}-\mathrm{N}$ bond lengths ($2.165-2.20 \AA$) observed for bismuth(III) amides. ${ }^{36}$ If we take into account a slight shortening $(\sim 0.04 \AA)$ of the $\mathrm{Bi}-\mathrm{X}$ bond, which arises with the quaternization of the bismuth atom, the $\mathrm{Bi}=\mathrm{N}$ bond of $3 \mathbf{e}$ is considered to possess an appreciable single-bond character. ${ }^{37}$ The $\mathrm{P}=\mathrm{N}$ bond length of $1.620(2) \AA$ in $\mathbf{6}$ is comparable to that $\left[1.626(3) \AA\right.$] of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{NCOPh}^{38}$ and is much shorter than typical $\mathrm{P}-\mathrm{N}$ bond lengths ($1.68-1.75 \AA$) of phosphorus(III) amides ${ }^{39}$ and an ideal $\mathrm{P}-\mathrm{N}$ single bond
(35) Emsley, J. The Elements, 3rd ed.; Oxford University Press: Oxford, U.K., 1998. Covalent radii: N, $0.70 \AA$; P, $1.10 \AA$; As, $1.21 \AA$ A ; Sb, $1.41 \AA$ A ; Bi, $1.52 \AA$. van der Waals radii: $\mathrm{O}, 1.4 \AA$; P, $1.9 \AA$; As, $2.0 \AA ; \mathrm{Sb}, 2.2 \AA$; $\mathrm{Bi}, 2.4$ A.

Figure 3. ORTEP diagram for 8 (30% probability ellipsoids). Selected bond lengths (A) and angles (deg): As $-\mathrm{C}(3), 1.913(2) ; \mathrm{As}-\mathrm{C}(9)$, 1.910(2); As-C(15), 1.909(2); C(3)-As-C(9), 107.18(7); C(3)-As$\mathrm{C}(15), 108.01(8) ; \mathrm{C}(9)-\mathrm{As}-\mathrm{C}(15), 110.18(8) ; \mathrm{N}-\mathrm{As}-\mathrm{C}(3), 116.27-$ (7); $\mathrm{N}-\mathrm{As}-\mathrm{C}(9), 103.16(7) ; \mathrm{N}-\mathrm{As}-\mathrm{C}(15), 111.78(7)$.
length ($1.80 \AA$) observed for potassium phosphoramidate. ${ }^{9}$ On the basis of a previous discussion of the $\mathrm{P}-\mathrm{N}$ bonding properties of phosphorus(III) amides, ${ }^{39}$ it has been suggested that the backbonding from the nitrogen atom to the phosphorus atom causes a $\mathrm{P}-\mathrm{N}$ bond-shortening of $0.04-0.12 \AA .{ }^{40}$ Therefore, the double-bond character of the $\mathrm{P}=\mathrm{N}$ bond in $\mathbf{6}$ is much more significant than that of the $\mathrm{Bi}=\mathrm{N}$ bond in 3 e . As is the case with aminophosphonium salts, ${ }^{41}$ the positive charge on the phosphorus atom of $\mathbf{6}$ would be partially neutralized through the lone pair of electrons on the nitrogen. The $\mathrm{As}=\mathrm{N}$ bond length of $1.783(2) \AA$ in $\mathbf{8}$ is slightly longer than that [1.755(3)

[^7]a)

b)

Figure 4. ORTEP diagrams for 10c (30% probability ellipsoids). (a) Selected bond lengths (\AA) and angles (deg): $\mathrm{Sb}(1)-\mathrm{C}(3), 2.148(6)$; $\mathrm{Sb}(1)-\mathrm{C}(12), 2.145(6) ; \mathrm{Sb}(1)-\mathrm{C}(21), 2.134(6) ; \mathrm{C}(3)-\mathrm{Sb}(1)-\mathrm{C}(12)$, 115.2(2); $\mathrm{C}(3)-\mathrm{Sb}(1)-\mathrm{C}(21), 100.9(2) ; \mathrm{C}(12)-\mathrm{Sb}(1)-\mathrm{C}(21), 115.9-$ (2); $\mathrm{N}(1)-\mathrm{Sb}(1)-\mathrm{C}(3), 99.4(2) ; \mathrm{N}(1)-\mathrm{Sb}(1)-\mathrm{C}(12), 105.0(2) ; \mathrm{N}(1)-$ $\mathrm{Sb}(1)-\mathrm{C}(21), 119.5(2)$. (b) Selected bond lengths (\AA) and angles (deg): $\mathrm{Sb}(2)-\mathrm{C}(32), 2.151(6) ; \mathrm{Sb}(2)-\mathrm{C}(41), 2.151(6) ; \mathrm{Sb}(2)-\mathrm{C}(50)$, $2.145(6) ; \mathrm{C}(32)-\mathrm{Sb}(2)-\mathrm{C}(41), 102.3(2) ; \mathrm{C}(32)-\mathrm{Sb}(2)-\mathrm{C}(50), 113.3-$ (2); $\mathrm{C}(41)-\mathrm{Sb}(2)-\mathrm{C}(50), 115.0(2) ; \mathrm{N}(2)-\mathrm{Sb}(2)-\mathrm{C}(32), 100.9(2)$; $\mathrm{N}(2)-\mathrm{Sb}(2)-\mathrm{C}(41), 119.6(2) ; \mathrm{N}(2)-\mathrm{Sb}(2)-\mathrm{C}(50), 105.0(2)$.
$\AA]$ of $\mathrm{Ph}_{3} \mathrm{As}=\mathrm{NSO}_{2} \mathrm{Tol}^{42}$ but shorter than typical $\mathrm{As}-\mathrm{N}$ bond lengths ($1.84-1.88 \AA$) of arsenic(III) amides. ${ }^{39 \mathrm{~g}, \mathrm{j}, 43}$ Imino- λ^{5} stibane 10c consists of two isolated molecules with similar geometry around the antimony center. The $\mathrm{Sb}=\mathrm{N}$ bond lengths of $1.989(5)-1.992(5) \AA$ in 10c are slightly longer than those [1.958(4)-1.962(2) \AA] of the N-sulfonyl derivatives, $\mathrm{Ar}_{3} \mathrm{Sb}=$ $\mathrm{NSO}_{2} \mathrm{CF}_{3}(\mathrm{Ar}=o \text {-Tol, } o \text {-Ans) })^{44}$ but somewhat shorter than known $\mathrm{Sb}-\mathrm{N}$ bond lengths (2.04-2.08 \AA) of antimony(III) amides. ${ }^{36 e, 39 j, 45}$ As expected, the bonding properties of the $\mathrm{As}=$ N and $\mathrm{Sb}=\mathrm{N}$ bonds are between those of the $\mathrm{Bi}=\mathrm{N}$ and $\mathrm{P}=\mathrm{N}$ bonds.

Quite recently, Burford, Cameron, and co-workers compared the structures of the first homologous series of bis(amido)diazadipnictetidines, $[\operatorname{DipNMN}(\mathrm{H}) \mathrm{Dip}]_{2}(\mathrm{M}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}$; Dip = 2,6-diisopropylphenyl), with averaged $\mathrm{M}-\mathrm{N}$ bond lengths
(42) Mai, H.-J.; Weller, F.; Dehnicke, K.; Maichle-Mössmer, C.; Strähle, J. Z. Anorg. Allg. Chem. 1994, 620, 851-855.
(43) Typical bond lengths are $1.84-1.85 \AA$ for $\mathrm{As}-\mathrm{N}_{\mathrm{sp}^{2}}$ and 1.87-1.88 \AA for $\mathrm{As}-\mathrm{N}_{\mathrm{sp}^{3}}$ bonds. For example, see: (a) Weiss, J.; Eisenhuth, W. Z. Anorg. Allg. Chem. 1967, 350, 9-17. (b) Rømming, C.; Songstad, J. Acta Chem. Scand. 1980, A34, 365-373.
(44) Matano, Y.; Nomura, H.; Suzuki, H. Inorg. Chem. 2000, 39, 13401341.
(45) (a) Edwards, A. J.; Paver, M. A.; Raithby, P. R.; Russell, C. A.; Wright, D. S. J. Chem. Soc., Dalton Trans. 1993, 2257-2258. (b) Edwards, A. J.; Paver, M. A.; Rennie, M.-A.; Raithby, P. R.; Russell, C. A.; Wright, D. S. J. Chem. Soc., Dalton Trans. 1994, 2963-2966. The values in parentheses are the averaged $\mathrm{Sb}-\mathrm{N}$ bond lengths.

Table 3. Crystallographic Data for (Acylimino)triarylpnictoranes

	6	8	10c	3 e
empirical formula	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{NOP}$	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{AsCl}_{3} \mathrm{NO}$	$\mathrm{C}_{58} \mathrm{H}_{66} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Sb}_{2}$	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BiCl}_{3} \mathrm{NO}_{4}$
fw	422.68	466.63	1279.39	690.76
cryst dimens (mm)	$0.34 \times 0.20 \times 0.18$	$0.20 \times 0.20 \times 0.20$	$0.10 \times 0.10 \times 0.10$	$0.25 \times 0.08 \times 0.05$
cryst system	monoclinic	monoclinic	monoclinic	monoclinic
$a($ (̊)	9.469(3)	9.4395(4)	16.6407(7)	8.776(2)
$b(\AA)$	19.063(4)	19.098(1)	13.1648(6)	17.577(4)
$c(\AA)$	10.976(4)	10.8085(6)	26.062(1)	15.875(4)
β (deg)	94.90(3)	95.312(2)	92.144(2)	96.10(2)
$V\left(\AA^{3}\right)$	1973(1)	1940.1(2)	5705.5(4)	2434.9(10)
space group	$P 21 / n$	$P 2{ }_{1} / n$	$P 2{ }_{1} / \mathrm{c}$	$P 2{ }_{1} / n$
Z	4	4	4	4
$D_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.422	1.597	1.489	1.884
radiation (λ, \AA)	Mo K α (0.710 69)	Mo K α (0.710 69)	Mo K α (0.710 69)	Mo K α (0.710 70)
$\mu(\mathrm{Mo} \mathrm{K} \alpha)\left(\mathrm{cm}^{-1}\right)$	5.54	21.74	12.69	141.85
temp (${ }^{\circ} \mathrm{C}$)	25	-150	-150	-130
$2 \theta_{\text {max }}$ (deg)	55.0	54.9	55.0	55.2
no. of reflcns measd				
total	4800	18746	52765	4787
unique	4735	4420	13003	4786
no. of observns	4735	4420	13003	4342
no. of reflcns	$\mathrm{I}>0.00 \sigma(I)$	all, $2 \theta<54.86^{\circ}$	all, $2 \theta<54.97^{\circ}$	$I>2.00 \sigma(I)$
no. of variables	235	235	631	290
$\mathrm{R} 1, \mathrm{R}_{\mathrm{w}}$	0.043, 0.132	0.025, 0.054	0.049, 0.137	0.025, 0.034
goodness of fit	1.11	1.00	0.95	1.11

Table 4. Selected Bond Lengths and Bond Angles of $\mathrm{Ar}_{3} \mathrm{M}=\mathrm{NCOCCl}_{3}$

compd	$\mathrm{M}-\mathrm{N}$	$\mathrm{N}-\mathrm{C}$	$\mathrm{C}-\mathrm{O}$	$\mathrm{M}-\mathrm{C}^{a}$	$\mathrm{M} \cdots \mathrm{O}$	$\mathrm{C}-\mathrm{M}-\mathrm{C}^{a}$	$\mathrm{~N}-\mathrm{M}-\mathrm{C}^{a}$	$\mathrm{M}-\mathrm{N}-\mathrm{C}$	$\mathrm{N}-\mathrm{C}-\mathrm{O}$
$\mathbf{6}(\mathrm{M}=\mathrm{P})$	$1.620(2)$	$1.333(3)$	$1.220(3)$	1.798	$2.912(2)$	107.9	110.9	$117.7(2)$	$129.9(2)$
$\mathbf{8}(\mathrm{M}=\mathrm{As})$	$1.783(2)$	$1.323(2)$	$1.234(2)$	1.911	$2.837(1)$	108.5	110.4	$110.0(1)$	$130.7(2)$
$\mathbf{1 0 c}(\mathrm{M}=\mathrm{Sb})$	$1.989(5)$	$1.329(8)$	$1.265(7)$	2.142	$2.901(4)$	110.7	108.0	$108.2(4)$	$129.4(6)$
	$1.992(5)$	$1.330(8)$	$1.244(7)$	2.149	$2.872(4)$	110.2	108.5	$106.3(4)$	$130.8(6)$
$\mathbf{3 e}(\mathrm{M}=\mathrm{Bi})$	$2.125(3)$	$1.314(5)$	$1.255(5)$	2.199	$2.877(3)$	108.3	110.6	$104.0(3)$	$130.9(4)$

${ }^{a}$ Average values. See captions under Figures 1-4.

Table 5. $M=N / M-N$ Bond-Length Ratios

M	$\mathrm{M}=\mathrm{N}^{a}$	$\mathrm{M}-\mathrm{N}^{b}$	$\mathrm{M}=\mathrm{N} / \mathrm{M}-\mathrm{N}$
P	1.620	1.709	0.948
As	1.783	1.867	0.955
Sb	1.991^{c}	2.043	0.975
Bi	2.125	2.165	0.982

${ }^{a}$ The $\mathrm{M}=\mathrm{N}$ bond lengths of $\mathbf{3 e}, \mathbf{6}, \mathbf{8}$, and $\mathbf{1 0 c}{ }^{b}$ The average $\mathrm{M}-\mathrm{N}$ bond lengths of $[\operatorname{DipNMN}(\mathrm{H}) \mathrm{Dip}]_{2}$, taken from refs 36 c and 39 j . ${ }^{c}$ Average value.
of $1.709 \AA$ for $\mathrm{P}-\mathrm{N}, 1.867 \AA$ for $\mathrm{As}-\mathrm{N}, 2.043 \AA$ for $\mathrm{Sb}-\mathrm{N}$, and $2.165 \AA$ for $\mathrm{Bi}-\mathrm{N} .{ }^{36 c, 39 \mathrm{j}}$ These values are within the range of typical $\mathrm{M}-\mathrm{N}$ bond lengths of the respective pnictogen(III) amides (vide supra). To evaluate the multiplicity of the $M=N$ bonds of a homologous series of (acylimino)triarylpnictoranes, the ratios of the $\mathrm{M}=\mathrm{N}$ bond lengths of $\mathbf{6}, \mathbf{8}, \mathbf{1 1} \mathbf{c}$, and $\mathbf{3 e}$ vs the averaged $\mathrm{M}-\mathrm{N}$ bond lengths of $[\mathrm{DipNMN}(\mathrm{H}) \mathrm{Dip}]_{2}$ were calculated. As shown in Table 5, the $\mathrm{M}=\mathrm{N} / \mathrm{M}-\mathrm{N}$ bond-length ratios increase in the order $\mathrm{P}(0.948)<\mathrm{As}(0.955)<\mathrm{Sb}(0.975)$ $<\mathrm{Bi}(0.982){ }^{46}$ This clearly suggests that the single-bond character of the $\mathrm{M}=\mathrm{N}$ bond increases progressively as the pnictogen atom becomes heavier and is the most significant for 3e of all the (acylimino)triarylpnictoranes examined. The difference in multiplicity of the $\mathrm{M}=\mathrm{N}$ bonds may reasonably be attributed to the differences in orbital size and electronegativity among pnictogen atoms. Thus, the larger orbital radii and the smaller electronegativities of the heavier pnictogen atoms result in weaker conjugative interactions with nitrogen atoms.
(46) One of the reviewers gave us valuable comments regarding the evaluation of the multiplicity of the $\mathrm{M}=\mathrm{N}$ bonds. If we use an "ideal" $\mathrm{P}-\mathrm{N}$ single bond length of $1.800 \AA$ (ref 9), the $\mathrm{P}=\mathrm{N} / \mathrm{P}-\mathrm{N}$ bond-length ratio is calculated to be 0.900 .

Scheme 3

A structural feature around the N-acyl group is also noteworthy. The observed $\mathrm{N}-\mathrm{C}$ bond lengths [1.314(5)-1.333(3) \AA A] are shorter than the typical $\mathrm{N}-\mathrm{C}$ single bond length (1.38 \AA), whereas the observed $\mathrm{C}=\mathrm{O}$ bond lengths $[1.220(3)-1.265$ (7) Å] are longer than the typical $\mathrm{C}=\mathrm{O}$ double bond length (1.21 \AA). ${ }^{47}$ The M, N, C, and O atoms are almost on the same plane for all iminopnictoranes, with torsion angles of $-4.8(3)$ to $4.2(5)^{\circ}$, indicating an extensive delocalization of the anionic charge of the nitrogen through the carbonyl group. It is likely that the canonical structures \mathbf{Y} and \mathbf{Z} contribute significantly to the actual bonding of (acylimino)pnictoranes (Scheme 3). Among them, 3 e bears the shortest $\mathrm{N}-\mathrm{C}$ bond [1.314(5) \AA] and the longest $\mathrm{C}=\mathrm{O}$ bond $[1.255(5) \AA] .{ }^{48}$ These data is indicative of the largest double-bond character of the $\mathrm{N}-\mathrm{C}$ bond and the largest single-bond character of the $\mathrm{C}=\mathrm{O}$ bond of $\mathbf{3 e}$. Thus, the contribution of the canonical structure \mathbf{Z} would be

[^8]Table 6. Calculated Parameters of $\mathrm{H}_{3} \mathrm{M}=\mathrm{NCOCF}_{3}(\mathrm{M}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})^{a}$

M	$\mathrm{M}=\mathrm{N}^{b}$	$\mathrm{M}=\mathrm{N} / \mathrm{M}-\mathrm{N}^{c}$	BO^{d}	$\mathrm{~N}-\mathrm{C} 1$	$\mathrm{C} 1=\mathrm{O}$	$\mathrm{M}-\mathrm{N}-\mathrm{C} 1$	$\mathrm{M} \cdots \mathrm{O}$	M^{e}	$\mathrm{~N}^{e}$	O^{e}	$\mathrm{M}-\mathrm{H} 1$	$\mathrm{M}-\mathrm{H} 2$
P	$1.656(1.601)$	0.929	1.289	1.363	1.246	105.6	2.634	1.136	-1.000	-0.641	1.418	1.410
As	$1.781(1.715)$	0.937	1.170	1.357	1.253	102.5	2.606	1.296	-0.979	-0.665	1.506	1.502
Sb	$2.014(1.899)$	0.962	1.036	1.338	1.279	94.7	2.433	1.672	-0.929	-0.728	1.685	1.697
Bi	$2.081(1.977)$	0.959	0.943	1.342	1.271	96.3	2.566	1.545	-0.876	-0.714	1.738	1.750

${ }^{a}$ At MP2 level. All bond lengths in angstroms and bond angles in degrees. ${ }^{b}$ Values in parentheses are those of $\mathrm{H}_{3} \mathrm{M}=\mathrm{NH}$, taken from ref 12 . ${ }^{c}$ Bond-length ratio of $\mathrm{M}=\mathrm{N}$ in $\mathrm{H}_{3} \mathrm{M}=\mathrm{NCOCF}_{3}$ vs $\mathrm{M}-\mathrm{N}$ in $\mathrm{H}_{2} \mathrm{M}-\mathrm{NHCOCF}_{3}(1.783 \AA$ for $\mathrm{M}=\mathrm{P}, 1.900 \AA$ for $\mathrm{M}=\mathrm{As}, 2.093 \AA$ for $\mathrm{M}=\mathrm{Sb}$, $2.170 \AA$ for $\mathrm{M}=\mathrm{Bi}$), calculated at the same level. ${ }^{d}$ Mayer-Mulliken natural bond order (NBO) of $\mathrm{M}=\mathrm{N}$ at the MP2 level. ${ }^{e}$ Natural charges on M, N, and O atoms.
most significant for (acylimino)- λ^{5}-bismuthane $\mathbf{3 e}$, as inferred from the IR observations. All intramolecular M $\cdots \mathrm{O}$ distances are within the sum of their van der Waals radii, ${ }^{35}$ and the $\mathrm{M}-\mathrm{N}-\mathrm{C}$ bond angle decreases in the order $\mathrm{P}-\mathrm{N}-\mathrm{C}$ [117.7(2) $\left.{ }^{\circ}\right]>\mathrm{As}-\mathrm{N}-\mathrm{C}\left[110.0(1)^{\circ}\right]>\mathrm{Sb}-\mathrm{N}-\mathrm{C}[106.3(4)-108.2-$ $\left.(4)^{\circ}\right]>\mathrm{Bi}-\mathrm{N}-\mathrm{C}\left[104.0(3)^{\circ}\right]$. It is apparent that the electrostatic interaction between the positively charged pnictogen atom $\left(\mathrm{M}^{\delta+}\right)$ and the negatively charged carbonyl oxygen atom $\left(\mathrm{O}^{\delta-}\right)$ becomes increasingly important as the pnictogen becomes heavier.
(c) Ab initio Molecular Orbital Calculations. To obtain a greater insight into the nature of the $\mathrm{M}=\mathrm{N}$ bond of (acylimino)pnictoranes, ab initio molecular orbital calculations were carried out for a series of [(trifluoroacetyl)imino]pnictoranes, $\mathrm{H}_{3} \mathrm{M}=$ $\mathrm{NCOCF}_{3}(\mathrm{M}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$, by replacing all aryl groups on pnictogen atoms with hydrogen. These imaginary compounds are considered to be suitable models for discussing the structures and properties of some (acylimino)triarylpnictoranes that have been well characterized by X-ray crystallography. The calculations were performed at a level of second-order Møller-Plesset perturbation theory with a relativistic effective core potential and a valence double- ζ plus a polarization-quality basis set, which is the same as that used for the calculation of the geometries of $\mathrm{H}_{3} \mathrm{M}=\mathrm{NH}(\mathrm{M}=\mathrm{P} \text {, As, } \mathrm{Sb}, \mathrm{Bi})^{12}$ and $\mathrm{H}_{3} \mathrm{M}=$ $\mathrm{CH}_{2} \cdot{ }^{49}$ Selected geometrical data for $\mathrm{H}_{3} \mathrm{M}=\mathrm{NCOCF}_{3}$ are listed in Table $6 .{ }^{50}$ In all compounds examined, the pnictogen center possesses a distorted tetrahedral geometry, and the $\mathrm{M}, \mathrm{N}, \mathrm{C}$, and O atoms are on the same plane.

The calculated $\mathrm{M}=\mathrm{N}$ bond lengths of $\mathrm{H}_{3} \mathrm{M}=\mathrm{NCOCF}_{3}$ are slightly longer than those of the parent $\mathrm{H}_{3} \mathrm{M}=\mathrm{NH},{ }^{12}$ suggesting that replacement of the N -hydrogen atom by a trifluoroacetyl group increases the single-bond character of the $\mathrm{M}=\mathrm{N}$ bond. This phenomenon is probably due to the high electronwithdrawing ability of the trifluoroacetyl group. To compare the multiplicity of the $\mathrm{M}=\mathrm{N}$ bond, the $\mathrm{M}-\mathrm{N}$ bond lengths of $\mathrm{H}_{2} \mathrm{M}-\mathrm{NHCOCF}_{3}(\mathrm{M}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$ were also calculated. As shown in Table 6, the bond-length ratio of $\mathrm{Bi}=\mathrm{N} / \mathrm{Bi}-\mathrm{N}$ (0.959) is close to that of $\mathrm{Sb}=\mathrm{N} / \mathrm{Sb}-\mathrm{N}(0.962)$ and much larger than those of $\mathrm{P}=\mathrm{N} / \mathrm{P}-\mathrm{N}(0.929)$ and $\mathrm{As}=\mathrm{N} / \mathrm{As}-\mathrm{N}(0.937)$. Additionally, the calculated $\mathrm{M}=\mathrm{N}$ bond order decreases progressively in the order $\mathrm{P}=\mathrm{N}(1.289)>\mathrm{As}=\mathrm{N}(1.170)>\mathrm{Sb}=\mathrm{N}$ $(1.036)>\mathrm{Bi}=\mathrm{N}(0.943)$. These results indicate that the singlebond character of the $\mathrm{M}=\mathrm{N}$ bond becomes more prominent as the pnictogen atom becomes heavier.

[^9]The large negative charge on the oxygen atom is indicative of the effective delocalization of the negative charge from nitrogen through the adjacent carbonyl group. The calculated natural charges on M, N, and O atoms, the $\mathrm{N}-\mathrm{C}$ bond lengths, and the $\mathrm{C}=\mathrm{O}$ bond lengths indicate that the contribution of the $\mathrm{M}^{+}-\mathrm{N}=\mathrm{C}-\mathrm{O}^{-}$canonical structure becomes more significant in the order $\mathrm{P}<\mathrm{As}<\mathrm{Bi} \leq \mathrm{Sb} .{ }^{51}$ The inverted order of $\mathrm{H}_{3}-$ $\mathrm{Sb}=\mathrm{NCOCF}_{3}$ and $\mathrm{H}_{3} \mathrm{Bi}=\mathrm{NCOCF}_{3}$ is not accordance with the experimentally observed order $\mathrm{P}<\mathrm{As}<\mathrm{Sb}<\mathrm{Bi}$. This discrepancy may arise from the absence of a crystal environment and/or relativistic effects not included in the effective core potential. ${ }^{52}$

It should be noted that the heavier iminopnictoranes ($\mathrm{M}=$ $\mathrm{Sb}, \mathrm{Bi})$ possess much shorter $\mathrm{M} \cdots \mathrm{O}$ distances and smaller $\mathrm{M}-\mathrm{N}-\mathrm{C} 1$ bond angles compared to the lighter iminopnictoranes $(\mathrm{M}=\mathrm{P}, \mathrm{As})$. Also noteworthy is that $\mathrm{M}-\mathrm{H} 2$ bond lengths are longer than the $\mathrm{M}-\mathrm{H} 1$ bond lengths in the heavier iminopnictoranes. These data suggest that the intramolecular coordination from the oxygen atom to the pnictogen center becomes important in $\mathrm{H}_{3} \mathrm{Sb}=\mathrm{NCOCF}_{3}$ and $\mathrm{H}_{3} \mathrm{Bi}=\mathrm{NCOCF}_{3}$. ${ }^{53}$

Reaction of (Acylimino)triaryl- λ^{5}-bismuthanes. The chemical behavior of (acylimino)triaryl- λ^{5}-bismuthanes $\mathbf{3}$ was investigated and compared with those of lighter (acylimino)triarylpnictoranes.
(a) Thermal Decomposition. The thermal stability of imino-λ^{5}-bismuthanes is strongly dependent on the N -substituents. When heated in absolutely dry and deaerated benzene- d_{6} at 60 ${ }^{\circ} \mathrm{C}$ for 1 week in a sealed NMR tube, 3a was recovered mostly unchanged. ${ }^{54}$ By contrast, 3f decomposed within 15 h under the same conditions to give bismuthane $\mathbf{4 a}$ quantitatively (eq 1). The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture showed broad, ill-resolved peak patterns, excepting those peaks attributable to 4a. Exposure to air produced a gel that was insoluble in organic solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, benzene, and DMSO.

[^10]
Scheme 4

Interestingly, when the thermolysis of $\mathbf{3 f}$ was carried out in benzene in a flask, 3,5-bis(trifluoromethyl)aniline (12) and amide $\mathbf{2 c}$ were obtained with a good recovery of $\mathbf{4 a}$ (eq 2). The formation of $\mathbf{1 2}$ strongly suggested the intermediary formation of 3,5-bis(trifluoromethyl)phenyl isocyanate (13) during thermolysis.

There are two possible pathways that may lead to $\mathbf{1 3}$ from 3f, a concerted pathway via 1,2-migration and a stepwise pathway via free nitrene. When the thermolysis of $\mathbf{3 f}$ was carried out in the presence of an excess (5-20 equiv) of a trapping agent or a hydrogen source such as cyclohexene, styrene, cyclohexane, or 9,10-dihydroanthracene, $\mathbf{1 2}$ and 2c were obtained in a combined yield of $56-77 \%$. Although the ratio $12 / \mathbf{c}$ varied slightly, the products trapped by the additive could not be detected by ${ }^{1} \mathrm{H}$ NMR in all cases examined. Thus, it is unlikely that a free nitrene species is involved as the primary intermediate. Although no direct evidence is available for the formation of $\mathbf{1 3},{ }^{55}$ it is likely that the 3,5-bis(trifluoromethyl)phenyl group of $\mathbf{3 f}$ migrates from the acyl carbon to the imido nitrogen concertedly with the elimination of a triarylbismuthonio group, leading to $\mathbf{1 3}$ and $\mathbf{4 a}$ as the initial products (Scheme 4). The isocyanate 13 would readily be hydrolyzed by moisture in the solvent or from the atmosphere to give aniline $\mathbf{1 2} .^{56}$ Previously, Furukawa and Oae reported a similar type of thermal decomposition of N -acylsulfilimines $\left(\mathrm{Ph}_{2} \mathrm{~S}=\mathrm{NCOR}\right)$, where diphenyl sulfide and isocyanates (RNCO) are eliminated at much higher temperatures (ca. $200{ }^{\circ} \mathrm{C}$). ${ }^{57}$ The decomposition mode of (aroylimino)triaryl $-\lambda^{5}$-bismuthane $3 \mathbf{f}$ contrasts to that of (benzoylimino)triphenylphosphorane $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{NCOPh}\right.$) and (benzoylimino)triphenylarsorane $\left(\mathrm{Ph}_{3} \mathrm{As}=\mathrm{NCOPh}\right)$, which thermally decompose to afford benzonitrile and the corresponding oxides $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}\right.$ and $\left.\mathrm{Ph}_{3} \mathrm{As}=\mathrm{O}\right)$, presumably via enolate intermediates. ${ }^{5,58}$

There exists a great difference in thermal stability between (sulfonylimino) $-\lambda^{5}$-bismuthane and (acylimino)- λ^{5}-bismuthane; (tosylimino)tris(2-methoxyphenyl)- λ^{5}-bismuthane [(2-MeOC $\left.6_{6} \mathrm{H}_{4}\right)_{3}$ $\left.\mathrm{Bi}=\mathrm{NSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Me}\right]^{59}$ remained intact even after heating for 1 week at $60^{\circ} \mathrm{C}$ in benzene- d_{6}.
(b) Oxidation. (Acylimino)triaryl- λ^{5}-bismuthanes $\mathbf{3}$ possess a mild oxidizing ability (eqs 3-6). 1,1,2,2-Tetraphenylethanediol

[^11]was cleaved oxidatively by 1 equiv of $\mathbf{3 a}$ or $\mathbf{3 f}$ at room temperature to give benzophenone in $74-84 \%$ yields (eq 3). Benzenethiol was also oxidized by 0.5 equiv of 3 a to give diphenyl disulfide in 80% yield (eq 4). In these reactions, bismuthane 4a was recovered in good yields.
\[

$$
\begin{align*}
& \text { 3a } \frac{\mathrm{PhSH}}{\mathrm{C}_{6} \mathrm{H}_{6}, \text { r.t., } 3 \mathrm{~h}} \underset{(80 \%)}{\mathrm{PhSSPh}}+\underset{\mathbf{4 a}(100 \%)}{\mathrm{o}-\mathrm{Tol}_{3} \mathrm{Bi}}+\underset{2 \mathrm{a}}{\mathrm{H}_{2} \mathrm{NCOCF}_{3}} \tag{4}
\end{align*}
$$
\]

Ethanol and methanol were oxidized by $\mathbf{3 f}$ at room temperature. Treatment of $\mathbf{3 f}$ with 5 equiv of ethanol in CDCl_{3} for 5 h afforded acetaldehyde in 90% NMR yield (based on 3f) together with toluene (99%), amide 2c (76%), and bismuth(III) compounds 14 of the type $o-\mathrm{Tol}_{2} \mathrm{BiX}$ (ca. 90% yield) (eq 5). ${ }^{60}$ Methanol was oxidized to methyl formate (76% based on $\mathbf{3 f}$) with good recovery of toluene (94%), 2c (70%), and $\mathbf{1 4}$ (ca. 90%) (eq 6). Formaldehyde, a putative initial product, could not be detected during the reaction, suggesting that the second oxidation step $\left(\mathrm{H}_{2} \mathrm{CO} \rightarrow \mathrm{HCO}_{2} \mathrm{Me}\right)$ proceeded much more rapidly than the first $\left(\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{CO}\right)$. In this oxidation, the α-hydrogen is abstracted by the tolyl group. When the reaction was carried out using $\mathrm{CD}_{3} \mathrm{OH}$, deuterated toluene was formed (detected by GCMS).

Plausible reaction pathways for these oxidations are depicted in Scheme $5 .{ }^{61} 1,1,2,2$-Tetraphenylethanediol reacts with $\mathbf{3 f}$ to form a cyclic intermediate $\mathbf{1 5}$, which undergoes ligand cleavage to give benzophenone (path a). On the other hand, methanol and ethanol react with $\mathbf{3 f}$ to form an acyclic intermediate 16, which undergoes an intramolecular α-hydrogen abstraction by the adjacent tolyl group to form an aldehyde and $o-\mathrm{Tol}_{2} \mathrm{Bi}-$ NHCOAr 14a (path b). The bismuth(III) amide 14a is hygroscopic and slowly undergoes hydrolysis to generate amide 2c and compound 14b. The lighter pnictogen counterparts 6, 8, and 10a did not oxidize these alcohols under the same reaction conditions, demonstrating a remarkable oxidizing ability of (acylimino)triaryl- λ^{5}-bismuthanes 3.
(c) Other Reactions. Compound 3d reacted with 5, 7, and tris(2-methylphenyl)stibane in benzene- d_{6} at $60^{\circ} \mathrm{C}$ to yield $\mathbf{6}$, $\mathbf{8}$, and 10a, respectively, with a quantitative recovery of $\mathbf{4 a}$ (eq 7). These results suggest that the (acylimino)triaryl- λ^{5}-bismuth-

[^12]
Scheme 5

ane $\mathbf{3}$ is thermodynamically much less stable than their lighter pnictogen counterparts.

Treatment of 3a with aqueous HCl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave dichloride 1a and amide 2a quantitatively (eq 8). Similar acidolysis was observed for the reaction of $\mathbf{3 b}$ with acetic acid, in which diacetate $\mathbf{1 7}$ was formed in 98% yield (eq 9). In the presence of a catalytic amount of copper(II) triflate, both 3a,f underwent aryl migration to give the N-acyltoluidines 18a,b, respectively, with a moderate recovery of $\mathbf{4 a}$ and $\mathbf{2 a}, \mathbf{c}$ (eq 10). The yield of 18 was not affected by the presence or absence of styrene, ruling out the possible involvement of a nitrenoid species therein. Although 3a did not react with benzaldehyde in boiling benzene, 3a,f were found to react with dimethyl acetylenedicarboxylate (DMAD) to afford highly stabilized bismuthonium ylides. ${ }^{62}$ This indicates that the (acylimino)triaryl- λ^{5}-bismuthanes $\mathbf{3}$ possess nucleophilicity and undergo the Michael addition to the acetylenic carbon of DMAD. In contrast, the lighter pnictogen counterparts 6, 8, and 10a did not react with DMAD under the same reaction conditions (in $\mathrm{CDCl}_{3}, 50^{\circ} \mathrm{C}, 15 \mathrm{~h}$).

Summary

(Acylimino)triaryl- λ^{5}-bismuthanes have been prepared by the base-promoted reaction of triarylbismuth dichlorides with amides. The ortho-substituted aryl ligands have been found to afford kinetic stabilization to the reactive $\mathrm{Bi}=\mathrm{N}$ bond. The thermal stabilities of (acylimino)triaryl- λ^{5}-bismuthanes are strongly dependent on the acyl group, with the less electronwithdrawing acyl groups making them more thermally labile. Experimental as well as theoretical comparisons of the structures have been made for a series of (acylimino)pnictoranes, which

[^13]have revealed that the single-bond character of the $\mathrm{M}=\mathrm{N}$ bond as well as the contribution of the canonical form $\mathrm{M}^{+}-\mathrm{N}=\mathrm{C}-\mathrm{O}^{-}$becomes increasingly prominent as pnictogen atoms become heavier. This apparently is owing to the differences in orbital size and electronegativity among pnictogen atoms. (Acylimino)triaryl- λ^{5}-bismuthanes have been found to possess remarkable oxidizing and nitrene-transfer abilities and nucleophilicity, which appear to be largely attributable to the good leaving ability of the bismuthonio group as well as to the highly polarized character of the $\mathrm{Bi}=\mathrm{N}$ bonding. The observed reactivities of (acylimino)triaryl- λ^{5}-bismuthanes differ considerably from those of the lighter pnictogen counterparts and demonstrate their potential utility in organic synthesis.

Experimental Section

General Methods. All reactions were carried out under an argon atmosphere unless otherwise noted. All melting points were determined on a Yanagimoto hot-stage apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Gemini-200 or a JEOL FX400 spectrometer using CDCl_{3} as the solvent unless otherwise noted. Chemical shifts are reported as the relative value vs tetramethylsilane. ${ }^{15} \mathrm{~N}$ NMR spectra were measured on a JEOL $\alpha-500$ spectrometer and the chemical shifts referenced to $\mathrm{NH}_{3}(\mathrm{l}){ }^{32}{ }^{19} \mathrm{~F}$ NMR spectra were measured on a JEOL JNM-LA500 spectrometer in CDCl_{3} with neat $\mathrm{CF}_{3} \mathrm{COOH}$ as an external standard. Unless otherwise noted, IR spectra were observed as KBr pellets on a Shimadzu FTIR-8100S spectrophotometer. EIMS, CIMS, and GCMS spectra were recorded on a Shimadzu QP5000 or QP2000 mass spectrometer. FABMS spectra were measured on a JEOL JMS-HS100 spectrometer using m-nitrophenyl octyl ether as a matrix. Elemental analyses were performed at the Microanalytical Laboratory of Kyoto University. Column chromatography was performed on silica gel (Wakogel C200). Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from CaH_{2} before use. Tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were distilled from sodium benzophenone ketyl before use. Hexane, pentane, and CDCl_{3} were distilled from CaH_{2} and stored over $4 \AA$ molecular sieves. Benzenes $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right.$ and $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$ were distilled from sodium and stored over $4 \AA$ molecular sieves. Sealed NMR samples were prepared by using a vacuum line with rigorously dried and deaerated solvents. Triarylbismuth dichlorides 1 were prepared from the corresponding triarylbismuthanes and sulfuryl chloride according to Barton's procedure ${ }^{63}$ Triarylstibane oxides $\mathbf{9}^{64}$ and tris(2,4,6trimethylphenyl)stibane $(\mathbf{1 1})^{65}$ were prepared according to reported methods. Trichloroacetamide- ${ }^{15} N\left(\mathbf{2 b}-{ }^{15} N\right)$ was prepared from trichloroacetyl chloride and ${ }^{15} \mathrm{NH}_{3}$, generated in situ from ${ }^{15} \mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{KOH} .{ }^{66}$ Other reagents used were of commercial grade.

Triarylbismuth Dichlorides. 1a: ${ }^{1} \mathrm{H}$ NMR $\delta 2.75$ (s, 9H), 7.44$7.57(\mathrm{~m}, 9 \mathrm{H}), 8.04(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .1 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR $\delta 3.87(\mathrm{~s}, 9 \mathrm{H})$, $7.19-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.45-7.54(\mathrm{~m}, 3 \mathrm{H}), 8.13(\mathrm{~d}, 3 \mathrm{H}, J=8.2 \mathrm{~Hz}) .1 \mathrm{c}:$ ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 2.31(\mathrm{~s}, 9 \mathrm{H}), 2.72(\mathrm{~s}, 18 \mathrm{H}), 7.14$ (s, 6H). 1d: ${ }^{1} \mathrm{H}$ NMR δ $2.41(\mathrm{~s}, 9 \mathrm{H}), 7.45(\mathrm{~d}, 6 \mathrm{H}, J=8.2 \mathrm{~Hz}), 8.37(\mathrm{~d}, 6 \mathrm{H}, J=8.2 \mathrm{~Hz}) .1 \mathrm{e}:$ ${ }^{1} \mathrm{H}$ NMR $\delta 7.52-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.69(\mathrm{~m}, 6 \mathrm{H}), 8.53(\mathrm{~d}, 6 \mathrm{H}, J=$ 7.6 Hz).

Triarylstibane Oxides. 9a: mp $261-265^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\delta 2.14$ (s, 9H), 7.03-7.21 (m, 9H), 7.89 (d, 3H, $J=7.4 \mathrm{~Hz}$). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{OSb}: \mathrm{C}, 61.35 ; \mathrm{H}, 5.15$. Found: C, $61.48 ; \mathrm{H}, 5.17 .9$ b: ${ }^{1} \mathrm{H}$ NMR $\delta 3.24(\mathrm{~s}, 9 \mathrm{H}), 6.71(\mathrm{~d}, 3 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.85-6.93(\mathrm{~m}, 3 \mathrm{H}), 7.18-$ 7.25 (m, 3H), 7.83 (dd, 3H, $J=7.3,1.6 \mathrm{~Hz}$).
$\operatorname{Tris}\left(\mathbf{2 , 4 , 6}\right.$-trimethylphenyl)stibane (11): ${ }^{1} \mathrm{H}$ NMR $\delta 2.29$ (s, 9H), 2.33 ($\mathrm{s}, 18 \mathrm{H}$), 6.86 ($\mathrm{s}, 6 \mathrm{H}$).

Synthesis of (Acylimino)triaryl- λ^{5}-bismuthanes 3. General Procedure. KO-t-Bu ($998 \mathrm{mg}, 8.89 \mathrm{mmol}$) was added to a mixture of

[^14]triarylbismuth dichloride $\mathbf{1}(4.00 \mathrm{mmol})$, amide $\mathbf{2}(4.05 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ at $-50^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm gradually to room temperature with stirring. The insoluble solid was filtered out through Celite and the filtrate concentrated under reduced pressure to leave an oily residue that was then crystallized from $\mathrm{CH}_{2}-$ Cl_{2} /hexane to give (acylimino)triaryl- λ^{5}-bismuthane $\mathbf{3}$. Compounds $\mathbf{3 f}, \mathbf{g}$ were isolated as solids in a high state of purity but gradually decomposed upon standing even at $4^{\circ} \mathrm{C}$. Due to thermal instability $(\mathbf{3 h}, \mathbf{i})$ or moisture sensitivity $(\mathbf{3} \mathbf{j}, \mathbf{k})$, compounds $\mathbf{3 h}-\mathbf{k}$ could not be isolated, but the formation of these compounds in a high yield was confirmed by ${ }^{1} \mathrm{H}$ NMR and FABMS.
[(Trifluoroacetyl)imino]tris(2-methylphenyl)- λ^{5}-bismuthane (3a): mp 108-116 ${ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\delta 2.46$ ($\mathrm{s}, 9 \mathrm{H}$), 7.32-7.49 (m, 9H), $7.68-7.73(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\delta 9.92$; IR $v_{\mathrm{C}=\mathrm{O}} 1561 ;$ FABMS $\mathrm{m} / \mathrm{z} 594$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BiF}_{3} \mathrm{NO}: \mathrm{C}, 46.55 ; \mathrm{H}, 3.57$; N, 2.36. Found: C, 46.59; H, 3.47; N, 2.09.
[(Trifluoroacetyl)imino]tris(2-methoxyphenyl) $-\lambda^{5}$-bismuthane (3b): mp 136-143 ${ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\delta 3.64$ ($\mathrm{s}, 9 \mathrm{H}$), $7.05-7.17$ (m, 6H), $7.41-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.83-7.87(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\delta 10.14$; IR $\nu_{\mathrm{C}=0}$ 1566; FABMS m/z $642\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BiF}_{3} \mathrm{NO}_{4}$: C, 43.07; H, 3.30; N, 2.18. Found: C, 42.86; H, 3.33; N, 1.91.
[(Trifluoroacetyl)imino]tris(2,4,6-trimethylpheny) $-\lambda^{5}$-bismuthane (3c): mp $133-134{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.27$ ($\mathrm{s}, 9 \mathrm{H}$), 2.48 ($\mathrm{s}, 18 \mathrm{H}$), $7.01(\mathrm{~s}, 6 \mathrm{H})$; IR $v_{\mathrm{C}=0}$ 1576; FABMS $m / z 678\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{BiF}_{3} \mathrm{NO}: \mathrm{C}, 51.41$; H, 4.91; N, 2.07. Found: C, 51.24 ; H, 4.90; N, 2.12.
[(Trichloroacety)imino]tris(2-methylphenyl)- λ^{5}-bismuthane (3d): mp $113-115{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\delta 2.51$ (s, 9 H), 7.35 (t, 3H, $J=7.4$ Hz), 7.41-7.49 (m, 6H); 7.67-7.69 (m, 3H); IR $\nu_{\mathrm{C}=0} 1593$; FABMS $\mathrm{m} / \mathrm{z} 642\left([\mathrm{M}+\mathrm{H}]^{+} ;{ }^{35} \mathrm{Cl} \times 3\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BiCl}_{3} \mathrm{NO}: \mathrm{C}$, 42.98; H, 3.29; N, 2.18. Found: C, 42.81; H, 3.21; N, 2.19.
[(Trichloroacetyl)imino]tris(2-methoxyphenyl)- λ^{5}-bismuthane (3e): mp 112-114 ${ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\delta 3.66$ ($\mathrm{s}, 9 \mathrm{H}$), 7.05-7.17 (m, 6H), 7.40-7.49 (m, 3H), 7.85-7.89 (m, 3H); ${ }^{13} \mathrm{C}$ NMR δ 56.1, 111.8, 123.6, 132.2, 135.4, 136.6, 160.4, $172.2(\mathrm{C}=\mathrm{O})$; IR $v_{\mathrm{C}=\mathrm{o}} 1561$; FABMS m / z $690\left([\mathrm{M}+\mathrm{H}]^{+} ;{ }^{35} \mathrm{Cl} \times 3\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BiCl}_{3} \mathrm{NO}_{4}: \mathrm{C}, 39.99$; H, 3.06; N, 2.03. Found: C, 39.81; H, 3.02; N, 2.11.
[(3,5-Bis(trifluoromethyl)benzoyl)imino]tris(2-methylphenyl)- λ^{5} bismuthane (3f): ${ }^{1} \mathrm{H}$ NMR $\delta 2.51(\mathrm{~s}, 9 \mathrm{H}), 7.31-7.49(\mathrm{~m}, 9 \mathrm{H}), 7.73-$ $7.81(\mathrm{~m}, 3 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 2 \mathrm{H})$; FABMS m/z $738\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
[(3,5-Bis(trifluoromethyl)benzoyl)imino]tris(2-methoxyphenyl)-λ^{5}-bismuthane (3 g): ${ }^{1} \mathrm{H}$ NMR $\delta 3.62(\mathrm{~s}, 9 \mathrm{H}), 7.05-7.17$ (m, 6 H), $7.40-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.85-7.93(\mathrm{~m}, 4 \mathrm{H}), 8.65$ (s, 2H); FABMS m / z $786\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
[(4-Nitrobenzoyl)imino]tris(2-methylphenyl)- λ^{5}-bismuthane ($\mathbf{3 h}$): ${ }^{1} \mathrm{H}$ NMR $\delta 2.51(\mathrm{~s}, 9 \mathrm{H}), 7.30-7.49(\mathrm{~m}, 9 \mathrm{H}), 7.75-7.78(\mathrm{~m}, 3 \mathrm{H}), 8.19$ $(\mathrm{d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}), 8.27(\mathrm{~d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz})$; FABMS m/z 647 ($[\mathrm{M}+\mathrm{H}]^{+}$).
(Benzoylimino)tris(2-methylphenyl)- λ^{5}-bismuthane (3i): ${ }^{1} \mathrm{H}$ NMR $\delta 2.52(\mathrm{~s}, 9 \mathrm{H}), 7.28-7.45(\mathrm{~m}, 12 \mathrm{H}), 7.76-7.80(\mathrm{~m}, 3 \mathrm{H}), 8.10-8.15$ (m, 2H); FABMS m/z $602\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
 ${ }^{1} \mathrm{H}$ NMR $\delta 2.40(\mathrm{~s}, 9 \mathrm{H}), 7.39(\mathrm{~d}, 6 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.71(\mathrm{~d}, 6 \mathrm{H}, J=7.7$ $\mathrm{Hz})$; FABMS $m / z 594\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
[(Trifluoroacetyl)imino]triphenyl- λ^{5}-bismuthane ($\mathbf{3 k}$): ${ }^{1} \mathrm{H}$ NMR $\delta 7.60-7.71(\mathrm{~m}, 9 \mathrm{H}), 7.84(\mathrm{~d}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;$ FABMS m/z 552 $\left([M+H]^{+}\right)$.

Synthesis of Iminophosphorane 6 and Iminoarsorane 8. These compounds were prepared according to Bittner's method. ${ }^{30}$ Diethyl azodicarboxylate (40% in toluene, 0.50 mL , ca. 1.1 mmol) was added to a mixture of triphenylphosphane (5) ($262 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathbf{2 b}$ (163 $\mathrm{mg}, 1.00 \mathrm{mmol})$, and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 12 h , during which time the mixture was allowed to warm to room temperature. The volatiles were removed under reduced pressure to leave an oily residue that was then washed with $\mathrm{Et}_{2} \mathrm{O}$ and THF and crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to yield iminophosphorane 6 as a colorless solid ($314 \mathrm{mg}, 74 \%$). Iminoarsorane $\mathbf{8}$ was prepared similarly from arsane 7.
[(Trichloroacetyl)imino]triphenylphosphorane (6): mp 184-186 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{28} \mathrm{mp} 183-184{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.46-7.66(\mathrm{~m}, 9 \mathrm{H}), 7.79$ (dd, $6 \mathrm{H}, J=12.5,7.7 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 126.4\left({ }^{1} J_{\mathrm{PC}}=100.3 \mathrm{~Hz}\right.$), 128.9
$\left.{ }^{3} J_{\mathrm{PC}}=12.4 \mathrm{~Hz}\right), 132.9\left({ }^{4} J_{\mathrm{PC}}=3.0 \mathrm{~Hz}\right), 133.1\left({ }^{2} J_{\mathrm{PC}}=10.2 \mathrm{~Hz}\right), 170.1$ $\left(^{2} J_{\mathrm{PC}}=5.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right)$; IR $v_{\mathrm{C}=\mathrm{o}} 1638 ;$ FABMS m/z $422\left([\mathrm{M}+\mathrm{H}]^{+}\right.$; ${ }^{35} \mathrm{Cl} \times 3$).
[(Trichloroacetyl)imino]triphenylarsorane (8): $\mathrm{mp} 218-219{ }^{\circ} \mathrm{C}$ (lit. ${ }^{29} \mathrm{mp} 216{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.49-7.67(\mathrm{~m}, 9 \mathrm{H}), 7.77(\mathrm{~d}, 6 \mathrm{H}, J=$ $7.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 127.5,129.7,132.5,132.6,173.0(\mathrm{C}=\mathrm{O})$; IR $v_{\mathrm{C}=0}$ 1611; FABMS m/z $466\left([\mathrm{M}+\mathrm{H}]^{+} ;{ }^{35} \mathrm{Cl} \times 3\right)$.
Synthesis of Imino- λ^{5}-stibanes 10a-c. Method A. A mixture of triarylstibane oxides $9 \mathbf{a}, \mathbf{b}(0.63 \mathrm{mmol})$, trichloroacetonitrile (0.25 mL , $2.5 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was stirred at room temperature for 1 h . The resulting mixture was evaporated in vacuo to leave an oily residue that contained (acylimino)triaryl- λ^{5}-stibanes 10a,b in a high state of purity. Compounds $\mathbf{1 0 a}, \mathbf{b}$ were extremely moisture sensitive and readily decomposed to give the corresponding oxides $\mathbf{9 a}, \mathbf{b}$ under ambient conditions.

Method B. Diethyl azodicarboxylate (40% in toluene, 1.5 mL , ca. $3.3 \mathrm{mmol})$ was added to a mixture of tris($2,4,6$-trimethylphenyl)stibane (11) $(1.438 \mathrm{~g}, 3.00 \mathrm{mmol}), 2 \mathrm{~b}(487 \mathrm{mg}, 3.00 \mathrm{mmol})$, and $\mathrm{Et}_{2} \mathrm{O}(30$ mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 h and worked up as described for the synthesis of $\mathbf{6}$ to give 10c as a moderately moisturesensitive solid.
[(Trichloroacetyl)imino]tris(2-methylphenyl)- λ^{5}-stibane (10a): ${ }^{1} \mathrm{H}$ NMR $\delta 2.46(\mathrm{~s}, 9 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.44-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{~d}$, $3 \mathrm{H}, J=7.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 23.6,127.3,128.9,131.7,132.3,135.1$, 144.0, $173.7\left(\mathrm{C}=\mathrm{O}\right.$); IR (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $v_{\mathrm{C}=0}$ 1582; FABMS m/z 556 $\left([\mathrm{M}+\mathrm{H}]^{+} ;{ }^{35} \mathrm{Cl} \times 3,{ }^{123} \mathrm{Sb} ;{ }^{35} \mathrm{Cl} \times 2,{ }^{37} \mathrm{Cl},{ }^{121} \mathrm{Sb}\right)$.
[(Trichloroacetyl)imino]tris(2-methoxyphenyl)- λ^{5}-stibane (10b): ${ }^{1} \mathrm{H}$ NMR $\delta 3.62(\mathrm{~s}, 9 \mathrm{H}), 6.94(\mathrm{~d}, 3 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.05-7.12(\mathrm{~m}, 3 \mathrm{H})$, $7.44-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.65\left(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}\right.$); IR (in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v_{\mathrm{C}=0}$ 1581; FABMS m/z $604\left([\mathrm{M}+\mathrm{H}]^{+} ;{ }^{35} \mathrm{Cl} \times 3,{ }^{123} \mathrm{Sb} ;{ }^{35} \mathrm{Cl} \times 2\right.$, $\left.{ }^{37} \mathrm{Cl},{ }^{121} \mathrm{Sb}\right)$.
[(Trichloroacetyl)imino]tris(2,4,6-trimethylphenyl)- λ^{5}-stibane (10c): ${ }^{1} \mathrm{H}$ NMR $\delta 2.27(\mathrm{~s}, 9 \mathrm{H}), 2.49(\mathrm{~s}, 18 \mathrm{H}), 6.91(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.0$, 23.3, 130.5, 133.0, 141.4, 143.6, $171.5(\mathrm{C}=\mathrm{O})$; IR $v_{\mathrm{C}=0} 1583$; FABMS $m / z 640\left([\mathrm{M}+\mathrm{H}]^{+} ;{ }^{35} \mathrm{Cl} \times 3,{ }^{123} \mathrm{Sb} ;{ }^{35} \mathrm{Cl} \times 2,{ }^{37} \mathrm{Cl},{ }^{121} \mathrm{Sb}\right)$.
${ }^{15} \mathrm{~N}$ NMR Spectra of ${ }^{15} \mathrm{~N}$-Labeled (Acylimino)triarylpnictoranes. ${ }^{15} \mathrm{~N}$-labeled compounds $3 \mathrm{e}-{ }^{-15} \mathrm{~N}, 6-{ }^{-15} \mathrm{~N}, \mathbf{8}-{ }^{15} \mathrm{~N}$, and $\mathbf{1 0 c}{ }^{-15} N$ were prepared according to the procedures described above using $\mathbf{2 b}-{ }^{15} \mathrm{~N}$. Compound 2b- ${ }^{15} \mathrm{~N}:{ }^{1} \mathrm{H}$ NMR $\delta 5.72\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HN}}=91.2 \mathrm{~Hz}\right), 6.57\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HN}}=\right.$ 91.9 Hz); IR $v 3363(\mathrm{~m}), 3312(\mathrm{~m}), 3242(\mathrm{~m}), 3179(\mathrm{~m}), 1692(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, 1613 (m), 1379 (m), 1349 (m), 1102 (m), 927 (w), 831 (s), 824 (s), $751(\mathrm{~m}), 668(\mathrm{w}), 640(\mathrm{~m}), 619(\mathrm{~m}), 437(\mathrm{w})$. The incorporation of the ${ }^{15} \mathrm{~N}$ atom was confirmed by FABMS and ${ }^{15} \mathrm{~N}$ NMR. Compound 3 e ${ }^{15} \mathrm{~N}:$ FABMS $\mathrm{m} / \mathrm{z} 691\left([\mathrm{M}+\mathrm{H}]^{+} ;{ }^{35} \mathrm{Cl} \times 3\right)$. Compound $6{ }^{-15} \mathrm{~N}$: FABMS $m / z 423\left([\mathrm{M}+\mathrm{H}]^{+} ;{ }^{35} \mathrm{Cl} \times 3\right)$. Compound $8-{ }^{-15} \mathrm{~N}$: FABMS $\mathrm{m} / \mathrm{z} 467\left([\mathrm{M}+\mathrm{H}]^{+} ;{ }^{35} \mathrm{Cl} \times 3\right)$. The ${ }^{15} \mathrm{~N}$ NMR spectra of the samples (ca. 0.01 M in CDCl_{3}) were obtained at room temperature using gated, broad-band proton decoupling, a pulse angle of approximately 30°, and a postacquisition delay of 20 s . Nitromethane was used as an external standard. Chemical shifts relative to $\mathrm{NH}_{3}(1)$ were calculated using the equation $\delta\left(\mathrm{NH}_{3}\right)=\delta\left(\mathrm{MeNO}_{2}\right)+380.23,{ }^{32}$ and data are listed in Table 2.

Thermal Decomposition of (Acylimino)triaryl- λ^{5}-bismuthanes 3. (a) In a Sealed Tube. Compound $3 \mathrm{f}(10.2 \mathrm{mg}, 14 \mu \mathrm{~mol})$ was placed in a sealable NMR tube that was thoroughly evacuated using a vacuum line. Benzene- d_{6}, dried over sodium, was vacuum transferred into the tube. After three freeze-pump-thaw cycles, the tube was evacuated and sealed. The thermal decomposition of $\mathbf{3 f}$ was monitored at several intervals by ${ }^{1} \mathrm{H}$ NMR. After 15 h at $60^{\circ} \mathrm{C}$, the only peaks observed on the spectrum were those of tris(2-methylphenyl)bismuthane (4a). The yield of $\mathbf{4 a}$ was quantitative. When $\mathbf{3 a}$ was similarly reacted in a sealed tube under the same conditions, no decomposition was observed even after 1 week.
(b) In a Flask. A flask containing a benzene solution $(20 \mathrm{~mL})$ of $\mathbf{3 f}$ $(0.8-1.0 \mathrm{mmol})$ was heated at $60^{\circ} \mathrm{C}$ for 15 h . The mixture was then concentrated under reduced pressure to leave an oily residue that was examined by ${ }^{1} \mathrm{H}$ NMR. 3,5-Bis(trifluoromethyl)aniline (12) and 3,5bis(trifluoromethyl)benzamide (2c) were formed in $22-75 \%$ and $15-$ 76% yields, respectively, together with a good recovery of bismuthane 4a. Aniline $\mathbf{1 2}$ was characterized by comparison with the authentic specimen. The residue was chromatographed on silica gel with hexane/
ethyl acetate as the eluent to afford $\mathbf{4 a}: \mathrm{mp} 132-136{ }^{\circ} \mathrm{C}$ (lit. ${ }^{67} \mathrm{mp}$ $\left.130-131{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 2.44(\mathrm{~s}, 9 \mathrm{H}), 7.03-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.23-$ $7.37(\mathrm{~m}, 6 \mathrm{H}), 7.55(\mathrm{dd}, 3 \mathrm{H}, J=7.3,1.3 \mathrm{~Hz})$. Aniline 12: ${ }^{1} \mathrm{H} \mathrm{NMR} \delta$ 4.07 (br-s, 2H), $7.03(\mathrm{~s}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H})$. When a benzene solution of 3a was heated at $60{ }^{\circ} \mathrm{C}$ for 48 h under N_{2} or Ar in a flask, 4 a was obtained in 61% yield together with amide $\mathbf{2 a}$. When the thermolysis of $\mathbf{3 f}$ was carried out in the presence of an excess (5-20 equiv) of a trapping agent or a hydrogen source such as cyclohexene, styrene, cyclohexane, or 9,10-dihydroanthracene, $\mathbf{1 2}$ and 2c were obtained in a combined yield of $56-77 \%$. Products trapped by the additive could not be detected by ${ }^{1} \mathrm{H}$ NMR.

Oxidation of $\mathbf{1 , 1 , 2 , 2}$-Tetraphenylethanediol. A mixture of 3a (121 $\mathrm{mg}, 0.204 \mathrm{mmol}$), 1,1,2,2-tetraphenylethanediol ($78 \mathrm{mg}, 0.21 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at room temperature for 24 h . Evaporation of the solvent under reduced pressure left an oily residue that was then chromatographed on silica gel (hexane/EtOAc) to give $4 \mathbf{a}(89 \mathrm{mg}, 91 \%)$, benzophenone ($65.3 \mathrm{mg}, 84 \%$), and unchanged diol. The products were identified by comparison with the authentic specimens. The presence of $\mathbf{2 a}$ in the residue was confirmed by ${ }^{1} \mathrm{H}$ NMR and MS. When $\mathbf{3 f}$ was used instead of $\mathbf{3 a}$, benzophenone and $\mathbf{4 a}$ were formed in 74% and 83% yield, respectively.

Oxidation of Benzenethiol. A mixture of $\mathbf{3 a}(178 \mathrm{mg}, 0.300 \mathrm{mmol})$, benzenethiol ($62 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$), and benzene $(10 \mathrm{~mL})$ was stirred at room temperature for 3 h . Concentration of the mixture under reduced pressure left an oily residue that was chromatographed on silica gel (hexane/EtOAc) to give $\mathbf{4 a}(148 \mathrm{mg}, 100 \%)$ and diphenyl disulfide ($53 \mathrm{mg}, 80 \%$). The products were identified by comparison with the authentic specimens.

Oxidation of Ethanol and Methanol. A mixture of $\mathbf{3 f}(13 \mathrm{mg}, 18$ $\mu \mathrm{mol})$, ethanol ($5 \mu \mathrm{~L}, 89 \mu \mathrm{~mol}$), and $\mathrm{CDCl}_{3}(0.50 \mathrm{~mL})$ was allowed to stand in an NMR tube at room temperature. The progress of the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR. After 5 h , acetaldehyde (90%), toluene (99%), amide 2c (76%), and compounds 14 of the type $o-\mathrm{Tol}_{2} \mathrm{BiX}$ (92%) were formed. Methanol was similarly oxidized by $\mathbf{3 f}$ to afford methyl formate (76%), toluene (94%), 2c (70%), and 14 (90%) after 5 h. The oxidation products (acetaldehyde and methyl formate) and toluene were identified by comparison with the authentic specimens. The spectral data for the major component $(>70 \%)$ of $\mathbf{1 4}$ was identical to that of a bismuth compound obtained from the reaction of bis(2methylphenyl)bismuth trifluoromethanesulfonate ${ }^{68}$ with aqueous NaOH . On the basis of spectral data as well as by comparison with a previous result with $\mathrm{Mes}_{2} \mathrm{BiOBiMes}_{2},{ }^{69}$ we identified the major component of 14 as tetrakis(2-methylphenyl)dibismuth oxide (14b) $\left(o-\mathrm{Tol}_{2} \mathrm{BiOBio}-\right.$ $\left.\mathrm{Tol}_{2}\right):{ }^{1} \mathrm{H}$ NMR $2.15(\mathrm{~s}, 12 \mathrm{H}), 7.22-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 4 \mathrm{H})$, $8.20(\mathrm{~d}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz})$. Two minor components were tentatively assigned as bis(2-methylphenyl)bismuth 3,5-bis(trifluoromethyl)benzamide and bis(2-methylphenyl)bismuth alkoxide, but only on the basis of the ${ }^{1} \mathrm{H}$ NMR spectra of the crude products, and attempts to prepare these samples independently failed. We speculate that the amide $\mathbf{1 4 a}$ formed initially, $o-\mathrm{Tol}_{2} \mathrm{BiNHCOAr}\left(\mathrm{Ar}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$, would have been hydrolyzed by moisture from the solvent or atmosphere to produce 14b and amide 2c.

Reaction of 3d with 5, 7, and Triarylstibane. A mixture of 3d $(10.6 \mathrm{mg}, 16.5 \mu \mathrm{~mol}), 5(11.6 \mathrm{mg}, 44.2 \mu \mathrm{~mol})$, and $\mathrm{C}_{6} \mathrm{D}_{6}(0.75 \mathrm{~mL})$ was heated at $60^{\circ} \mathrm{C}$ for 7 h . Iminophosphorane 6 was formed with a quantitative recovery of 4a. Triphenylarsane (7) and tris(2-methylphenyl)stibane also reacted with $\mathbf{3 d}$ under similar conditions to generate $\mathbf{8}$ and 10a, respectively, together with $\mathbf{4 a}$.

Reaction of 3a with Aqueous $\mathbf{H C l}$. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (3 mL) of $\mathbf{3 a}(118 \mathrm{mg}, 0.199 \mathrm{mmol})$ was added aqueous HCl (ca. $12 \mathrm{~N}, 0.2$ mL), and the resulting mixture was vigorously stirred at room temperature. After 1 h , the organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 2)$. The combined organic phase was dried over MgSO_{4} and concentrated under reduced pressure
(67) Nesmeyanov, A. N.; Tolstaya, T. P.; Isaeva, L. S. Dokl. Akad. Nauk SSSR 1958, 122, 614-617.
(68) Matano, Y.; Miyamatsu, T.; Suzuki, H. Organometallics 1996, 15, 1951-1953.
(69) Breunig, H. J.; Ebert, K. H.; Schulz, R. E.; Wieber, M.; Sauer, I. Z. Naturforsch. B 1995, 50, 735-744.
to leave an oily residue that was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to yield $1 \mathbf{a}(111 \mathrm{mg}, 100 \%)$: $\mathrm{mp} 182-185^{\circ} \mathrm{C}$ (dec) (lit. ${ }^{70} \mathrm{mp} 172{ }^{\circ} \mathrm{C}$).

Reaction of 3b with Acetic Acid. A mixture of 3b (194 mg, 0.303 $\mathrm{mmol})$, acetic acid $(0.19 \mathrm{~mL}, 3.3 \mathrm{mmol})$, and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was stirred at room temperature for 4 h . The mixture was evaporated under reduced pressure to leave an oily residue that was then extracted with $\mathrm{Et}_{2} \mathrm{O}$ (10 mL). The $\mathrm{Et}_{2} \mathrm{O}$ extract was dried over MgSO_{4} and evaporated under reduced pressure to leave an oily residue that was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to yield tris(2-methoxyphenyl)bismuth diacetate (17) as a crystalline solid ($188 \mathrm{mg}, 98 \%$): mp $143-145^{\circ} \mathrm{C}$ (dec) (lit. ${ }^{71} \mathrm{mp}$ $\left.147{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.67(\mathrm{~s}, 6 \mathrm{H}), 3.86(\mathrm{~s}, 9 \mathrm{H}), 7.15-7.23(\mathrm{~m}, 6 \mathrm{H})$, $7.37-7.45(\mathrm{~m}, 3 \mathrm{H}), 8.20(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$.

Copper(II) Trifluoromethanesulfonate-Catalyzed Aryl Migration of 3. A mixture of $\mathbf{3 a}(147 \mathrm{mg}, 0.247 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(4.9 \mathrm{mg}, 0.014$ $\mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at room temperature for 24 h . Evaporation of the mixture under reduced pressure left an oily residue that was then chromatographed on silica gel (hexane/EtOAc) to give bismuthane $\mathbf{4 a}(45 \mathrm{mg}, 38 \%)$ and N-trifluoroacetyl-o-toluidine (18a) ($17.7 \mathrm{mg}, 35 \%$): mp $79-81{ }^{\circ} \mathrm{C}$ (lit. ${ }^{72} \mathrm{mp} \mathrm{81-82}{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 2.31$ $(\mathrm{s}, 3 \mathrm{H}), 7.16-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.85(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.78(\mathrm{~d}, 1 \mathrm{H}$, $J=6.6 \mathrm{~Hz})$; CIMS $m / z 204\left([\mathrm{M}+\mathrm{H}]^{+}\right), 134,107$. The yield of 18a was not affected by the presence or absence of an excess amount of styrene. A similar treatment of $\mathbf{3 f}$ with $\mathrm{Cu}(\mathrm{OTf})_{2}$ afforded $\mathbf{1 8 b}(33 \%)$, 2c (68%), and $\mathbf{4 a}(15 \%)$. N-[3,5-Bis(trifluoromethyl)benzoyl]-o-toluidine (18b): ${ }^{1} \mathrm{H}$ NMR $\delta 2.35$ ($\mathrm{s}, 3 \mathrm{H}$), $7.15-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.71$ (br-s, 1H, NH), $7.77(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 2 \mathrm{H})$; EIMS m/z $347\left(\mathrm{M}^{+}\right), 328,241,213,106$.

Ab initio Molecular Orbital Calculations of Iminopnictorane Structures, $\mathbf{H}_{3} \mathbf{M}=\mathbf{N C O C F}_{3}(\mathbf{M}=\mathbf{P}, \mathbf{A s}, \mathbf{S b}, \mathbf{B i})$. The molecular structures of imaginary iminopnictoranes, $\mathrm{H}_{3} \mathrm{M}=\mathrm{NCOCF}_{3}(\mathrm{M}=\mathrm{P}$, As, Sb, Bi), were predicted by ab initio calculations. The geometry optimization and bond-order and charge-distribution analyses were made using the Gaussian 98 program system. ${ }^{73}$ The basis set was at the valence double- ζ plus polarization function level with the relativistic effective core potential (ECP). For pnictogen atoms, the Los Alamos effective core potential plus the valence double- ζ basis functions ${ }^{74}$ augmented with the d-polarization function were used, where the exponents of the d functions were $0.340(\mathrm{P}), 0.293$ (As), $0.211(\mathrm{Sb})$, and $0.185(\mathrm{Bi})$. The functions for carbon, nitrogen, oxygen, fluorine, and hydrogen were the $(9 \mathrm{~s} 5 \mathrm{p} / 4 \mathrm{~s}) /[3 \mathrm{~s} 2 \mathrm{p} / 2 \mathrm{~s}]$ valence double $-\zeta$ basis functions by Dunning and Hay. ${ }^{75}$ In addition, the d-polarization functions were placed on carbon, nitrogen, and oxygen atoms, where the exponents of the d functions were $0.600(\mathrm{C}), 0.864(\mathrm{~N})$, and 1.154 (O). No polarization functions were placed on the hydrogen and fluorine atoms. The molecular structures were optimized at the second-order Møller-Plesset (MP2) perturbation theory level using the analytical gradient method. All the geometrical parameters were optimized without any symmetry constraints. The stationary structures were confirmed by vibrational analysis. The Mayer-Mulliken natural bond order of the $\mathrm{M}=\mathrm{N}$ bond and the natural charges ${ }^{76}$ on the pnictogen, nitrogen,

[^15]and oxygen atoms were calculated. The bond order and the natural charges were computed at the MP2 level.

X-ray Crystallographic Analyses of 3e, 6, 8, and 10c. Single crystals of compounds $\mathbf{3 e}, \mathbf{6}, \mathbf{8}$, and $\mathbf{1 0}$ c were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $(\mathbf{3 e}, \mathbf{6}, \mathbf{8})$ or $\mathrm{Et}_{2} \mathrm{O}$ /pentane $(\mathbf{1 0 c})$ at $4^{\circ} \mathrm{C}$. Data were recorded on a Rigaku AFC7S diffractometer (6), a Rigaku RAXIS-IV imaging plate diffractometer (3e), or a Rigaku RAXIS-RAPID imaging plate diffractometer $(\mathbf{8}, \mathbf{1 0} \mathbf{c})$, with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation. The data were corrected for Lorentz and polarization effects. The structures were solved by the direct method ${ }^{77}$ and were expanded using Fourier techniques. ${ }^{78}$ Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. Neutral atom-scattering factors were taken from Cromer and Waber. ${ }^{79}$ Anomalous dispersion effects were included in $F_{\text {calc }} ; ;^{80}$ the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley. ${ }^{81}$ The values for the mass-attenuation coefficients are those of Creagh and Hubbel. ${ }^{82}$ All calculations were performed using a teXsan ${ }^{83}$ crystallographic software package of the

[^16]Molecular Structure Corp. Further details of the X-ray crystallography are provided in the Supporting Information.

Acknowledgment. This work was supported by Grants-inAid (No. 11120224 and 12640516) from the Ministry of Education, Science, Sports, and Culture of Japan. We thank Mr. Akira Saito for his assistance with the X-ray crystallography and Professor Keiji Maruoka for his encouragement.

Note Added after ASAP: An incorrect formula was published on Page 4 in the version posted October 11, 2001. The corrected version was reposted October 16, 2001.

Supporting Information Available: Text providing full IR data for $\mathbf{3 a}-\mathbf{e}, \mathbf{6}, \mathbf{8}$, and $\mathbf{1 0} \mathbf{c}$, tables of all the bond lengths and angles obtained by ab initio molecular orbital calculations on the structures of $\mathrm{H}_{3} \mathrm{M}=\mathrm{NCOCF}_{3}$, and X-ray crystallographic data (tables and figures) for the structures of $\mathbf{3 e}, \mathbf{6}, \mathbf{8}$, and $\mathbf{1 0 c}$. This material is available free of charge via the Internet at http://pubs.acs.org.

JA003623L

[^17]
[^0]: * Corresponding author. E-mail: matano@kuchem.kyoto-u.ac.jp.
 ${ }^{\dagger}$ Kyoto University.
 *Present address: Department of Chemistry, School of Science, Kwansei Gakuin University, Uegahara, Nishinomiya 662-0891, Japan.
 § Rigaku Corp.
 ${ }^{4}$ The University of Tokyo.
 (1) Unless otherwise noted, the bonds between the pnictogen and nitrogen atoms in iminopnictoranes are represented as $\mathrm{M}=\mathrm{N}$, irrespective of the actual nature of the bonds.

[^1]: (2) For example, see: (a) Johnson, A. W. Ylid Chemistry; Academic Press: New York, 1966. (b) Singh, G.; Zimmer, H. Organomet. Chem. Rev. 1967, 2, 279-348. (c) Abel, E. W.; Mucklejohn, S. A. Phosphorus Sulfur 1981, 9, 235-266. (d) Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1981, 37, 437-472. (e) Gusar, N. I. Russ. Chem. Rev. 1991, 60, 146-161. (f) Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353-1406. (g) Johnson, A. W. Ylides and Imines of Phosphorus; Wiley: New York, 1993. (h) Molina, P.; Vilaplana, M. J. Synthesis 1994, 1197-1218. (i) Dehnicke, K.; Strähle, J. Polyhedron 1989, 8, 707-726. (j) Lloyd, D.; Gosney, I. In The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds; Patai, S., Ed.; Wiley: Chichester, U.K., 1994; Chapter 16, pp 657-693. (k) Matano, Y.; Suzuki, H. Bull. Chem. Soc. Jpn. 1996, 69, 2673-2681. (1) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; Wiley: New York, 1988. (m) Matano, Y.; Ikegami, T. In Organobismuth Chemistry; Suzuki, H.; Matano, Y. Eds.; Elsevier: New York, 2001; Chapter 3.6, pp 313-319 and references therein.
 (3) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635-646.

[^2]: (4) (a) Chatt, J.; Dilworth, J. R. J. Chem. Soc., Chem. Commun. 1972, 549. (b) Alper, H.; Partis, R. A. J. Organomet. Chem. 1972, 35, C40C42. (c) Chong, A. O.; Oshima, K.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 3420-3426. (d) Maatta, E. A.; Haymore, B. L.; Wentworth, R. A. D. Inorg. Chem. 1980, 19, 1055-1059. (e) Maatta, E. A.; Kim, C. Inorg. Chem. 1989, 28, 623-624.
 (5) (a) Frøyen, P. Acta Chem. Scand. 1969, 23, 2935-2938. (b) Frøyen, P. Acta Chem. Scand. 1971, 25, 2781-2782. (c) Frøyen, P. Acta Chem. Scand. 1973, 27, 141-145. (d) Kokorev, G. I.; Yambushev, F. D.; Badrutdinov, S. K. Zh. Obshch. Khim. 1986, 56, 1794-1798. (e) Kokorev, G. I.; Yambushev, F. D.; Badrutdinov, S. K. Zh. Obshch. Khim. 1989, 59, 1548-1550.
 (6) (a) Pinchuk, A. M.; Kuplennik, Z. I.; Belaya, Z. N. Zh. Obshch. Khim. 1976, 46, 2242-2246. (b) Kuplennik, Z. I.; Pinchuk, A. M. Zh. Obshch. Khim. 1979, 49, 155-160. (c) Kasukhin, L. F.; Ponomarchuk, M. P.; Kuplennik, Z. I.; Pinchuk, A. M. Zh. Obshch. Khim. 1980, 50, 1032-1034. (d) Kuplennik, Z. I.; Belaya, Z. N.; Pinchuk, A. M. Zh. Obshch. Khim. 1981, 51, 2711-2715. (e) Kuplennik, Z. I.; Belaya, Z. N.; Pinchuk, A. M. Zh. Obshch. Khim. 1984, 54, 462-463.
 (7) (a) Suzuki, H.; Nakaya, C.; Matano, Y.; Ogawa, T. Chem. Lett. 1991, 105-108. (b) Suzuki, H.; Ikegami, T. J. Chem. Res., Synop. 1996, 24-25.
 (8) See Table 13.3 (p 415) in ref 2 g and references therein.
 (9) Cameron, T. S.; Chan, C.; Chute, W. J. Acta Crystallogr. 1980, B36, 2391-2393. The anion of potassium phosphoramidate $\left(\mathrm{K}\left[\mathrm{H}_{3} \mathrm{NO}_{3} \mathrm{P}\right]\right)$ is considered to contain an "ideal" $\mathrm{P}-\mathrm{N}$ single bond $[1.800(4) \mathrm{A}$], where the nitrogen atom is sp^{3} hybridized with no lone pair of electrons.
 (10) (a) Albright, T. A.; Freeman, W. J.; Schweizer, E. E. J. Org. Chem. 1976, 41, 2716-2720. (b) Gonbeau, D.; Pfister-Guillouzo, G.; Mazières, M.-R.; Sanchez, M. Can. J. Chem. 1985, 63, 3242-3248. (c) Molina, P.; Alajarín, M.; Leonardo, C. L.; Claramunt, R. M.; Foces-Foces, M. C.; Cano, F. H.; Catalán, J.; de Paz, J. L. G.; Elguero, J. J. Am. Chem. Soc. 1989, 111, 355-363.
 (11) (a) Claydon, A. P.; Fowell, P. A.; Mortimer, C. T. J. Chem. Soc. 1960, 3284-3287. (b) Singh, G.; Zimmer, H. J. Org. Chem. 1965, 30, 417420. (c) Goetz, H. Angew. Chem. 1965, 77, 1021. (d) Goetz, H.; Probst, D. Liebigs Ann. Chem. 1968, 715, 1-14. (e) Schuster, I. Tetrahedron 1977, 33, 1075-1079.
 (12) Koketsu, J.; Ninomiya, Y.; Suzuki, Y.; Koga, N. Inorg. Chem. 1997, 36, 694-702.
 (13) Sudhakar, P. V.; Lammertsma, K. J. Am. Chem. Soc. 1991, 113, 1899-1906.
 (14) The involvement of the phosphorus d-orbital in the $\mathrm{P}=\mathrm{O}$ and $\mathrm{P}=\mathrm{C}$ bonding of phosphane oxides and phosphorus ylides is now believed to be slight. For a review, see: Gilheany, D. G. Chem. Rev. 1994, 94, 13391374.

[^3]: (15) The $\mathrm{n}(\pi)-\sigma^{*}$ negative hyperconjugation was originally suggested to rationalize the hypervalent $(\pi \mathrm{AY})$ bonding of 32 -valence-electron species of the type X ${ }_{3}$ AY: Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434-1445.
 (16) Wittig, G.; Hellwinkel, D. Chem. Ber. 1964, 97, 789-793.
 (17) Kirsanov, A. V. Zh. Obshch. Khim. 1952, 22, 269-273.
 (18) Pasenok, S. V.; Kirij, N. V.; Yagupolskii, Y. L.; Naumann, D.; Tyrra, W. J. Fluorine Chem. 1993, 63, 179-183.
 (19) Ikegami, T.; Suzuki, H. Organometallics 1998, 17, 1013-1017.
 (20) (a) Lloyd, D.; Singer, M. I. C. J. Chem. Soc., Chem. Commun. 1967, 1042-1043. (b) Barton, D. H. R.; Blazejewski, J.-C.; Charpiot, B.; Finet, J.-P.; Motherwell, W. B.; Papoula, M. T. B.; Stanforth, S. P. J. Chem. Soc., Perkin Trans. 1 1985, 2667-2675. (c) Glidewell, C.; Lloyd, D.; Metcalfe, S. Synthesis 1988, 319-321. (d) Suzuki, H.; Murafuji, T.; Ogawa, T. Chem. Lett. 1988, 847-848. (e) Ogawa, T.; Murafuji, T.; Suzuki, H. J. Chem. Soc., Chem. Commun. 1989, 1749-1751. (f) Kirij, N. V.; Pasenok, S. V.; Yagupolskii, Y. L.; Naumann, D.; Tyrra, W. J. Fluorine Chem. 1994, 66, 75-78. (g) Matano, Y. J. Chem. Soc., Perkin Trans. 1 1994, 2703-2709.
 (21) (a) Matano, Y.; Yoshimune, M.; Suzuki, H. J. Org. Chem. 1995, 60, 4663-4665. (b) Matano, Y.; Suzuki, H. Chem. Commun. 1996, 26972698. (c) Rahman, M. M.; Matano, Y.; Suzuki, H. Synthesis 1999, 395397. (d) Rahman, M. M.; Matano, Y.; Suzuki, H. Chem. Commun. 1998, 1359-1360. (e) Matano, Y.; Rahman, M. M.; Yoshimune, M.; Suzuki, H. J. Org. Chem. 1999, 64, 6924-6927.

[^4]: (22) For preliminary results, see: Matano, Y.; Nomura, H.; Shiro, M.; Suzuki, H. Organometallics 1999, 18, 2580-2582.
 (23) A band observed at $625 \mathrm{~cm}^{-1}$ in the IR spectrum of $\left(\mathrm{Ph}_{3} \mathrm{BiO}\right)_{n}$ was assigned as the $\mathrm{Bi}-\mathrm{O}-\mathrm{Bi}$ asymmetric stretching mode: Goel, R. G.; Prasad, H. S. J. Organomet. Chem. 1972, 36, 323-332.
 (24) (a) Goel, R. G.; Prasad, H. S. J. Organomet. Chem. 1973, 50, $129-$ 134. (b) Suzuki, H.; Ikegami, T.; Matano, Y. Tetrahedron Lett. 1994, 35, 8197-8200.
 (25) For hydrolysis of a triphenyl(sulfonylimino)- λ^{5}-bismuthane, see ref 18. We did not attempt to isolate phenyl and p-tolyl derivatives of 3.

[^5]: (26) Kinetic stabilization afforded by ortho-substituted aryl groups has been applied for stabilizing highly reactive functionalities. For example, see: (a) Yoshifuji, M.; Shima, I.; Inamoto, N.; Hirotsu, K.; Higuchi, T. J. Am. Chem. Soc. 1981, 103, 4587-4589. (b) West, R.; Fink, M. J.; Michl, J. Science 1981, 214, 1343-1344. (c) Cowley, A. H.; Kilduff, J. E.; Newman, T. H.; Pakulski, M. J. Am. Chem. Soc. 1982, 104, 5820-5821. (d) Tokitoh, N.; Matsumoto, T.; Okazaki, R. Bull. Chem. Soc. Jpn. 1999, 72, 1665-1684.
 (27) ortho-Methoxy aryl groups have been shown to stabilize the cationic heteroatom thermodynamically. For example, see: (a) McEwen, W. E.; Lau, K. W. J. Org. Chem. 1982, 47, 3595-3596. (b) Wada, M.; Kanzaki, M.; Fujiwara, M.; Kajihara, K.; Erabi, T. Bull. Chem. Soc. Jpn. 1991, 64, 17821786. (c) Suzuki, H.; Ikegami, T.; Azuma, N. J. Chem. Soc., Perkin Trans. 1 1997, 1609-1616. Thus, in compounds 3b,e, the ortho-methoxyl groups may also afford thermodynamic stabilization to the $\mathrm{Bi}=\mathrm{N}$ bond.
 (28) Cristau, H. J.; Manginot, E.; Torreilles, E. Synthesis 1991, 382384.
 (29) Gadreau, C.; Faucaud, A.; Mérot, P. Synthesis 1981, 73-74.
 (30) Bittner, S.; Assaf, Y.; Krief, P.; Pomerantz, M.; Ziemnicka, B. T.; Smith, C. G. J. Org. Chem. 1985, 50, 1712-1718.

[^6]: (31) On treatment with an acid (HX), compounds 10a,b were converted quantitatively to $\mathrm{Ar}_{3} \mathrm{SbX}_{2}(\mathrm{X}=\mathrm{Cl}$ or OAc$)$.
 (32) The chemical shift relative to $\mathrm{NH}_{3}(1)$ was calculated using the equation $\delta\left(\mathrm{NH}_{3}\right)=\delta\left(\mathrm{MeNO}_{2}\right)+$ 380.23: Levy, G. C.; Lichter, R. L. Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy; Wiley: New York, 1979; Chapter 3.
 (33) $\delta_{\mathrm{N}}=119.82-124.91$, relative to $\mathrm{NH}_{3}(1) ; J_{\mathrm{PN}}=43.8-44.7 \mathrm{~Hz}$: Chou, W.-N.; Pomerantz, M.; Witzcak, M. K. J. Org. Chem. 1990, 55, 716-721.
 (34) See discussion in pp 7-9 and pp 58-67 in ref 32 .

[^7]: (36) (a) Clegg, W.; Compton, N. A.; Errington, R. J.; Norman, N. C.; Wishart, N. Polyhedron 1989, 8, 1579-1580. (b) Clegg, W. Compton, N. A.; Errington, R. J.; Fisher, G. A.; Green, M. E.; Hockless, D. C. R.; Norman, N. C. Inorg. Chem. 1991, 30, 4680-4682. (c) Wirringra, U.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. Inorg. Chem. 1994, 33, 4607-4608. (d) Edwards, A. J.; Beswick, M. A.; Galsworthy, J. R.; Paver, M. A.; Raithby, P. R.; Rennie, M.-A.; Russell, C. A.; Verhorevoort, K. L.; Wright, D. S. Inorg. Chim. Acta 1996, 248, 9-14. (e) Burford, N.; Macdonald, C. L. B.; Robertson, K. N.; Cameron, T. S. Inorg. Chem. 1996, $35,4013-4016$. The values in parentheses are the averaged $\mathrm{Bi}-\mathrm{N}$ bond lengths.
 (37) The ortho-methoxy groups in $\mathbf{3 e}$ were found to lean ca. 5° toward the bismuth center. This attractive interaction may cause a slight elongation of the $\mathrm{Bi}=\mathrm{N}$ bond.
 (38) Bar, I.; Bernstein, J. Acta Crystallogr. 1980, B36, 1962-1964.
 (39) Typical bond lengths are $1.68-1.69 \AA$ for $\mathrm{P}-\mathrm{N}_{\mathrm{sp}^{2}}$ and $1.74-1.75$ \AA for $\mathrm{P}-\mathrm{N}_{\mathrm{sp}^{3}}$ bonds. For example, see: (a) Muir, K. W. J. Chem. Soc., Dalton Trans. 1975, 259-262. (b) Cobbledick, R. E.; Einstein, F. W. B. Acta Crystallogr. 1975, B31, 2731-2733. (c) Rømming, C.; Songstad, J. Acta Chem. Scand. 1978, A32, 689-699. (d) Thompson, M. L.; Haltiwanger, R. C.; Norman, A. D. J. Chem. Soc., Chem. Commun. 1979, 647-648. (e) Scherer, O. J.; Andres, K.; Krüger, C.; Tsay, Y.-H.; Wolmerhäuser, G. Angew. Chem., Int. Ed. Engl. 1980, 19, 571-572. (f) Thompson, M. L.; Tarassoli, A.; Haltiwanger, R. C.; Norman, A. D. J. Am. Chem. Soc. 1981, 103, 6770-6772. (g) Atwood, J. L.; Cowley, A. H.; Hunter, W. E.; Mehrotra, S. K. Inorg. Chem. 1982, 21, 1354-1356. (h) Chen, H.-J.; Haltiwanger, R. C.; Hill, T. G.; Thompson, M. L.; Coons, D. E.; Norman, A. D. Inorg. Chem. 1985, 24, 4725-4730. (i) Nieger, M.; Niecke, E.; Gärtner-Winkhaus, C. Acta Crystallogr. 1990, C46, 2470-2472. (j) Burford, N.; Cameron, T. S.; Lam, K.-C.; LeBlanc, D. J.; Macdonald, C. L. B.; Phillips, A. D.; Rheingold, A. L.; Stark, L.; Walsh, D. Can. J. Chem. 2001, 79, 342-348.
 (40) It must be noted that the quaternization of phosphorus atom in the $\mathrm{P}(\mathrm{III})$ to $\mathrm{P}(\mathrm{V})$ conversion would cause the additional $\mathrm{P}-\mathrm{N}$ bond shortening. (41) (a) Cowley, A. H.; Kemp, R. A.; Lasch, J. G.; Norman, N. C.; Stewart, C. A. J. Am. Chem. Soc. 1983, 105, 7444-7445. (b) Chiche, L.; Christol, H. J. Chem. Soc., Perkin Trans. 2 1984, 753-755. (c) Schomburg, D.; Bettermann, G.; Ernst, L.; Schmutzler, R. Angew. Chem., Int. Ed. Engl. 1985, 24, 975-976. (d) Roesky, H. W.; Mainz, B.; Noltemeyer, M.; Sheldrick, G. M. Z. Naturforsch. B 1988, 43, 941-944.

[^8]: (47) March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992; Table 1.5, p 21. The values for the sp^{2} carbon, nitrogen, and oxygen atoms are used.
 (48) The difference in the $\mathrm{C}=\mathrm{O}$ bond of the two molecules of $\mathbf{1 0 c}$ might be caused by the different configuration of the aryl groups and the trichloroacetyl group.

[^9]: (49) Naito, T.; Nagase, S.; Yamataka, H. J. Am. Chem. Soc. 1994, 116, 10080-10088.
 (50) All geometrical parameters are summarized in Supporting Information.

[^10]: (51) A similar trend, $\mathrm{P}<\mathrm{As}<\mathrm{Bi} \leq \mathrm{Sb}$, was observed for another basis set (the Stevens-Basch-Krauss-Jasien-Cundari relativistic ECP plus valence double- ζ polarization basis set) and/or calculation method (density functional theory with the B3LYP hybrid functional).
 (52) It is known that the orbital size and energy of pnictogen atoms do not vary in a linear manner due to the relativistic effect and the d-orbital contraction. See: Nagase, S. In The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds; Patai, S., Ed.; Wiley: Chichester, U.K., 1994; Chapter 1, pp 1-24.
 (53) The n orbital of the oxygen atom may interact with the σ^{*} orbitals of the $\mathrm{Sb}-\mathrm{H} 2$ and $\mathrm{Bi}-\mathrm{H} 2$ bonds to lengthen these bonds and shorten the $\mathrm{Sb} \cdots \mathrm{O}$ and $\mathrm{Bi} \cdots \mathrm{O}$ distances.
 (54) In a previous communication (ref 22), we reported that 3a decomposed by heating for 48 h at $60^{\circ} \mathrm{C}$ in benzene to give bismuthane 4a in a 61% yield together with 2a. Later, it was found that the decomposition was caused by adventitious moisture present in the reaction system.

[^11]: (55) This isocyanate $\mathbf{1 2}$ was found to polymerize in rigorously dried benzene- d_{6} in the presence of a catalytic amount of $\mathbf{4 a}$ to give a gel, which showed only broadened ${ }^{1}$ H NMR signals.
 (56) Amide 2c may be formed by direct hydrolysis of $\mathbf{3 f}$.
 (57) (a) Furukawa, N.; Nishio, T.; Fukumura, M.; Oae, S. Chem. Lett. 1978, 209-210. (b) Furukawa, N.; Fukumura, M.; Nishio, T.; Oae, S. Bull. Chem. Soc. Jpn. 1978, 51, 3599-3605.
 (58) Staudinger, H.; Hauser, E. Helv. Chim. Acta 1921, 4, 861-886
 (59) Matano, Y.; Nomura, H.; Suzuki, H. Manuscript in preparation.

[^12]: (60) The X group in compound $\mathbf{1 4}$ was assigned as $\mathrm{OBi}(o-\mathrm{Tol})_{2}$, $\mathrm{NHCOC}_{6} \mathrm{H}_{3}-3,5-\left(\mathrm{CF}_{3}\right)_{2}$, or OR $(\mathrm{R}=\mathrm{Et}$ or Me$)$ by comparison with the authentic sample or by analysis of the ${ }^{1} \mathrm{H}$ NMR data. See the Experimental Section.
 (61) Similar $\operatorname{Bi}(V)$-alkoxo intermediates were proposed by Barton et al. for the oxidation of alcohols with organobismuth (V) compounds. See: (a) Barton, D. H. R.; Kitchin, J. P.; Lester, D. J.; Motherwell, W. B.; Papoula, M. T. B. Tetrahedron 1981, 37, Supplement 9, 73-79. (b) Barton, D. H. R.; Lester, D. J.; Motherwell, W. B.; Papoula, M. T. B. J. Chem. Soc., Chem. Соттии. 1980, 246-247.

[^13]: (62) Matano, Y.; Nomura, H.; Suzuki, H. J. Organomet. Chem. 2000 611, 89-99.

[^14]: (63) Barton, D. H. R.; Bhatnagar, N. Y.; Finet, J.-P.; Motherwell, W. B. Tetrahedron 1986, 42, 3111-3122.
 (64) Westhoff, T.; Huber, F.; Rüther, R.; Preut, H. J. Organomet. Chem. 1988, 352, 107-113.
 (65) Ates, M.; Breunig, H. J.; Soltani-Neshan, A.; Tegeler, M. Z. Naturforsch. B 1986, 41, 321-326.
 (66) Clusius, K.; Effenberger, E. Helv. Chim. Acta 1955, 38, 18341843.

[^15]: (70) Fedorov, A.; Combes, S.; Finet, J.-P.Tetrahedron 1999, 55, 13411352.
 (71) Combes, S.; Finet, J.-P. Synth. Commun. 1996, 26, 4569-4575.
 (72) Hibbert, F.; Mills, J. F.; Nyburg, S. C.; Parkins, A. W. J. Chem. Soc., Perkin Trans. 2 1998, 629-634.
 (73) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian 98, Revision A.5; Gaussian, Inc.: Pittsburgh, PA, 1998.
 (74) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284-298.
 (75) Dunning, T. H.; Hay, P. J. In Modern Theoretical Chemistry; Schaefer, H. F., Ed.; Plenum: New York, 1977; Vol. 3, pp 1-27.
 (76) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.

[^16]: (77) SIR92: Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A.; Polidori, G. J. Appl. Crystallogr. 1994, 27, 435.
 (78) DIRDIF94: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. The DIRDIF-94 program system; Technical Report of the Crystallography Laboratory, University of Nijmegen, Nijmegen, The Netherlands, 1994.
 (79) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A.
 (80) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.

[^17]: (81) Creagh, D. C.; McAuley, W. J. International Tables for Crystallography; Wilson, A. J. C., Ed.; Kluwer Academic Publishers: Boston, MA, 1992; Vol. C, Table 4.2.6.8, pp 219-222.
 (82) Creagh, D. C.; Hubbell, J. H. International Tables for Crystallography; Wilson, A. J. C., Ed.; Kluwer Academic Publishers: Boston, MA, 1992; Vol. C, Table 4.2.4.3, pp 200-206.
 (83) teXsan: Crystal Structure Analysis Package; Molecular Structure Corp: The Woodlands, TX, 1985, 1999

