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Abstract: The second-order multireference perturbation theory using an optimized partitioning, denoted as
MROPT(2), is applied to calculations of various molecular properties—excitation energies, spectroscopic parameters,
and potential energy curves—for five molecules: ethylene, butadiene, benzene, N2, and O2. The calculated results are
compared with those obtained with second- and third-order multireference perturbation theory using the traditional
partitioning techniques. We also give results from computations using the multireference configuration interaction
(MRCI) method. The presented results show very close resemblance between the new method and MRCI with
renormalized Davidson correction. The accuracy of the new method is good and is comparable to that of second-order
multireference perturbation theory using Møller-Plesset partitioning.
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Introduction

One of the most popular strategies for solving the energy eigen-
value problem in quantum chemistry is perturbation theory (PT).
In PT, the Hamiltonian, Ĥ, is divided into two operators: Ĥ0,
called a zeroth-order Hamiltonian, and V̂, which is called a per-
turbation. Subsequently, the eigenvalue problem corresponding to
the zeroth-order Hamiltonian is solved exactly—usually using a
variational procedure—yielding a complete set of zeroth-order
wave functions {�j

(0)} and zeroth-order energies {Ej
(0)}. These

quantities, together with the operator V̂, are used then to obtain the
exact eigenfunctions and eigenvalues of the original eigenvalue
problem in a perturbative manner.

The division of Ĥ into Ĥ0 and V̂—called a partitioning of the
Hamiltonian—is the most crucial point of every perturbative treat-
ment. In many cases, the partitioning is implied by the physics of
the problem. However, this is not the case when computing cor-
relation energy in atomic and molecular systems. As is well
known, it makes no difference which partitioning is used when the
perturbation series is considered up to the infinite order, providing,
of course, the convergent character of the perturbational expan-
sions. However, in practical applications, no infinite perturbation
series is used. Usually, the series is terminated at some low order,
yielding an appropriate nth-order ansatz for the wave function. The
higher-order terms, ��

(m), where m � n, are assumed to be zero
and are neglected. This is a good approximation for fast-converg-

ing series. Unfortunately, neither the Møller-Plesset partitioning1

nor the Epstein-Nesbet partitioning2,3—the two most popular ways
of defining Ĥ0 in quantum chemistry—produces fast converging
series. Therefore, neglecting the higher-order terms may result in
introducing some errors. There is no systematic way of estimating
these errors, because usually the higher-order wave functions are
not computed. In contrast to variational techniques, where the
calculated energy constitutes a natural upper bound to the exact
energy, there are usually no such bounds for low-order PT. (The
situation is similar for the coupled cluster methods.) This lack of
possibility of determining the accuracy of the PT results is one of
the most serious drawbacks of perturbation theory.

One of the possible solutions to this problem can be using an
optimized partitioning that ensures fast convergence of the PT
series. A few propositions of such methods have been made.
Amos4 used a single variational parameter that was adjusted to
make the third-order energy vanish, E(3) � 0. Multiple variational
parameters—which can be interpreted as the zeroth-order energies
of the states from the first-order interacting space (FOCI)—were
used by Szabados and Surján.5,6 These parameters were deter-
mined by minimizing the energy in the Rayleigh quotient taken
with the first-order perturbational ansatz for the wave function.
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Finley optimized the zeroth-order energies of the FOCI’s states
using a concept of maximum radius of convergence,7 derived from
a two-state model. Another approach of Finley and coworkers8,9

used a small subspace of FOCI, which contains a set of the most
important configuration state functions, to optimize the zeroth-
order energies of states belonging to this subspace. The optimiza-
tion was performed by minimizing some energy functional that
comprised the differences between the exact energy and third- and
fourth-order perturbational energy; all quantities were determined
within the chosen subspace. All these methods—except for the
maximum radius of convergence partitioning, for which no nu-
merical tests have yet been performed—showed much better con-
vergence characteristics than the traditional partitionings. Unfor-
tunately, the proposed methods do not allow for optimization of
the zeroth-order energies of states outside of FOCI.

In the preceding article,10 we have proposed a family of opti-
mized zeroth-order Hamiltonians that allow for partial control of
the errors arising from truncation of perturbational series. Using
this new partitioning enables optimizing of the zeroth-order ener-
gies of all states appearing in perturbational expansion. Some
theoretical and numerical aspects of one of the resulting meth-
ods—abreviated as MROPT(2)—have been analyzed and dis-
cussed. In the present article, we apply this second-order multiref-
erence PT with the optimized partitioning to calculations on some
molecular properties of five molecules: ethylene, butadiene, ben-
zene, and molecular nitrogen and oxygen. The calculated results
are preceded by a brief exposition of the theory of optimized
partitioning. For detailed derivations, see the preceding article.10

Theory

Let ��� be a multideterminantal wave function corresponding to the
ground or some excited state � of a given molecular system. The
wave function ��� is obtained by diagonalizing the matrix of the
Hamiltonian operator Ĥ within a chosen set of the most important
configurations state functions (CSFs), called a reference space.
[The most popular choice of a reference space is a complete active
space (CAS).] Such a multideterminantal wave function ��� ac-
counts for nondynamical correlation effects and describes well the
near-degeneracy effects. In order to obtain an accurate estimation
of the energy of the state �, we treat dynamical correlation by
means of multireference PT. The matrix representations of all
operators are given in a space spanned by the multideterminantal
states ���, �k1�, �k1�, . . . , obtained by diagonalizing Ĥ within the
reference space, and all nonredundant CSFs �q1�, �q2�, . . . ob-
tained by applying single, double, triple, and higher excitation to
the reference space’s CSFs. The set of all singly- and doubly-
excited CSFs constitutes the FOCI.

We define the zeroth-order Hamiltonian Ĥ0 as a diagonal
matrix operator:

�H0�ij � �ijEi
�0� (1)

where the zeroth-order energies Ei
(0) are defined by

Ei
�0� � �H�� if i � �;

Hii � �i if i � ks, qs
(2)

The matrix of perturbation operator V̂ is given by

Vij � Hij � �H0�ij � �Hij if i � j;
0 if i � j � �;
��i if i � j � �

(3)

The state-dependent parameters �i are at our disposal; we are
going to adjust them in such a manner that the first neglected term,
��

(n	1), in the nth-order perturbational ansatz for wave function

��

n� � ��� � ��

�1� � · · · � ��
�n� (4)

is identically equal to zero,

��
�n	1� � 0 (5)

This condition allows for a partial control of errors associated with
truncating the perturbational expansion of the wave function series
at the nth-order. Eq. (5) defines the set of state-dependent param-
eters �i in an implicit way. It is difficult to give a compact, explicit
equation defining �i in a general case. The explicit set of linear
equations defining �i for the second-order multireference PT with
optimized partitioning is given by

��
�2� � 0 N � j : �

s��

H�s�Hsj � �sjE�
�0��s � H�j (6)

where

i �
1

Hii � �i � E�
�0� (7)

Explicit equations for the third- and fourth-order PT were given in
our previous article.10 By saying “nth-order PT” we mean—as
usual in quantum chemistry—that the highest retained term in
energy series is E�

(n). To calculate this term, it is sufficient to
terminate wave function expansion at the (n � 1)th-order, that is,
the highest retained term is ��

(n�1). Note that eq. (6) is formally
identical to the working equations of the linearized multireference
coupled cluster (CC) method11,12 and the optimized partitioning of
Szabados and Surján.5,6

Second-order multireference Rayleigh-Schrödinger perturba-
tion theory with optimized partitioning is uniquely defined by eqs.
(1), (3), and (6), provided that the reference space and one-electron
orbitals have been determined. The first-order wave function is
given by

��
�1� � � �

q�FOCI

H�qq�q� (8)

Energy of the state � through the second-order of PT is given by

E� � E�
�0� � �

q�FOCI

H�q
2 q (9)
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The second-order wave function ��
(2) is identically equal to zero

[see eq. (6)]. As a consequence, the third-order energy also van-
ishes. The first nonvanishing correction to energy is E�

(4). Vanish-
ing of ��

(2) has some deeper consequences: Surján and Szabados
showed6 that most components of the fifth-order energy also
vanish. Recently, this optimized partitioning has been applied
within a framework of multireference PT to correct the quality of
energies and wave functions obtained using limited CC methods,13

showing significantly better performance than the MP and Dyson-
like14 partitionings.

For further use, the second-order multireference Rayleigh-
Schrödinger PT with optimized partitioning is referred to as the
MROPT(2) method.

Computational Details

The planar geometries of ethylene and butadiene are taken from
experiment. For ethylene,15 the bond lengths are rCC � 1.339 Å

and rCH � 1.086 Å, and the �CCH angle is 117.6°. For buta-
diene,16 the bond lengths are rC1C2

� 1.467 Å, rC2C3
� 1.343 Å,

and rCH � 1.094 Å, and the angles are �CCC � 122.8° and
�CCH � 119.5°. For benzene, we use also a planar hexagonal
geometry with following bond lengths: rCC � 1.395 Å and rCH �
1.084 Å, which are very close to the experimental data.15 For
calculations on spectroscopic parameters of O2 and N2, we usually
use seven different geometries in the range [re � 0.1 Å, re 	 0.1
Å], where re is the equilibrium geometry of a given state. The
geometries used for the calculations on the internal rotation po-
tential energy curve in ethylene are optimized on the B3LYP/6-
31		G(2d,2p) level with the dihedral angle kept frozen. The
excitation energy calculations for ethylene and butadiene are per-
formed with the cc-pVDZ (correlation-consistent polarized va-
lence double zeta) and cc-pVTZ (correlation-consistent polarized
valence triple zeta) basis sets of Dunning.17 For calculations on
internal rotation potential energy curve in ethylene we use ANO
(atomic natural orbitals) type orbitals,18 with a (10s6p3d)/
[7s6p3d] contraction scheme for C and (7s3p)/[6s3p] for H.

Table 1. Excitation Energies (eV) for Two States of Ethylene and Four States of Butadiene Calculated Using
the MROPT(2) Method.

cc-pVDZ basis set

Method

Ethylene Butadiene

Error1 1B1u 1 3B1u 2 1Ag 1 1Bu 1 3Bu 1 3Ag

CASSCF 10.08 4.34 6.79 8.50 3.42 5.14 0.80
MRCI 9.11 4.53 6.83 7.41 3.46 5.27 0.51
MRCI	Q 8.76 4.56 6.79 6.91 3.47 5.30 0.38
MREN(2) 7.85 4.61 7.56 5.40 3.40 5.57 0.48
MREN(3) 9.30 4.44 6.74 7.44 3.43 5.14 0.51
MRMP(2) 8.61 4.52 6.57 6.41 3.27 5.08 0.23
MRMP(3) 8.87 4.47 8.02 6.92 3.40 5.15 0.55
MROPT(2) 8.55 4.55 6.83 6.52 3.47 5.30 0.28

cc-pVTZ basis set

Method

Ethylene Butadiene

Error1 1B1u 1 3B1u 2 1Ag 1 1Bu 1 3Bu 1 3Ag

CASSCF 9.57 4.31 6.75 8.31 3.41 5.12 0.69
MRCI 8.77 4.50 6.77 7.24 3.45 5.22 0.41
MRCI	Q 8.42 4.53 6.72 6.71 3.46 5.25 0.27
MREN(2) 7.69 4.60 7.49 5.01 3.38 5.52 0.56
MREN(3) 8.92 4.40 6.66 7.28 3.41 5.08 0.40
MRMP(2) 8.29 4.45 6.40 6.10 3.20 4.95 0.15
MRMP(3) 8.58 4.44 8.13 6.71 3.39 5.10 0.48
MROPT(2) 8.04 4.53 6.75 6.18 3.46 5.25 0.15
Exp. �8.0a 4.36b . . . 6.25c 3.22c 4.91c

The results obtained using other methods are given for comparison. Error is computed as an average absolute deviation
from the experimental results. For the 2 1Ag state of butadiene, for which no experimental data are available, the
corresponding MRCI	Q energies are used as a reference.
aEstimated vertical excitation energy from earlier theoretical work (refs. 32–35).
bRefs. 36, 37.
cRef. 38.
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Similarly, in the calculations of excitation energies of benzene, we
use an ANO-type19 (14s9p4d)/[4s3p2d] contraction scheme for
carbon and (8s4p)/[3s2p] for hydrogen. The basis set used for N2

is an ANO-type18 (10s6p3d)/[4s3p2d] contraction scheme and
the basis set used for O2 is an ANO-type19 (14s9p4d3f )/
[4s3p2d1f] contraction scheme.

All calculations use CASSCF reference wave functions. The
active space in the calculations of excitation energies and rota-
tional barrier for ethylene is (2e, 2o); the orbitals are HOMO �
and LUMO �*. The active space for butadiene is (4e, 4o); the
orbitals are HOMO �1, �2 and LUMO �*1, �*2. For benzene, CAS
consists of six electrons and six orbitals, a2u, e1g, e2u, and b2g,
where the symmetry labels of orbitals are given in D6h symmetry.
In perturbational calculations, the 1s orbital of carbon atoms is
kept frozen for all computed hydrocarbons. Moreover, for ben-
zene, we freeze the 51 highest virtual orbitals, because otherwise
the dimension of the first-order interacting space is too large to
perform the MRCI and MRPT calculations. The number of frozen
virtuals for each D2h irreducible representation is: 11 of Ag and
B1g, one of B2g, three of B3g, two of Au and B1u, 13 of B2u, and
eight of B3u. In calculations for N2 and O2, we are using the (6e,
8o) and (12e, 8o) active spaces, respectively. The orbitals are
	2pz

, �2px
, �2py

, �*2px
, �*2py

, 	*2pz
, 	3s, and 	*3s for N2, and 	2s,

	*2s, 	2pz
, �2px

, �2py
, �*2px

, �*2py
, and 	*2pz

for O2. In perturba-
tional calculations, the 1s orbital of nitrogen atoms are kept frozen.
For all molecules, a set of state-specific CASSCF orbitals is used
for every calculation. The orbitals for high-symmetry states, the �
and � states of N2 and O2 and the E2g and E1u states of benzene,
are obtained by including both D2h components of these states in
the CASSCF optimization.

All CASSCF, MRCI, and perturbational calculations are per-
formed using COLUMBUS, a collection of programs for high-
level ab initio molecular electronic structure calculations.20–23 The
perturbative methods use a modified multireference configuration
interaction (MRCI) code of COLUMBUS. The modifications con-
cern mostly the way of using the graphical unitary group approach
(GUGA)-based matrix-vector multiplication routine and some mi-

nor changes in the existing Fock-matrix calculation routine. A new
PT-driver routine has been added, along with routines that allow
solving large sets of linear equations using iterative techniques.

Results

MROPT(2) is applied for calculating various molecular properties
of ground and excited states for a set of small and medium size
molecules. We compute valence excitation energies of ethylene,
butadiene, and benzene, spectroscopic parameters of six states of
O2 and eight states of N2, and the height of the internal rotation
barrier of ethylene. We give also a comparison of the MROPT(2)
results to those obtained with other methods, that is, MRCI
method, MRCI with renormalized Davidson correction24

(MRCI	Q), second- and third-order multireference PT using Ep-
stein-Nesbet partitioning [denoted as MREN(2) and MREN(3),
respectively], and second- and third-order multireference PT using
Møller-Plesset partitioning [denoted as MRMP(2) and MRMP(3),
respectively].

Valence Excitation Energies of Ethylene,
Butadiene, and Benzene

Excitation energies for two states of ethylene, 1 1B1u and 1 3B1u,
and for four states of butadiene, 2 1Ag, 1 1Bu, 1 3Bu, and 1 3Ag

are given in Table 1. Presented results depend rather weakly on the
quality of the basis set used for calculations, except for the 1 1B1u

state of ethylene and the 1 1Bu state of butadiene. This is rather
easy to explain if we remember that these two states have an
ionic-like [C	C�] 	 [C�C	] character in a valence bond (VB)
description.25–28 Improving the quality of the basis set allows for
better description of the ionic-like C� centers and lowers the
energy of the state by a large amount. The other states—which are
predominantly composed of the covalent Kekule- and Dewar-like
structures—do not show this effect. The MROPT(2) excitation
energies for the covalent-like states are almost identical to the

Table 2. Excitation Energies (eV) for Eight States of Benzene Calculated Using the MROPT(2) Method.

Method 1E2g
1B1u

1B2u
1E1u

3E2g
3B1u

3B2u
3E1u Error

CASSCF 8.17 7.85 4.97 9.30 7.20 3.87 7.09 5.00 0.82
MRCI 8.27 7.03 5.09 8.16 7.42 4.10 6.32 4.96 0.54
MRCI	Q 8.24 6.63 5.10 7.51 7.47 4.18 5.95 4.90 0.37
MREN(2) 9.54 5.52 6.06 5.40 8.39 4.60 4.26 5.01 1.11
MREN(3) 8.16 6.60 5.02 8.13 7.31 4.06 6.13 4.90 0.41
MRMP(2) 7.71 6.07 4.61 6.58 6.99 3.93 5.41 4.43 0.19
MRMP(3) 9.48 6.37 5.32 9.48 8.42 4.12 6.28 5.02 0.93
MROPT(2) 8.24 6.22 5.09 . . . 7.47 4.19 5.60 4.90 0.24
Exp. 7.80a 6.20b 4.90b 6.94b 6.83c 3.95d 5.60d 4.76d

The results computed using other methods are given for comparison. Error is computed as an average absolute deviation
from the experimental results.
aRef. 39.
bRef. 40.
cRef. 41.
dRef. 42.
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Table 3. Spectroscopic Parameters for Six States of O2 Determined Using the MROPT(2) Method.

Equilibrium distance re

Method b 1�g
	 c 1�u

� a 1�g A� 3�u X 3�g
� A 3�u

	 Error

CASSCF 1.244 1.592 1.231 1.576 1.218 1.587 0.041
MRCI 1.235 1.532 1.223 1.527 1.213 1.534 0.011
MRCI	Q 1.238 1.533 1.225 1.530 1.217 1.537 0.013
MREN(2) 1.236 1.547 1.225 1.542 1.217 1.550 0.019
MREN(3) 1.234 1.520 1.220 1.516 1.210 1.524 0.004
MRMP(2) 1.217 1.476 1.208 1.474 1.202 1.483 0.023
MRMP(3) 1.241 1.536 1.229 1.533 1.218 1.544 0.017
MROPT(2) 1.239 1.528 1.226 1.529 1.218 1.537 0.013
Exp.a 1.227 1.514 1.216 1.513 1.208 1.520

Harmonic vibrational frequency 
e

Method b 1�g
	 c 1�u

� a 1�g A� 3�u X 3�g
� A 3�u

	 Error

CASSCF 1396 554 1462 601 1564 574 131
MRCI 1429 750 1517 773 1591 761 25
MRCI	Q 1417 781 1505 800 1577 786 12
MREN(2) 1422 738 1504 755 1578 740 33
MREN(3) 1429 794 1526 818 1610 804 9
MRMP(2) 1531 964 1619 983 1674 968 133
MRMP(3) 1397 733 1475 747 1556 720 51
MROPT(2) 1412 767 1500 787 1567 774 21
Exp.a 1433 797 1509 815 1580 804

Rotational constant Be

Method b 1�g
	 c 1�u

� a 1�g A� 3�u X 3�g
� A 3�u

	 Error

CASSCF 1.36 0.83 1.39 0.85 1.42 0.84 0.05
MRCI 1.38 0.90 1.41 0.90 1.43 0.90 0.01
MRCI	Q 1.37 0.90 1.40 0.90 1.42 0.89 0.02
MREN(2) 1.38 0.88 1.40 0.89 1.42 0.88 0.02
MREN(3) 1.38 0.91 1.41 0.92 1.44 0.91 0.00
MRMP(2) 1.42 0.97 1.44 0.97 1.46 0.96 0.03
MRMP(3) 1.37 0.89 1.40 0.90 1.42 0.88 0.02
MROPT(2) 1.37 0.90 1.40 0.90 1.42 0.89 0.02
Exp.a 1.40 0.92 1.43 0.92 1.44 0.91

Adiabatic excitation energy

Method b 1�g
	 c 1�u

� a 1�g A� 3�u X 3�g
� A 3�u

	 Error

CASSCF 1.46 3.72 0.95 3.95 0.00 4.00 0.26
MRCI 1.63 4.01 1.00 4.23 0.00 4.29 0.06
MRCI	Q 1.68 4.00 1.03 4.23 0.00 4.29 0.07
MREN(2) 1.68 4.05 1.02 4.28 0.00 4.35 0.04
MREN(3) 1.62 3.86 0.96 4.07 0.00 4.15 0.15
MRMP(2) 1.83 4.68 1.10 4.69 0.00 4.55 0.28
MRMP(3) 1.56 3.81 0.95 4.02 0.00 4.14 0.18
MROPT(2) 1.65 3.92 1.01 4.18 0.00 4.27 0.09
Exp.a 1.64 4.10 0.98 4.31 0.00 4.39

(continued )
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MRCI	Q energies; the largest difference is 0.04 eV. Both meth-
ods reproduce the experimental data rather well. For ionic-like
states, the differences between the MROPT(2) and MRCI	Q
excitation energies are much larger; the MROPT(2) energies cor-
respond to experiment significantly better. The overall accuracy of
the MROPT(2) method is comparable to that of MRMP(2). These
two methods show the smallest deviation from the experimental
excitation energies; the averaged errors for MROPT(2) and
MRMP(2) are 0.28 and 0.23 eV for the cc-pVDZ basis set, and
0.15 and 0.15 eV for the cc-pVTZ basis set.

Excitation energies for eight states of benzene, 1E2g, 1B1u,
1B2u, 1E1u, 3E2g, 3B1u, 3B2u, and 3E1u, are given in Table 2. For
the 1E1u state, no solution of the MROPT(2) set of linear equations
could be obtained when using iterative techniques (for details, see
Sec. II.E of ref. 10). Similarly to ethylene and butadiene, the
MROPT(2) and MRCI	Q excitation energies are almost identi-
cal—the largest deviation is 0.01 eV—for all covalent-like excited
states of benzene: 1E2g, 1B2u, 3E2g, 3B1u, and 3E1u. For the other
states, which are ionic-like, the differences are much larger. Again,
much better correspondence to experiment is achieved for the
MROPT(2) method. The overall accuracy of MROPT(2) is similar
to MRMP(2); the averaged error is 0.24 and 0.19 eV, respectively.

Spectroscopic Parameters of N2 and O2

Spectroscopic parameters for six low-lying electronic states of
O2—b 1�g

	, c 1�u
�, a 1�g, A� 3�u, X 3�g

�, and A 3�u
	—are

shown in Table 3. Spectroscopic parameters for eight low-lying
states of N2—X 1�g

	, w 1�u, W 3�u, A 3�u
	, a� 1�u

�, a 1�g, B�
3�u

�, and B 3�g—are shown in Table 4. For each state, we
calculate equilibrium distance re, harmonic vibrational frequency

e, rotational constant Be, and adiabatic and vertical excitation
energies using a set of various quantum chemical methods. The
results are compared to the experimental data. The last column of
Tables 3 and 4 gives an average absolute deviation from experi-
mental data for each method.

The correspondence of the MROPT(2) results to experiment is
good for both molecules. For O2, the average error is only 0.013 Å
for re, 21 cm�1 for 
e, 0.02 cm�1 for Be, 0.09 eV for adiabatic
excitation energy, and 0.09 eV for vertical excitation energy.
Slightly larger are the errors obtained for N2: 0.013 Å for re, 54
cm�1 for 
e, 0.03 cm�1 for Be, 0.26 eV for adiabatic excitation
energy, and 0.25 eV for vertical excitation energy. In most cases,
the MROPT(2) results are very similar to these of MRCI	Q. Note
that the MRMP(2) method does not yield very accurate results for
O2, while for N2, the accuracy of MROPT(2) and MRMP(2) is
similar.

Potential energy curves for three states of N2, a 1�g, A 3�u
	,

and X 1�g
	, are shown in Figure 1. Similarly, potential energy

curves for three states of O2, X 3�g
�, A 3�g

	, and a 1�g, are given
in Figure 2. We give these comparisons of potential energy
curves calculated using various methods in order to show some
characteristic behavior of the MROPT(2) method. The most
interesting feature— discussed already in the preceding arti-
cle10—is a very close resemblance of the MROPT(2) and
MRCI	Q curves. The calculated MREN(2) curves differ no-
ticeably from the other curves. The MREN(3) and MRMP(3)
curves show rather similar character, suggesting fast conver-
gence of the perturbation series.

Rotational Barrier of Ethylene

Potential energy curves for the two lowest electronic states of
ethylene, X 1Ag and 1 3B1u, are plotted in Figure 3 as a function
of torsional angle �. The computed height of the internal rotation
barrier of each state is given in Table 5. All considered methods—
except MREN(2)—predict very similar and accurate values of the
rotational barrier. Again, the MROPT(2) and MRCI	Q results are
very similar; the curves of these states plotted in Figure 3 almost
coincide. Similarly, the curves obtained with MREN(3) and
MRMP(3) are almost identical, even if the second-order MREN
and MRMP curves are very different. This fact suggests very fast

Table 3. (Continued )

Vertical excitation energy

Method b 1�g
	 c 1�u

� a 1�g A� 3�u X 3�g
� A 3�u

	 Error

CASSCF 1.50 5.86 0.97 6.09 0.00 6.21 0.16
MRCI 1.65 6.01 1.00 6.24 0.00 6.36 0.04
MREN(2) 1.70 6.13 1.03 6.37 0.00 6.51 0.05
MREN(3) 1.64 5.82 0.97 6.03 0.00 6.17 0.16
MRMP(2) 1.83 6.43 1.10 6.47 0.00 6.42 0.15
MRMP(3) 1.59 5.82 0.97 6.04 0.00 6.22 0.16
MROPT(2) 1.68 5.70 1.02 6.21 0.00 6.38 0.09
MRCI	Q 1.70 6.03 1.03 6.29 0.00 6.41

Results obtained using other methods are given for comparison. Distances are given in Å, vibrational frequencies and
rotational constants in cm�1, and excitation energies in eV. Error is computed as an average absolute deviation from the
experimental results. For vertical excitation energies, no experimental data are available and error is calculated with
respect to the MRCI	Q parameters.
aExperimental data for the b 1�g

	, a 1�g, and X 3�g
� states are taken from ref. 43. Experimental data for the c 1�u

�,
A� 3�u, and A 3�u

	 states are taken from ref. 44.
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Table 4. Spectroscopic Parameters for Eight States of N2 Determined Using the MROPT(2) Method.

Equilibrium distance re

Method X 1�g
	 w 1�u W 3�u A 3�u

	 a� 1�u
� a 1�g B� 3�u

� B 3�g Error

CASSCF 1.103 1.277 1.294 1.304 1.288 1.256 1.288 1.239 0.014
MRCI 1.106 1.281 1.295 1.305 1.289 1.234 1.293 1.226 0.012
MRCI	Q 1.107 1.285 1.298 1.307 1.292 1.233 1.297 1.228 0.013
MREN(2) 1.106 1.275 1.288 1.295 1.281 1.201 1.288 1.195 0.010
MREN(3) 1.107 1.286 1.300 1.309 1.295 1.256 1.299 1.248 0.020
MRMP(2) 1.109 1.286 1.299 1.308 1.292 1.222 1.298 1.213 0.011
MRMP(3) 1.107 1.281 1.295 1.307 1.289 1.231 1.291 1.222 0.011
MROPT(2) 1.107 1.286 1.298 1.307 1.293 1.229 1.298 1.228 0.013
Exp.a 1.098 1.268 — 1.287 1.276 1.220 1.278 1.213

Harmonic vibrational frequency 
e

Method X 1�g
	 w 1�u W 3�u A 3�u

	 a� 1�u
� a 1�g B� 3�u

� B 3�g Error

CASSCF 2404 1555 1475 1412 1510 1473 1504 1560 68
MRCI 2356 1503 1444 1383 1476 1671 1449 1691 47
MRCI	Q 2335 1487 1425 1365 1432 1716 1431 1767 63
MREN(2) 2381 1559 1488 1443 1498 1828 1501 1902 50
MREN(3) 2359 1486 1423 1363 1471 1470 1419 1488 109
MRMP(2) 2362 1521 1452 1385 1502 1601 1472 1668 49
MRMP(3) 2369 1520 1455 1394 1491 1645 1468 1688 43
MROPT(2) 2356 1495 1439 1377 1482 1649 1439 1678 54
Exp.a 2359 1559 1501 1461 1530 1694 1517 1733

Rotational constant Be

Method X 1�g
	 w 1�u W 3�u A 3�u

	 a� 1�u
� a 1�g B� 3�u

� B 3�g Error

CASSCF 1.98 1.48 1.44 1.41 1.45 1.53 1.45 1.57 0.03
MRCI 1.97 1.47 1.43 1.41 1.45 1.58 1.44 1.60 0.03
MRCI	Q 1.96 1.46 1.43 1.41 1.44 1.58 1.43 1.60 0.03
MREN(2) 1.97 1.48 1.45 1.44 1.47 1.67 1.45 1.69 0.02
MREN(3) 1.96 1.46 1.42 1.40 1.44 1.53 1.43 1.54 0.05
MRMP(2) 1.96 1.45 1.43 1.41 1.44 1.61 1.43 1.63 0.02
MRMP(3) 1.96 1.47 1.44 1.41 1.45 1.59 1.44 1.61 0.03
MROPT(2) 1.96 1.46 1.43 1.41 1.44 1.59 1.43 1.60 0.03
Exp.a 2.00 1.50 — 1.45 1.48 1.62 1.47 1.64

Adiabatic excitation energy

Method X 1�g
	 w 1�u W 3�u A 3�u

	 a� 1�u
� a 1�g B� 3�u

� B 3�g Error

CASSCF 0.00 10.16 7.98 6.39 9.31 11.01 9.27 9.44 1.19
MRCI 0.00 9.11 7.39 6.02 8.56 8.88 8.29 7.55 0.14
MRCI	Q 0.00 8.84 7.26 5.92 8.41 8.10 8.02 6.99 0.24
MREN(2) 0.00 8.84 7.05 5.86 8.14 7.73 7.84 6.12 0.52
MREN(3) 0.00 9.07 7.34 5.99 8.54 9.54 8.30 8.24 0.34
MRMP(2) 0.00 8.63 6.89 5.55 8.04 8.13 7.85 6.69 0.49
MRMP(3) 0.00 9.02 7.33 6.07 8.49 9.29 8.35 7.81 0.23
MROPT(2) 0.00 8.79 7.28 5.96 8.42 7.92 7.99 7.02 0.26
Exp.a 0.00 8.94 7.42 6.22 8.45 8.59 8.22 7.39

(continued )
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convergence of the energy perturbation series for ethylene. Some-
what larger deviation from experiment for the barriers calculated
with MREN(2) may be associated with large size-consistency

deviations for this method. Note that for the MREN(3)—for which
size-inconsistency is less severe—the correspondence of calcu-
lated barriers to experiment is already very good.

Table 4. (Continued )

Vertical excitation energy

Method X 1�g
	 w 1�u W 3�u A 3�u

	 a� 1�u
� a 1�g B� 3�u

� B 3�g Error

CASSCF 0.00 11.65 9.66 8.19 10.94 12.07 10.90 10.34 1.41
MRCI 0.00 10.63 9.06 7.78 10.18 9.76 9.95 8.34 0.26
MRCI	Q 0.00 10.40 8.96 7.70 10.05 8.99 9.72 7.83 0.13
MREN(2) 0.00 10.29 8.64 7.52 9.68 8.30 9.44 6.65 0.48
MREN(3) 0.00 10.61 9.04 7.78 10.20 10.57 10.00 9.19 0.50
MRMP(2) 0.00 10.19 8.59 7.33 9.69 8.89 9.55 7.38 0.31
MRMP(3) 0.00 10.52 8.99 7.87 10.09 10.10 9.98 8.54 0.32
MROPT(2) 0.00 10.34 8.98 7.74 10.06 8.70 8.99 7.84 0.25
Exp.b 0.00 10.27 8.88 7.75 9.92 9.31 9.67 8.04

Results obtained using other methods are given for comparison. Distances are given in Å, vibrational frequencies and
rotational constants in cm�1, and excitation energies in eV. Error is computed as an average absolute deviation from the
experimental results. For W 3�u, for which no experimental values of re and Be are available, the corresponding
MRCI	Q values are used instead.
aRef. 45.
bRef. 46.

Figure 1. Comparison of potential energy curves in the equilibrium region for three electronic states of
N2, a 1�g, A 3�u

	, and X 1�g
	, calculated using various methods. Note that the MROPT(2) and

MRCI	Q curves coincide for the X 1�g
	 state.
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Conclusions

MROPT(2) has been applied to calculations on some molecular
properties of the ground and excited states of a set of five mole-
cules. We have calculated: vertical excitation energies of two
states of ethylene, four of butadiene, and eight of benzene, spec-
troscopic constants—including equilibrium distances, harmonic
vibrational frequencies, rotational constants, and vertical and adi-
abatic excitation energies—for six low-lying states of O2 and eight
of N2, and potential energy curve of ethylene as a function of the
torsional angle �. The calculated results are compared with those
obtained with second- and third-order multireference PT using
Møller-Plesset and Epstein-Nesbet partitionings. We give also the
results from computations using MRCI and Davidson-corrected
MRCI.

The parameters �i, obtained by solving eq. (5), can have a very
wide range of magnitudes: the largest can exceed a value of a few
thousands of hartree, being either positive or negative. It is very
difficult to supply more information on their values, owing to their
abundance. The only applicable approach that can give some
insight is the statistical one. The parameters �i have an approxi-
mately Gaussian-like distribution with maximum being around 0
hartree and 90% of them located in the range between �5 and 5
hartree. The position of the maximum tends to be shifted some-
what to negative values for large FOCI spaces. Similarly, the
distribution curve tends to be narrower for small dimensions of
FOCI.

On the whole, MROPT(2) has shown very good performance.
The deviations from available experimental data are rather small:
�0.2 eV for excitation energy, 0.01 Å for bond length, and �50
cm�1 for harmonic vibrational frequency. The computational cost
of the MROPT(2) method—approximately similar to the cost of
MRCI—is rather high when compared to other second-order per-
turbative treatments; the bottleneck of MROPT(2) is a necessity of
solving a large set of linear equations. Some interesting features
have been found in the performance of MRPTs and MRCI:

1. The MROPT(2) results on excitation energies, spectroscopic
constants, and potential energy curves are very similar to those
of MRCI	Q.

2. The second-order MRPT results are better than the third-order
ones when using the Møller-Plesset partitioning.

3. Properties computed by the third-order Epstein-Nesbet and
Møller-Plesset PTs, MREN(3), and MRMP(3) are also very
similar, probably suggesting fast convergence of the perturba-
tional series.

4. At the second-order, MREN usually gives poorer results than
MROPT and MRMP.

Some comments on the first two points are given below.
MROPT(2) and MRCI	Q usually give very similar results; an

exception is a noticeably larger difference between MROPT(2)
and MRCI	Q for valence excitation energies for ionic-like states
of ethylene, butadiene, and benzene. The largest deviation is 0.04

Figure 2. Comparison of potential energy curves in the equilibrium region for three electronic states of
O2, X 3�g

�, A 3�g
	, and a 1�g, calculated using various methods.
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eV for covalent-like states while it is 0.53 eV for ionic-like states.
This large difference in ionic states is probably due to the choice
of active spaces. The active spaces used in the present article are
minimal ones that take into account the � correlation. As sug-
gested from the basis set effect in the section Rotational Barrier of
Ethylene, polarization effect is more important for the ionic-like
states. Larger active spaces including higher polarization effect

will improve the description of the ionic-like states and reduce the
difference between MROPT(2) and MRCI	Q.

A better performance of the second-order MRMP than the
third-order MRMP, mentioned above, may look strange. However,
this irregularity can also be seen in single reference MP theory and
it is not a particular feature of multireference MP theory. See, for
example, systematic studies on the convergence of MP series given
in refs. 29–31. These articles also present some other unexpected
features of the MP theory, for example, oscillatory behavior of the
MP series in high orders. It would be interesting to pursue the
origin of the strange behavior also in multireference MP PT.
However, we do not discuss it here any longer, because it is not a
subject of the present article.

Now we can safely say that the new method using the opti-
mized partitioning, MROPT(2), gives accurate results comparable
to MRMP(2) and MRCI	Q on molecular properties, and, more-
over, it can well reproduce experimental values.
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Figure 3. Potential energy curves for two lowest electronic states of ethylene, X 1Ag and 1 3B1u, as a
function of torsional angle �.

Table 5. Barrier of Internal Rotation (kcal/mol) for Two States of
Ethylene Calculated Using the MROPT(2) Method.

Method X 1Ag 1 3B1u

CASSCF 67.4 33.8
MRCI 67.9 35.5
MRCI	Q 67.0 36.4
MREN(2) 72.4 38.0
MREN(3) 65.5 34.9
MRMP(2) 65.0 36.7
MRMP(3) 65.8 35.5
MROPT(2) 65.6 36.6
Exp. �65a �35b

Results obtained using other methods are given for comparison.
aRefs. 47, 48.
bEstimated from the difference between the vertical excitation energy of 1
3B1u (Refs. 47, 48) and barrier height for the ground state; we assume that
the lowest triplet and singlet states are degenerated for the torsional angle
� � 90°.
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calculations were performed with the COLUMBUS MRCI
code,20–23 modified for needs of perturbation theory.
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