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Analytic energy gradients for multiconfigurational self-consistent field
second-order quasidegenerate perturbation theory „MC-QDPT…
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An analytic energy gradient method for second-order quasidegenerate perturbation theory with
multiconfigurational self-consistent field reference functions~MC-QDPT! is derived along the lines
of the response function formalism~RFF!. According to the RFF, the gradients are calculated
without solving coupled perturbed equations. Instead, it is necessary to solve seven sets of linear
equations in order to determine Lagrangian multipliers, corresponding to four sets of parameter
constraining conditions and three sets of additional parameter defining conditions in the Lagrangian.
Just one of these linear equations is a large scale linear equation; the others are reducible to just
partial differentiations or simple equations solvable by straightforward subroutines. ©1998
American Institute of Physics.@S0021-9606~98!00514-5#
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I. INTRODUCTION

Energy derivative methods for wave functions of high
correlated methods are increasing in importance as comp
tional resources improve to the point that using such der
tives becomes feasible.1–3 In fields of current importance
such as classical or quantum dynamics and accurate pote
energy surfaces~PES’s!, upon which the dynamics is base
gradients for highly accurate wave functions are crucia
one is to obtain quantitatively reliable results. In determin
accurate potential energy surfaces, it is essential to locate
stationary points, such as equilibrium geometries and tra
tion states for chemical reactions.

Analytic gradient methods have been developed for s
eral levels of theory beyond Hartree–Fock. The most e
cient wave function that includes electron correlation
second-order many-body or Mo” ller–Plesset ~MBPT2 or
MP2! perturbation theory.4,5 However, as is often noted, th
MP2 wave function is frequently unstable at distorted geo
etries, since at such points on the PES, the single config
tion wave function is not an appropriate zeroth-order
proximation. The complete active space self-consistent fi
~CASSCF!6 or the full optimized reaction space~FORS!7

method is also often used to locate stationary points,8 since
the CASSCF wave function is well-defined and thus sta
even at distorted molecular structures if we choose an ap
priate active space. However, if one realizes that CASSC
a multiconfigurational analog of the Hartree–Fock appro
mation that is introduced to correct for near degeneracie
the wave function, it comes as no surprise that this leve
theory can yield incorrect potential energy curves, som
times predicting~for example! a fictitious transition state
which disappears upon the addition of dynamic correlati
Moreover, it is difficult to use fully optimized CASSCF
wave functions for a pure excited electronic state; that i
state that is not the lowest of its spin and symmetry, since
5660021-9606/98/108(14)/5660/10/$15.00
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CASSCF iterative procedure for such cases frequently
verges. A desirable and accurate alternative is clearly to
to multireference configuration interaction~MRCI!
gradients9 built upon the CASSCF wave function as a refe
ence. However, the dimension of the MRCI Hamiltoni
grows rapidly with the size of the basis set and the act
space, so that MRCI gradients are not yet a general prac
alternative. There is therefore clearly a need for an anal
gradient for a wave function that goes beyond CASSCF
that is efficient enough to be broadly applicable.

We have recently proposed perturbation theory meth
based on multiconfigurational reference functions, MRM
PT ~multireference Mo” ller–Plesset perturbation theory!10

and MC-QDPT ~quasidegenerate perturbation theory w
MCSCF reference functions!11 as methods which may effi
ciently provide accurate potential energy surfaces. Sev
approaches to multireference perturbation theory have b
proposed and implemented.12 MRMP perturbation theory is a
multiconfigurational but single reference state method ba
on Rayleigh–Schro¨dinger perturbation theory. MC-QDPT i
a multiconfigurational and multi-state perturbation meth
based on Van Vleck perturbation theory and includes MRM
PT as a subset. Using these perturbation methods we
clarified the electronic structures of various systems a
demonstrated that they are powerful tools for investigat
excited states13 as well as ground states.14

In this paper, we present a derivation for the analy
gradient for second-order MC-QDPT~for which MRMP is a
special single-reference-state case!, based on the respons
function formalism~RFF!.3,15 Several methods have been d
veloped for the derivation of efficient formulas for the gr
dient and higher-order energy derivatives for molecular wa
functions. In the mid 1980s, Handy and Schaefer propose
method,16 now called theZ-vector method, designed to avoi
solving time-consuming coupled-perturbed~CP! equations,
0 © 1998 American Institute of Physics
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such as the CP Hartree–Fock~CPHF! equation, in comput-
ing gradients of configuration interaction~CI! energies. The
response function formalism,17 developed by Jo”rgensen, Hel-
gaker, and their co-workers, extends the applicability of
Z-vector method to any order of energy derivatives. T
method minimizes the number of coupled perturbed eq
tions in a systematic way, and derives the formulas that
isfy the (2n11) rule for the perturbation~nuclear displace-
ments! automatically. Moreover, with this method one c
also systematically treat many constraining conditions.

In the original RFF derivation, the second-quantizati
formalism proved to be a useful way to express the ene
and the constraining equations for the MO and CI coe
cients, as well as the unitary exponential forms for param
relaxation in the OMO~orthonormal molecular orbital15! ba-
sis. This formalism avoids using redundant parameters,
results in simple formulas for variational~and some nonva
riational! wave function methods for which the energy e
pressions are relatively simple. However, for the nonva
tional MC-QDPT method, the energy expression is m
complex, so second-quantization formalism complica
rather than simplifies, the derivation. Hence, in the pres
derivation the conventional approach is used.

The contents of this article are as follows. In Sec. II, t
Lagrangian multiplier method in the response function f
malism is very briefly reviewed. In Sec. III, the MC-QDP
Lagrangian is defined. In Sec. IV, the linear equations
determining the Lagrangian multipliers, which are necess
for the gradient calculation used in later sections, are
rived, and in Sec. V the method used to obtain the gradie
is discussed. In the final section, VI, the method describe
Secs. III–V is discussed and concluding remarks are dra

II. RESPONSE FUNCTION FORMALISM:
LAGRANGIAN MULTIPLIER METHOD

We review very briefly the Lagrangian multiplie
method in the response function formalism~RFF!. The de-
tails of the method have been described elsewhere;15 this
discussion focuses on those aspects that are related t
first derivative calculation.

The Lagrangian is defined by

L~X,z,C!5W~X,C!1ze~X,C!, ~1!

whereX is a nuclear coordinate,C represents the molecula
orbital ~MO! and configuration interaction~CI! coefficients,
W is the energy,e represents constraints on the paramet
C, andz are the Lagrangian multipliers. TheC in Eq. ~1! is
determined by

e~X,C!50. ~2!

On the other hand,z is arbitrary sincee(X,C) is identically
zero in Eq.~1!. Thus, we may place any constraining con
tion on z. In the response function formalism,z is deter-
mined such that the first derivative of the Lagrangian w
respect to theCs is zero,

]L

]C
5

]W

]C
1z

]e

]C
50, ~3!
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which will make the gradient calculation simpler. Using Eq
~2! and~3!, the first derivative of the Lagrangian with respe
to nuclear coordinates,

dL

dX
5S ]W

]C

dC

dX
1

]W

]X D1
dz

dX
e1zS ]e

]C

dC

dX
1

]e

]XD
5

]W

]X
1z

]e

]X
1S ]W

]C
1z

]e

]CD dC

dX
1

dz

dX
e, ~4!

is reduced to a more compact form,

dL

dX
5

]W

]X
1z

]e

]X
, ~5!

that requires neither the first derivatives of the paramet
dC/dX, nor those of Lagrange multipliers,dz/dX. The en-
ergy W and the constraining conditionse depend onX ex-
plicitly through the molecular integrals. Hence, we m
write the gradient of integrals over molecular orbitals~indi-
cesp,q,r ,s! in terms of only derivatives over atomic bas
functions~indicesm, n, r, s!,

~puq!X5(
mn

cmpcnq

d

dX
~mun!, ~6!

~puhuq!X5(
mn

cmpcnq

d

dX
~muhun!, ~7!

~pqurs!X5 (
mnrs

cmpcnqcrrcss

d

dX
~mnurs!, ~8!

with z determined by Eq.~5!.

III. MC-QDPT LAGRANGIAN

A. The MC-QDPT energy expression to second order

The effective Hamiltonian to the second order in MC
QDPT is given by

~Keff!ab5^auHub&1
1

2 H(
I

^auVuI &^I uVub&

Ea
~0!2El

~0!

1~a↔b!J , ~9!

where$uI &% is the set of all singly and doubly excited con
figurations from the reference configurations in the CA
The wave functionsua& and ub& are CASSCF eigenfunctions
and the notationa↔b means interchangea with b from the
first term in curly brackets. The first term on the right-ha
side ~rhs! of Eq. ~9! is a diagonal matrix whose diagona
elements are the CASSCF energies. If we substitute
second-quantized operator defined by Eq.~A1! in the Appen-
dix for V, Eq. ~9! becomes
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~Keff!ab5
1

2 H ^auHub&2 (
pq,B

^auEpquB&CB~b!(
e

~puvue!~euvuq!

ee2eq1DEBa
2 (

pqrs,B
^auEpq,rsuB&CB~b!

3F(
e

~puvue!~equrs!

ee2eq1e r2es1DEBa
1(

e

~peurs!~euvuq!

ee2eq1DEBa
1

1

2 (
~a,b!

~paurb !~aqubs!

ea2eq1eb2es1DEBa
G

2 (
pqrstu,B

^auEpq,rs,tuuB&CB~b!(
e

~peurs!~equtu!

ee2eq1e t2eu1DEBa
1~a↔b!J . ~10!
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In Eq. ~10!, B refers to a configuration state function~CSF!
in the CASSCF wave function,CB(b) are CASSCF CI co-
efficients for the CSF’sB in stateb, Epq is a unitary group
generator,

Epq5apa
1 aqa1apb

1 aqb , ~11!

and

Epq,rs5EpqErs2dqrEps , ~12!

Epq,rs,tu5Epq,rsEtu2dqtEpu,rs2dstEpq,ru . ~13!

The operatorv is one-particle perturbation operator who
elements are given by

~puvuq!5~puhuq!2epdpq , ~14!

and ep are orbital energies. Active orbitals are indicated
the indicesp,q,r ,s,t,u, while the external~virtual! orbitals
are indicated by indicese, f . The symbol (a,b) in the sum-
mation in the third term of Eq.~10! means thata andb run
over both active and external orbitals, but thata andb can-
not both be external orbitals simultaneously.DEBa is the
difference ~shift! between the energies of the zeroth-ord
statea and configuration~CSF! B,

DEBa5EB
~0!2Ea

~0! . ~15!

In this article we employ an energy formula omitting th
doubly occupied orbitals for simplicity. While it is straigh
forward to include these in practice, they unnecessarily co
plicate the derivation. The full formula, including doub
occupied orbitals, will be discussed in Sec. VI.

The MC-QDPT total energy to second order is expres
using the above effective Hamiltonian by

W5(
ab

DaDb~Keff!abY (
a

Da
2, ~16!

whereDa are elements of the eigenvectors which diagon
ize the effective Hamiltonian.

B. The constraining conditions for determining the
parameters

The parameters in the energy expression, that is, the
lecular orbital coefficients, orbital energies, and CI coe
cients, are determined from the orbital canonicalization c
ditions of the CASSCF equations. These equations are u
as constraining conditions in the response function form
ism.
r

-

d
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-
-
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1. The state-averaged CASSCF equations

The state-averaged CASSCF equations determine th
and MO coefficients, except for the freedom due to the ro
tional invariance within the doubly occupied~doc-doc!, ac-
tive ~act-act!, and external~ext-ext! orbital subspaces. The
variational conditions for the CI coefficients are

(
B

~HAB2dABECAS~a!!CB~a!50, ~17!

where the normalization conditions,

(
A

CA~a!251, ~18!

are assumed implicitly, since the energy expression~16! is
written with normalized CI coefficients. The variational co
ditions for the MO coefficients are expressed as a symm
condition on the matrixxpq defined in Eqs.~A2!–~A4! in the
Appendix,

xpq5xqp . ~19!

2. The orbital canonicalization and the definition of
the orbital energies

Following the CASSCF optimization, canonicalizatio
removes the rotational freedom of the CASSCF orbita
since the MC-QDPT energy~unlike the CASSCF energy! is
not invariant to rotations within the doubly occupied, activ
and external subspaces. For the doubly occupied, active,
external diagonal block (D),

Fpq5~puhuq!1(
rs

Drs
Ave@~pqurs!2 1

2~prusq!# ~p.qPD !,

~20!

whereDrs
Ave is the state-averaged one-particle density ma

@see Eq.~A5! in the Appendix#. The orbital energies are de
fined simultaneously as the eigenvalues of the Fock ma
These conditions may all be expressed in one set of eq
tions:

Fpq2epdpq5~puhuq!1(
rs

Drs
Ave@~pqurs!2 1

2~prusq!#

2epdpq50 ~p>qPD !. ~21!
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3. The orthonormalization condition for the molecular
orbitals

Equations~17!–~20! do not determine the molecular o
bitals completely, since there are onlynMO(nMO21)/2 con-
straints fornMO

2 orbital coefficients. The orthonormality con
dition,

~puq!5dpq ~p>q!, ~22!

is assumed implicitly for the orbitals. It must be included
the Lagrangian explicitly.

4. The diagonalization condition of the effective
Hamiltonian

In the last step of the MC-QDPT calculation, we diag
nalize the effective Hamiltonian to obtain the energy of t
target state. This may be expressed as

(
b

$~Keff!ab2dabE%Db50 and (
a

Da
251, ~23!

where the latter expression is the normality condition. T
total energyE is a parameter constrained by the above eq
tions. Note that whileE is a parameter that arises from th
diagonalization condition,W @see Eq.~16!# is a function of
the parameters and nuclear coordinates.
th

-
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r
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e
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C. The MC-QDPT Lagrangian

Now we may write down the Lagrangian using the e
ergy expression Eq.~16! and the constraining condition
Eqs.~17!–~23! according to the definition of the Lagrangia
in Eq. ~1!. To reduce the complexity of the energy expre
sion Eq.~16!, we introduce the following compact notation

upq5~puhuq!5(
mn

cmpcnq~muhun!

5~puvuq! ~pÞq!, ~24!

gpqrs5~pqurs!5 (
mnrs

cmpcnqcrrcss~mnurs!. ~25!

These equations may then be used as constraining condi
that determine the parametersupq and gpqrs . The energy
differences between the zeroth-order state and configura
energies in the energy expression may be treated as pa
eters,

DEBa5EB
~0!2Ea

~0!5(
p

$^BuEppuB&2^auEppua&%ep .

~26!

Using the energy expression Eq.~16! and the constrain-
ing conditions, we may write the Lagrangian,
L5(
ab

DaDb~Keff!abY (
a

Da
21(

a
(
A

zCAS,Cl
Aa H(

B
~HAB2dABECAS~a!!CB~a!J 1(

a
zCAS,E

a S 12(
A

CA~a!2D
1 (

p.qPO
zCAS,MO

pq ~xpq2xqp!1 (
p>qPD

zCAS,MO
pq ~Fpq2epdpq!1 (

p>q
zS

pq$~puq!2dpq%1(
a

zK
a S (

b
~Keff!abDb2EDaD

1zKS 12(
a

Da
2 D 1(

Ba
zDE

Ba H(
p

@^BuEppuB&2^auEppua&#ep2DEBaJ 1(
pq

zu
pq$~puhuq!2upq%

1 (
pqrs

zg
pqrs$~pqurs!2gpqrs%. ~27!
ut
t to

ls
Note that the energy is now expressed only in terms of
molecular orbital coefficients,~CAS-!CI coefficients,upq ,
gpqrs , etc., but not explicitly in terms of the molecular inte
grals. That is, it does not depend on the nuclear coordin
explicitly.

IV. LAGRANGE MULTIPLIERS

Initially, Lagrangian multiplierszs must be computed fo
the energy gradient. The linear equation determining thezs,

]

]C
LU

X5X0

50↔z
]e

]CU
X5X0

52
]W

]CU
X5X0

, ~28!

may be decoupled into several sets of equations corresp
ing to the step-wise wave function determination describ
in Sec. III B.
e

es

d-
d

A. The multipliers for diagonalization of the effective
Hamiltonian

Since the effective Hamiltonian is diagonalized witho
any approximation, the energy is stationary with respec
changes in allDa ,

]

]Da
WU

X5X0

50 and
]

]E
WU

X5X0

50. ~29!

The solutions for these linear equations are clearly

zK
a50 and zK50. ~30!

B. The multipliers for the one- and two-electron
integrals

The multipliers for the one- and two-electron integra
are obtained by simple partial differentiation as
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zu
ab5

]

]uab
WU

X5X0

5(
a

Da
2^auEabua&12dab

E~2!
, ~31!

zg
abcd5

]

]gabcd
WU

X5X0

5
1

2 (
a

Da
2^auEab,cdua&12Dabcd

E~2!
, ~32!

wheredab
E(2)

andDabcd
E(2)

denote the one- and two-electron de
sities in the MO basis for the second-order energy@see Eqs.
~A6!–~A9! in the Appendix# and the first term on the rhs o
Eq. ~32! is the two-electron density for the zeroth plus firs
order energy.

C. The multipliers for the definition of energy shift

The equation for obtaining the multipliers for the ener
shifts,

]

]DEBa
LU

X5X0

50 ~33!

easily reduces to a formula which gives the multipliers
rectly,

zDE
Ba5

]

]DEBa
EU

X5X0

[
1

2 (
ab

DaDbH (
pq,B

^auEpquB&CBb

3(
e

upeueq

~ee2eq1DEBa!2 1~a↔b!J
1~2- 13-body terms!. ~34!

The two- and three-body terms in Eq.~34! are readily de-
rived by analogy to the one-body term, since]/]DEBa op-
erates only on the energy denominators in the Lagrang
The symbol[ indicates that the full formula is given in th
Appendix @Eq. ~A10!#. The structure of the algebra is th
same as that for the energy expression~16!, so that the com-
putation is performed using the same approach as for
effective Hamiltonian.

D. The multipliers for the orbital energies

The orbital energy appears in the definition of ener
shift ~26!, that of orbital energies themselves, and the ene
expression. The multipliers forDEBa are already deter
mined; thus the multipliers for orbital energies are ag
given by the partial differentiation of the energy express
and the occupation numbers,
-

n.

e

y
y

n
n

]

]ep
LU

X5X0

↔zCAS,MO
pq 52(

Ba
zDE

Ba@^BuEppuB&

2^auEppua&#X5X0
1

]W

]ep
U

X5X0

.

~35!

In the first term of the rhs,̂BuEppuB& is the occupation
number of orbitalp in CSFB, and^auEppua& is an occupa-
tion number that is averaged over the reference functio
The information needed for Eq.~35! is obtained as by-
products of the CASSCF calculation. As noted above for
multipliers for DEBa , the second term in Eq.~35! has the
same creation–annihilation operator structure as the effec
Hamiltonian, so that the calculation is again straightforwa

]

]em
WU

X5X0

[
1

2 (
ab

DaDbH 2 (
pq,B

^auEpquB&CB~b!

3(
e

~dmq2dme!
upeueq

~ee2eq1DEBa!2

1~a↔b!J 1~2- 13-body terms!.

~36!

The full details are given in Eq.~A11! in the Appendix.

E. The multipliers for the MO rotations in the
invariant doubly occupied, active, and external
subspaces

The multipliers for the orbital rotations in the doub
occupied, active, and external subspaces may be obta
from the following equation,

S ]

]Uab
2

]

]Uba
DLU

X5X0

50 ~a.bPD !, ~37!

where

cm i~X!5(
m

cmm~X0!Umi . ~38!

We useUmi rather than molecular coefficients themselves
in the conventional energy derivative methods. Rewriti
Eq. ~37! in matrix form as

AxCAS,MO
D 5b, ~39!

we obtain

Aab,pq5eadpadqb12(
i

Dib
AvePpqia2~a↔b!

5H ~ea2eb!dpadqb ~~a,b!Pdoc,ext!

~ea2eb!dpadqb12(
i

~Dib
AvePpqia2Dia

AvePpqib!

~~a,b!Pact! ~40!

as the matrix elements, and
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bab522H(
i

zCAS,MO
i i (

j
D jb

AvePii ja 1(
i

zu
ibuia

12(
i jk

zg
i jkb~ i j uka!2~a↔b!J ~41!

as the vector elements, wherePpqrs are the Roothaan–Bagu
supermatrix integrals,17

Ppqrs5~pqurs!2 1
4~pruqs!2 1

4~psurq !. ~42!

The zCAS,MO
pq for the doubly occupied and external subspa

can be determined without having to solve linear equatio
since the matrix is diagonal for doubly occupied and exter
subspaces. A small linear equation of dimension isnact(nact

21)/2 must be solved to obtainzCAS,MO
pq for the active sub-

space.

F. The multipliers for the MO rotations mixing
different subspaces „doc-act, doc-ext, and act-ext
subspaces … and the CI coefficients

The multipliers for the orbital rotation mixing amon
different subspaces and for the CI coefficients are obtai
by solving coupled linear equations corresponding to
state-averaged CASSCF equation. The dimension of th
linear equations is large, so their solution represents the m
time-consuming part of the problem:

H ~]/]Uab2]/]Uba!LuX5X0
50 ~a.bPO!

]L/]CA~g!uX5X0
50

]L/]ECAS~g!uX5X0
50

, ~43!

wherea.bPO means that orbitalsa andb are in different
orbital subspaces~doubly occupied, active, or external!.
Equation~39! may be written in matrix form as,

S AMO,MO AMO,Cl 0

ACl,MO ACl,Cl ACl,E

0 AE,Cl 0
D S xCAS,MO

O

xCAS,Cl

xCAS,E

D 5S bCAS,MO
O

bCAS,Cl

0
D .

~44!

The coefficient matrixA consists of six nonzero parts,

AMO,MO
ab,pq 5~dbpxaq1Ypqab2~p↔q!!2~a↔b!, ~45!

AMO,Cl
ab,Aa5(

B
Xab

ABCB~a!2~a↔b! ~a.b;p.qPO!,

~46!

ACl,MO
Aa,pq5w~a!(

B
CB~a!~Xpq

AB2Xqp
AB!, ~47!

ACl,Cl
Aa,Bb5@HBA2dBAECAS~a!#dab , ~48!

ACl,E
Aa,b522CA~a!dab , ~49!

AE,Cl
a,Bb52CB~a!dab , ~50!

whereXab
AB andYpqab are defined in Eqs.~A12! and~A13! in

the Appendix, respectively. The vectorb on the rhs of Eq.
~39! has two nonzero parts, given in Eqs.~51! and ~52!:
s
s,
l

d
e
se
st

bCAS,MO
ab 52 (

p>qPD
zCAS,MO

pq S dbpFaq1dbqFap

12(
i

DibPpqia2~a↔b! D 22H(
i

zu
ibuia

12(
i jk

zg
i jkb~ i j uka!2~a↔b!J ~51!

bCAS,Cl
Aa 52w~a! (

p>qPD
zCAS,MO

pq (
rs

^auErs1EsruA&

3Ppqrs12CA~a!EA
~0!(

B
zDE

Ba2
]

]CA~a!
W.

~52!

The last term in the rhs ofbCAS CI
Aa is

]

]CA~a!
W[2Da

2ECAS~a!CA~a!1Da(
b

Db

3H 2(
pq

^buEpquA&(
e

F upeueq

ee2eq1DEAb

1~b→a!G J 1~2- 13-body terms!, ~53!

where the 2- and 3-body terms are given in Eq.~A15! in the
Appendix. The coefficient matricesAMO,MO , AMO,Cl ,
ACI,MO , andACI,CI are very similar to those in the couple
perturbed state-averaged CASSCF equations,18,19 except that
the terms corresponding to the normalization of the CI v
tors are missing. These normalization conditions are
cluded inACI,E andAE,CI instead.

G. The multipliers for the MO orthonormalization
conditions

The final step in solving the linear equations for the m
tipliers is the computation of the multipliers for the orthono
malization conditions of the orbitals,

S ]

]Uab
1

]

]Uba
DLU

X5X0

50, ~a>b! ~54!

which reduces to
zS

ab52221~11dab!
21jab . ~55!

The jab are obtained by changing the sign from minus
plus in subsections IV D–F and collecting them,

jab5(
a

(
A

zCAS,Cl
Aa (

B
Xab

ABCB~a!

1 (
p.qPO

zCAS,MO
pq ~dbpxaq1Ypqab2~p↔q!!

1 (
p>qPD

zCAS,MO
pq S dbpFaq1dbqFap

12(
i

DibPpqiaD 12S (
i

zu
ibuia

12(
i jk

zg
i jkb~ i j uka! D 1~a↔b!. ~56!
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V. MOLECULAR ENERGY GRADIENT

The Lagrangian multipliers obtained in the previous s
tion may now be combined with the molecular integrals
compute the molecular energy gradients:

dL

dXU
X5X0

5F]W

]X
1z

]e

]XG
X5X0

5Fz ]e

]XG
X5X0

5(
a

(
A

zCAS,Cl
Aa (

B

]HAB

]X
CB~a!

1 (
p.qPO

zCAS,MO
pq ]

]X
~xpq2xqp!

1 (
p>qPD

zCAS,MO
pq ]Fpq

]X
1 (

p>q
zS

pq~puq!X

1(
pq

zu
pq~punuq!X1 (

pqrs
zg

pqrs~pqurs!X

5(
pq

dh
pq~puhuq!X1(

pw
dS

pq~puq!X

1 (
pqrs

Dg
pqrs~pqurs!X, ~57!

where (puhuq)X, (puq)X, and (pqurs)X are transformed inte
gral derivatives in the MO basis defined by Eqs.~6!, ~7!, and
~8!, respectively, anddh

pq , ds
pq , andDg

pqrs are effective den-
sities for the Lagrangian in the MO basis. The densities
given by

dh
pq5(

a
(
A

zCAS,Cl
Aa ^AuEpqua&

1 (
i . j PO

zCAS,MO
i j Ave~dpi^auEjqua&2~ i↔ j !!

1zu
pq1H zCAS,MO

pq ~p.qPD !

0 ~otherwise! J , ~58!

dS
pq5zS

pq , ~59!

and

Dg
pqrs5(

a
(
A

zCAS,Cl
Aa ^AuEpq,rsua&/2

1 (
i . j PO

zCAS,MO
i j Ave~dpi^auEjq,rsua&2~ i↔ j !!

1zg
pqrs1 (

i . j PD
zCAS,MO

i j ~dpidq jDrs
Ave

1dpids jDqr
Ave!. ~60!
-

re

These densities are transformed back into the atomic orb
~AO! basis, and the energy gradients may be obtained
multiplying the densities in the AO basis by the firs
derivative integrals,

dL

dXU
X5X0

5(
mn

dh
mn

d

dX
~muhun!1(

mn
dS

mn
d

dX
~mun!

1 (
mnrs

Dg
mnrs

d

dX
~mnurs!. ~61!

The following is the summary of the computation
steps:

~1! In step 1, the wave function is determined:~a!. Compute
the CASSCF wave functions;~b!. Canonicalize the
CASSCF MOs and transform the integrals to the M
basis. Then, recompute the CASSCF wave functions
the canonical Fock MOs;~c!. Compute the MC-QDPT
effective Hamiltonian and obtain the final energy by d
agonalizing it.

~2! In step 2, the zeroth-order Lagrangian multipliers a
determined by solving the appropriate linear equatio
~a!. Compute the zK ; ~b!. Compute the diagona
zCAS,MO(5zCAS,MO

pp ); ~c!. Compute the block-diagona
part of thezCAS,MO; ~d!. Solve the linear equation for th
zCAS,CI and the off-diagonal part of thezCAS,MO; ~e!.
Compute thezS.

~3! In the final step 3, energy gradients are computed:~a!.
Compute the effective densities of the Lagrangian for
overlap, one-, and two-electron integrals on the MO b
sis; ~b!. Transform the densities back to the AO bas
~c!. Multiply the densities and the derivative integrals
obtain the gradient, which is looped over all the nucle
coordinates.

VI. DISCUSSION AND CONCLUDING REMARKS

We have derived an analytic gradient method for t
second-order MC-QDPT energy along the lines of the
sponse function formalism without using a secon
quantization form of the energy expression and constrain
conditions or an exponential form of parameter relaxation
the present derivation, we have not used the independen
of variables to describe the orbital rotations and CSF ro
tions. The use of exponential parameter relaxation introdu
more than 100 terms~156 Goldstone diagrams versus on
25 diagrams in our derivation!! in the orbital relaxation of
the energy expression. Therefore, though some redun
variables and relevant constraining conditions were nec
sary in the present derivation, the formulas are more co
pact. This suggests that one might expect better performa
in the actual computations. The equations presented here
currently being implemented into the electronic structu
codesGAMESS20 andMR2D.21

In the present work, we put some limitations on the de
vations to simplify the presentation. First, we have omitt
the contributions from doubly occupied orbitals in the ener
expression. To include those contributions, one introduce
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change in the definition of the one-particle perturbation m
trix ~14!, making the equations more complex,

~puvuq!5~puhuq!1(
i

doc

@2~pqu i i !2~piu iq !#, ~62!

since they now depend on two-electron integrals as wel
the one-electron perturbation integral. This, of course, affe
zg

pqrs and the effective two-electron densityDg
pqrs in Eqs.

~32! and ~60!, respectively. Furthermore, the one- and tw
particle coupling constantŝAuEpquB& and ^AuEpq,rsuB&
which include doubly occupied orbital labels should be
placed by those not including doubly occupied orbital lab
according to the well-known formulae,

^AuEpquB&5 H ^AuEpquB& ~p,q:act!
2dpqdAB ~p,q:doc! ~63!

and

^AuEpq,rsuB&55
^AuEpq,rsuB& ~p,q,r ,s:act!
2d rs^AuEpquB& ~p,q:act;r ,s:doc!
2dpq^AuErsuB& ~p,q:doc;r ,s:act!
2d rq^AuEpsuB& ~p,s:act;r ,q:doc!
2dpŝ AuErquB& ~p,s:doc;r ,q:act!
2~2dpqd rs2dpsd rq!dAB ~p,q,r ,s:doc!

~64!

in practical implementation.
Another limitation placed on the derivation is that th

reference functions of the perturbation are the same as
used for the CASSCF functions. However, we also perfo
calculations for which this is not the case. For example,
might use just one of the state-averaged CASSCF wave f
tions as a reference function for a perturbation calculati
To treat such a case introduces one more constraining
equation in the Lagrangian, giving rise to two kinds of
equations: one for CASSCF solutions coupled with the g
eralized Brillouin condition, and the other for determinin
reference functions. Although this makes formulas a lit
more complicated, the extension is straightforward.

The present formulation is not applicable to conve
tional QDPT based on a single configuration wave functi
-

s
ts

-

-
s

at

e
c-
.

CI

-

-
,

since the reference functions and orbital energies are dif
ent from those described in Sec. III B. However, the effe
tive Hamiltonian~10! and the energy expression~16! may
also be used to express the QDPT energy. Thus, the de
tion of the formulas for QDPT may be performed in the sa
manner described in the present article, and they will
presented in the forthcoming paper.
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APPENDIX: NOTATION

In the text of the present article, some definitions a
omitted to avoid being filled with long equations. The fo
lowing are the complete definitions of notations omitted
the text.

V5(
pq

~hpq2epdpq!Epq1 1
2(
pqrs

~pqurs!Epq,rs

5(
pq

npqEpq1 1
2(
pqrs

~pqurs!Epq,rs , ~A1!

xpq5Ave xpq~a!5(
a

w~a!xpq~a!, ~A2!

xpq~a!5(
i

hpi^auEqiua&1(
i jk

~piu jk !^auEqi, jkua&,

@w~a! is the weight of theath state.# ~A3!

ua&5(
A

CA~a!uA&, ~A4!

Drs
Ave5Ave^auErsua&5(

a
w~a!^auErsua&, ~A5!
dab
E~2!

5
]

]uab
E~2!U

X5X0

5
1

4 (
ab

DaDbH 2 (
pq,B

^auEpquB&CBb (
e

dpadebueq1upedeadqb

ee2eq1DEBa
2 (

pqrs,B
^auEpq,rsuB&CBb

3F(
e

dpadebgeqrs

ee2eq1e r2es1DEBa
1(

e

gpersdeadqb

ee2eq1DEBa
G1~a↔b!, ~A6!

Dabcd
E~2!

5
]

]gabcd
E~2!U

X5X0

5
1

4 (
ab

DaDbH 2 (
pqrs,B

^auEpq,rsuB&CBbF(
e

upedeadqbd rcdsd

ee2eq1e r2es1DEBa

1(
e

dpadebd rcdsadeq

ee2eq1DEBa
1

1

2 (
~a8,b8!

dpada8bd rcdb8dda8qb8s1gpa8rb8da8adqbdb8cdsd

ea82eq1eb82es1DEBa
G

1 (
pqrstu,B

^auEpq,rs,tuuB&CBb(
e

dpadebd rcdsdgeqtu1gpersdeadqbd tcdud

ee2eq1e t2eu1DEBa
1~a↔b!. ~A7!
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It is convenient to employ the symmetrized effective densities:

dab
E~2!
← 1

2~dab
E~2!

1dba
E~2!

!, ~A8!

Dabcd
E~2!
← 1

8~Dabcd
E~2!

1Dabdc
E~2!

1Dbacd
E~2!

1Dbadc
E~2!

1Dcdab
E~2!

1Dcdba
E~2!

1Ddcab
E~2!

1Ddcba
E~2!

!, ~A9!

to simplify the following equations.

zDE
Ba5

]

]DEBa
EU

X5X0

5
1

2(ab
DaDbH (

pq,B
^auEpquB&CBb(

e

upeueq

~ee2eq1DEBa!2

1 (
pqrs,B

^auEpq,rsuB&CBbF(
e

upegeqrs

~ee2eq1e r2es1DEBa!2 1(
e

gpersueq

~ee2eq1DEBa!2

1
1

2 (
~a,b!

gparbgaqbs

~ea2eq1eb2es1DEBa!2G1 (
pqrstu,B

^auEpq,rs,tuuB&

3CBb(
e

gpersgeqtu

~ee2eq1e t2eu1DEBa!2 1~a↔b!J , ~A10!

]

]em
WU

X5X0

5
1

2 (
ab

DaDbH 2 (
pq,B

^auEpquB&CBb(
e

~dmq2dme!
upeueq

~ee2eq1DEBa!22 (
pqrs,B

^auEpq,rsuB&CBb

3F(
e

~dmq2dme1dms2dmr!
upegeqrs

~ee2eq1e r2es1DEBa!2 1(
e

~dmq2dme!
gpersueq

~ee2eq1DEBa!2

1
1

2 (
~a,b!

~dmq2dma1dms2dmb!
gparbgaqbs

~ea2eq1eb2es1DEBa!2G2 (
pqrstu,B

^auEpq,rs,tuuB&CBb

3(
e

~dmq2dme1dmu2dmu!
gpersgeqtu

~ee2eq1e t2eu1DEBa!2 1~a↔b!J , ~A11!

Xpq
AB5(

i
~puhu i !@^AuEqiuB&1^BuEqiuA&#1(

i jk
~piu jk !@^AuEqi, jkuB&1^BuEqi, jkuA&#, ~A12!

Ypqab5(
a

w~a!Ypqab~a!, ~A13!

Ypqab~a!5~puhua!^auEqbua&1(
mn

@~paumn!^auEqb,mnua&1~paumn!^auEqm,bnua&1~pmuan!^auEqm,nbua&#, ~A14!

]

]CA~a!
W52Da

2ECAS~a!CA~a!1Da(
b

DbH 2(
pq

^buEpquA&(
e

F upueq

ee2eq1DEAb
1~b→a!G2 (

pqrs
^buEpq,rsuA&

3F(
e

upegeqrs

ee2eq1e2es1DEAb
1(

e

gpersueq

ee2eq1DEAb
1

1

2 (
~a,b!

gparbgaqbs

ea2eq1eb2es1DEAb
1~b→a!G

2 (
pqrstu

^buEpq,rs,tuuA&(
e

F gpersgeqtu

ee2eq1e t2eu1DEAb
1~b→a!G J . ~A15!
Ab
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