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An analytic energy gradient method for second-order quasidegenerate perturbation theory with
multiconfigurational self-consistent field reference function€-QDPT) is derived along the lines

of the response function formalisfiRFF). According to the RFF, the gradients are calculated
without solving coupled perturbed equations. Instead, it is necessary to solve seven sets of linear
equations in order to determine Lagrangian multipliers, corresponding to four sets of parameter
constraining conditions and three sets of additional parameter defining conditions in the Lagrangian.
Just one of these linear equations is a large scale linear equation; the others are reducible to just
partial differentiations or simple equations solvable by straightforward subroutinesl998
American Institute of Physic§S0021-960608)00514-5

I. INTRODUCTION CASSCEF iterative procedure for such cases frequently di-

o . . verges. A desirable and accurate alternative is clearly to turn
Energy derivative methods for wave functions of highly ;= itireference  configuration  interaction(MRCI)

correlated methods are increasing in importance as computa—radientg built upon the CASSCF wave function as a refer-
tional resources improve to the point that using such deriva:z

tives becomes feasible® In fields of current importance, . However, the dimension of the MRCI Hamiltonian
. ' : P ' %rows rapidly with the size of the basis set and the active
such as classical or quantum dynamics and accurate potential

. N hat MRCI [ I ical

energy surface@PES’9, upon which the dynamics is based, >pace, so that C gradients are not yet a genera pract|c_a

> . . . .alternative. There is therefore clearly a need for an analytic
gradients for highly accurate wave functions are crucial if

one is to obtain quantitatively reliable results. In determininggradlent for a wave function that goes beyond CASSCF and

accurate potential energy surfaces, it is essential to locate képat is efficient enough to he broadly applicable.

stationary points, such as equilibrium geometries and trans'B V\(;e have rle_cen;I_y proposeld p;arturbatnf)n theory n;/lelt?hl\(/l)gs
tion states for chemical reactions. ased on multiconfigurational reference functions,

Analytic gradient methods have been developed for seyE1 (multireference Mber—Plesset perturbation theoty

eral levels of theory beyond Hartree—Fock. The most effi2nd MC-QDPT (quasidegenerate perturbation theory with

cient wave function that includes electron correlation isMCSCF reference functioys as methods which may effi-
second-order many-body or Mer—Plesset(MBPT2 or ciently provide aCCl_Jrate potential energy surfaces. Several
MP2) perturbation theor{® However, as is often noted, the approaches to_ multireference perturbation t_heory hav_e been
MP2 wave function is frequently unstable at distorted geomProposed and implementetiMRMP perturbation theory is a
etries, since at such points on the PES, the single ConﬁguréinuIt|conf|gurat|0r_1'aI but single reference state method based
tion wave function is not an appropriate zeroth-order apOn Rayleigh—Schrdinger perturbation theory. MC-QDPT is
proximation. The complete active space self-consistent fiel@ multiconfigurational and multi-state perturbation method
(CASSCR® or the full optimized reaction spacéORS’ based on Van Vleck perturbation theory and includes MRMP
method is also often used to locate stationary pdisisce  PT as a subset. Using these perturbation methods we have
the CASSCF wave function is well-defined and thus stableclarified the electronic structures of various systems and
even at distorted molecular structures if we choose an apprélemonstrated that they are powerful tools for investigating
priate active space. However, if one realizes that CASSCF igxcited statés as well as ground staté$.

a multiconfigurational analog of the Hartree—Fock approxi-  In this paper, we present a derivation for the analytic
mation that is introduced to correct for near degeneracies igradient for second-order MC-QDRTor which MRMP is a

the wave function, it comes as no surprise that this level obpecial single-reference-state dadeased on the response
theory can yield incorrect potential energy curves, somefunction formalism(RFF).>!®Several methods have been de-
times predicting(for example a fictitious transition state veloped for the derivation of efficient formulas for the gra-
which disappears upon the addition of dynamic correlationdient and higher-order energy derivatives for molecular wave
Moreover, it is difficult to use fully optimized CASSCF functions. In the mid 1980s, Handy and Schaefer proposed a
wave functions for a pure excited electronic state; that is anethod® now called thez-vector method, designed to avoid
state that is not the lowest of its spin and symmetry, since theolving time-consuming coupled-perturbédP) equations,
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such as the CP Hartree—Fo@RPHP equation, in comput- which will make the gradient calculation simpler. Using Egs.
ing gradients of configuration interacti@@l) energies. The (2) and(3), the first derivative of the Lagrangian with respect
response function formalisii,developed by dmensen, Hel-  to nuclear coordinates,
gaker, and their co-workers, extends the applicability of the
Z-vector method to any order of energy derivatives. This  dL (W dC W\ d¢ Je dC e
methqd minimizes .the number of'coupled perturbed equa-  gx = (E ax ™’ W) tax et §(£ ax T ax
tions in a systematic way, and derives the formulas that sat-
isfy the (2n+ 1) rule for the perturbatioinuclear displace- IW de [IW de\ dC d¢
mentg automatically. Moreover, with this method one can - (9_x+§ a_x+(f+§ %) d_x+ ax © )
also systematically treat many constraining conditions.

In _the original RFF derivation, the second-quantization;s reduced to a more compact form,
formalism proved to be a useful way to express the energy
and the constraining equations for the MO and CI coeffi- IW Je
cients, as well as the unitary exponential forms for parameter — = +; —, (5)
relaxation in the OMQorthonormal molecular orbits) ba- dX  dX X
sis. This formalism avoids using redundant parameters, and
results in Simp'e formulas for Variation@nd some nonva- that requires neither the first derivatives of the pal’ameters,
riationa) wave function methods for which the energy ex- dC/dX, nor those of Lagrange multiplierd//dX. The en-
pressions are relatively simple. However, for the nonvaria€rdy W and the constraining conditioresdepend orX ex-
tional MC-QDPT method, the energy expression is morePlicitly through the molecular integrals. Hence, we may
complex, so second-quantization formalism complicatesWrite the gradient of integrals over molecular orbitétdi-
rather than simplifies, the derivation. Hence, in the preser€sP.d.r,s) in terms of only derivatives over atomic basis
derivation the conventional approach is used. functions(indices u, v, p, 0),

The contents of this article are as follows. In Sec. Il, the
Lagrangian multiplier method in the response function for- X d
malism is very briefly reviewed. In Sec. lll, the MC-QDPT (pla) =”EV CupCrq g (pf»), ©®)
Lagrangian is defined. In Sec. IV, the linear equations for
determining the Lagrangian multipliers, which are necessary d
fpr the grqdlent calculation used in later sections, are de- (plh|jg)*=2>] CpCrq g (u|h|v), 7
rived, and in Sec. V the method used to obtain the gradients uv
is discussed. In the final section, VI, the method described in
Secs. llI-V is discussed and concluding remarks are drawn.

d
(PAlrs) = 3 €,pCuqCyrCos g (1700, ®

nvpo

Il. RESPONSE FUNCTION FORMALISM: with ¢ determined by Eq(5).
LAGRANGIAN MULTIPLIER METHOD

We review very briefly the Lagrangian multiplier
method in the response function formaligRFF). The de- ||| MC-QDPT LAGRANGIAN
tails of the method have been described elsewltethis

discussion focuses on those aspects that are related to tﬁ‘eThe MC-QDPT energy expression to second order

first derivative calculation. The effective Hamiltonian to the second order in MC-
The Lagrangian is defined by QDPT is given by
L(X,£,C)=W(X,C)+ ¢e(X,C), )
. . B 1 (a|V[1)(1V|B)
whereX is a nuclear coordinate; represents the molecular (Keff)aﬁ_<a|H|,8>+§ 2 T EO_go
orbital (MO) and configuration interactiofCl) coefficients, ! @ !
W is the energye represents constraints on the parameters
C, and¢ are the Lagrangian multipliers. TI@in Eq. (1) is +(a=p) i, 9
determined by
e(X,C)=0. (2 where{|1)} is the set of all singly and doubly excited con-

On the other hand: is arbitrary sincee(X,C) is identically figurations from the reference configuratior_ls in the_ CAS.
zero in Eq.(1). Thus, we may place any constraining condi- 1N€ wave functionge) and|3) are CASSCF eigenfunctions,
tion on ¢. In the response function formalisrg,is deter- @nd the notatiom— 8 means interchange with /3 from the
mined such that the first derivative of the Lagrangian withfirst term in curly brackets. The first term on the right-hand

respect to theCs is zero, side (rhs) of Eq. (9) is a diagonal matrix whose dia}gonal
elements are the CASSCF energies. If we substitute the
o oW  de second-quantized operator defined by &dl) in the Appen-

0, ©)

c-actiicT dix for V, Eq.(9) becomes
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(plvle)(elv|a)

1
(Keﬁ)aﬁzi [<a|H|'g>_p§B <a|qu|B>CB(ﬁ)Ee _p%,B <a|qu,rs|B>CB(,3)

€.~ €+ AEg,
e)(eqrs ers)(e 1 ajrb)(aq|bs
S (plvfe)(edrs) 'S (pelrs)(efvla) 1 (palrb)(aq|bs)
e €—€te—€e+AEg, F €—€+AEg, 2 ap €a—€qte,—€estAEg,
(pefrs)(eqtu)
" potes (BparsulBIC(AZ T (@) (10

In Eqg. (10), B refers to a configuration state functio8SP 1. The state-averaged CASSCF equations
in the CASSCF wave functiorCg(8) are CASSCF CI co-
efficients for the CSF'8 in stateg, Eyq is a unitary group
generator,

The state-averaged CASSCF equations determine the ClI
and MO coefficients, except for the freedom due to the rota-
tional invariance within the doubly occupig¢doc-dog, ac-

Epq=2apa8qat 8psBqs. (11)  five (act-ac}, and externalext-exy orbital subspaces. The

variational conditions for the CI coefficients are
and

E EpqErs— SqrEps. (12) ; (Hag— SasE"S(@))Cp(a) =0, (17)

qu,rs,tu: qu,rsEtu_ 5ntpu,rs_ 5stqu,ru . (13)

pag.rs—

where the normalization conditions,
The operatorw is one-particle perturbation operator whose

elements are given b
e DY > Cala=1, 18)
(p|U|Q):(p|h|Q)_6p5pq, (14 A

and ¢, are orbital energies. Active orbitals are indicated byare assumed implicitly, since the energy expressi®) is

the indicesp,q,r,s,t,u, while the externalvirtual) orbitals  written with normalized CI coefficients. The variational con-
are indicated by indices,f. The symbol 4,b) in the sum- ditions for the MO coefficients are expressed as a symmetry
mation in the third term of Eq10) means thag andb run  condition on the matrix,, defined in Eqs(A2)—(A4) in the
over both active and external orbitals, but taaandb can-  Appendix,

not both be external orbitals simultaneousyEg, is the

difference (shift) between the energies of the zeroth-order — Xpq=Xgp- (19
statea and configuratiofCSH B,

AEg,= E(BO)_ E<aO> ) (15) 2. The Qrbital canonicalization and the definition of
the orbital energies

In this article we employ an energy formula omitting the Following the CASSCF optimization, canonicalization

doubly occupied orbitals for simplicity. While it is straight- . .
forward to include these in practice, they unnecessarily come OVes the rotational freedom of the CASSCF orbitals,

plicate the derivation. The full formula, including doubly since the_ MC_QDPT. energ_@ur_mke the CASSCF e_nergys_
occupied orbitals, will be discussed in Sec. VI, not invariant to rotations within the doubly occupied, active,

The MC-QDPT total energy to second order is expressegnd exterr_nal subspaces. For the doubly occupied, active, and
. . Lo external diagonal block[}),
using the above effective Hamiltonian by

w=> DQDB(Keﬁ)aﬁ/ > p?, (16) qu=(p|h|q)+r25 DY (palrs)—3(prlsa)] (p>qeD),

’ (20)
whereD , are elements of the eigenvectors which diagonal-
ize the effective Hamiltonian. WhereDfS"e is the state-averaged one-particle density matrix
[see Eq(A5) in the Appendi}. The orbital energies are de-
fined simultaneously as the eigenvalues of the Fock matrix.

These conditions may all be expressed in one set of equa-
The parameters in the energy expression, that is, the ma@ions:

lecular orbital coefficients, orbital energies, and CI coeffi-

cients, are determined from the orbital canonicalization con-

ditions of the CASSCF equations. These equations are used Fpq™ Ep5pq:(p|h|Q)+§ D/I(palrs)—3(prlsa)]
as constraining conditions in the response function formal-

ism. —€,0,=0 (p=qeD). (21

B. The constraining conditions for determining the
parameters
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3. The orthonormalization condition for the molecular C. The MC-QDPT Lagrangian

orbitals . . .
Now we may write down the Lagrangian using the en-

~ Equations(17)—(20) do not determine the molecular or- ergy expression Eq(16) and the constraining conditions
bitals completely, since there are omyo(Nyo —1)/2 con-  gqs, (17)~(23) according to the definition of the Lagrangian
straints forny,q orbital coefficients. The orthonormality con- Eq. (1). To reduce the complexity of the energy expres-
dition, sion Eq.(16), we introduce the following compact notation:

(pla)=38pq (p=0), (22

is assumed implicitly for the orbitals. It must be included in
the Lagrangian explicitly.

qu:(p|h|Q):E C‘upC,,q(/.L|h|V)
wv

=(plvla) (p#a), (24)
4. The diagonalization condition of the effective
Hamiltonian Opqrs=(PQ|rs)= > CoupCugCprCos( V| pa). (25
umvpo

i In ttrr]]e |afot sttgp cl)—]; thgltMC_:—Ql?PTbc{‘a_Icutlstmn, we d'?%ﬁ'These equations may then be used as constraining conditions
nalize the efiective Hamiitonian to obtain the energy ot €y, 4 yetermine the parametens, and gyqs. The energy
target state. This may be expressed as

differences between the zeroth-order state and configuration

energies in the energy expression may be treated as param-
2, {(Ketap= 84pE}Dp=0 and 2 D=1, (23 erers,

where the latter expression is the normality condition. The AEBQZE(BO)—EEYOEE {(BIEppIB) — (a|Eppla)}e, .
total energ\E is a parameter constrained by the above equa- p

tions. Note that whileE is a parameter that arises from the (26)
diagonalization conditionyV [see Eq.(16)] is a function of Using the energy expression Ed.6) and the constrain-
the parameters and nuclear coordinates. ing conditions, we may write the Lagrangian,

L=2, DDp(Ketap / 2D+ > zéf\s,a[; (Hag~ 5ABE°AS<a>>cB(a>]+§ ggAS,E<1—; CA(a)Z)
+ 2 GBhsmoXpaXap)t 2 LBAsmol Foq~ €pdpe) + 2 (8H(Pla)— Spa} + 2 5&(% (KemﬁDB—EDa)

p>qe

+ 0k

1-> D2

+§ gg%{% [<B|Epp|B>_<a|Epp|a>]5p_AEBa}+% gﬁq{(p|h|q)_upq}

+pq2rs 209 (pqlrs) — Gpqrst- 27)

Note that the energy is now expressed only in terms of thé. The multipliers for diagonalization of the effective

molecular orbital coefficients(CAS-)CI coefficients,u,q, Hamiltonian
Gpqrs» €., but not explicitly in terms of the molecular inte-  gjnce the effective Hamiltonian is diagonalized without
grals'.'That is, it does not depend on the nuclear coordlnatea'f,ny approximation, the energy is stationary with respect to
explicitly. changes in alD,,
J W 0 d i W 0 (29
=0 and — =0.
IV. LAGRANGE MULTIPLIERS JD, X=X, JE X=X,

Initially, Lagrangian multipliers’s must be computed for

. . . A The solutions for these linear equations are clearl
the energy gradient. The linear equation determiningithe g y

W k=0 and (=0. (30

o , (28)

X=Xq

—L
dC |«
—o B. The multipliers for the one- and two-electron

. . integrals
may be decoupled into several sets of equations correspond- 9

ing to the step-wise wave function determination described The multipliers for the one- and two-electron integrals
in Sec. Il B. are obtained by simple partial differentiation as
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d @ J @

3b:(9u W :2 Di<a|Eab|a>+2d§b ) (31 Je. L ‘_’gquS,MO:_E ggE[<B|Epp|B>
ab Ix=x, @ € Ix=x, Ba

gade: I _<a|Epp| a>]><:><0+ (9_6’)
g agabcd X=X, X=Xp
(39
1 . . .
=5 > D2(a|Egpcdla)+ 2D g (32) In the first term of the rhsB|E,,|B) is the occupation

number of orbitap in CSFB, and(«|Ey|a) is an occupa-
tion number that is averaged over the reference functions.
wheredE, andDE\-, denote the one- and two-electron den- The information needed for Eq35) is obtained as by-
sities in the MO basis for the second-order endigge Eqs.  Products of the CASSCF calculation. As noted above for the
(A6)—(A9) in the Appendi¥ and the first term on the rhs of Multipliers for AEg,, the second term in Eq35) has the
Eq. (32) is the two-electron density for the zeroth plus first- S8me creation—annihilation operator structure as the effective

order energy. Hamiltonian, so that the calculation is again straightforward,
d 1
E o = E% DaDﬂ| _qu,:B <a|qu|B>CB(,8)
C. The muiltipliers for the definition of energy shift 0
The equation for obtaining the multipliers for the energy % S 8 Upeleq
shifts, g (Oma™ Ome) T = €q+ AEg,)”
d +(a—pB)|+(2- +3-body terms.
——L =0 (33
IAEBB, |y i
e (36)

easily reduces to a formula which gives the multipliers di-The full details are given in EGAL1) in the Appendix.

rectly,

E. The multipliers for the MO rotations in the
invariant doubly occupied, active, and external
subspaces

7

Ba __

X=Xg

1 The multipliers for the orbital rotations in the doubly

=5 > DaDB[ > (@|Epq|B)Cap occupied, active, and gxternal subspaces may be obtained
ap pa,B from the following equation,

X Upelleq +(a—pB) ( i i )L 0 (a>beD) (37
> — = a ,
e (€~ €q+AEBa)2 “ Uqap  dUp, X=X, ( ©
+(2- +3-body terms. (34 where
The two- and three-body terms in E(B4) are readily de- Cui(X)ZE Cum(Xo)Upi - (38
m

rived by analogy to the one-body term, sind@AEg, op-

erates only on the energy denominators in the Lagrangianye useU,,; rather than molecular coefficients themselves as
The symbol= indicates that the full formula is given in the in the conventional energy derivative methods. Rewriting
Appendix [Eq. (A10)]. The structure of the algebra is the Eq. (37) in matrix form as

same as that for the energy expresdib8), so that the com- b
putation is performed using the same approach as for the AXcasmo=b, (39
effective Hamiltonian. we obtain

ARDPA=¢ 5 Sopt+ 22i DAYeP gia— (B¢ b)
D. The multipliers for the orbital energies

The orbital energy appears in the definition of energy (€a=€p)dpaden  ((8,D) e doc.ex)

shift (26), that of orbital energies themselves, and the energy ) (eame) bt 2 DAVp  _pAvep
expression. The multipliers foAEg, are already deter- (€a= €0) Opadop Z (Div"Pogia=Dia Ppain)
mined; thus the multipliers for orbital energies are again
given by the partial differentiation of the energy expression ((a,b) e ac (40
and the occupation numbers, as the matrix elements, and
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baP=—2 2| écAs Mo DAvePn]a"'E gu Uia

+2% {0k (ij|ka)— (a<>b) (41)
i

as the vector elements, whelPg,, s are the Roothaan—Bagus

supermatrix integral%’

Ppars=(Palrs)—a(pr|as)— z(psira). (42
The &5 mo for the doubly occupied and external subspaces

can be determined without having to solve linear equations,

since the matrix is diagonal for doubly occupied and external
subspaces. A small linear equation of dimensionjg (N
—1)/2 must be solved to obtaiff}s o for the active sub-
space.

ICa(a)

F. The multipliers for the MO rotations mixing
different subspaces (doc-act, doc-ext, and act-ext
subspaces ) and the CI coefficients

The multipliers for the orbital rotation mixing among

different subspaces and for the CI coefficients are obtained

by solving coupled linear equations corresponding to the

Nakano, Hirao, and Gordon 5665

bCAS Yom ) ; 5 58?\5,M0( ObpFaqt SbgFap
=(e

+ 22 DipPpgia—(@b) | —

[E {SUia

+23 ;g'kb(inka)—(aeb)] (51)
ij

béﬁs,u: _W(Ol)p>§q: 5 fgﬂ\s,mo% (a|ErstEg|A)

—(9 W
dCa(a)

(52

X qurs+ 2Ca(a@) E,(L\O)% gig_

The last term in the rhs dff4s ¢, is

WEzoiECAS(a)CA(a)JrDaEﬁ Dy

Upeleq
E + AEAB

{ S BT |-

+(B—a)

}+(2- +3-body terms, (53

state-averaged CASSCF equation. The dimension of thesghere the 2- and 3-body terms are given in EL5) in the
linear equations is large, so their solution represents the mogippendix. The coefficient matricesAyomo. Amoci

time-consuming part of the problem:
(919U ap— 3l Upa)L|x=x,=0 (a>beO)
ILIICA(Y)|x=x,=0 : (43
ILIIEcas(¥)|x=x,=0

wherea>b e O means that orbitala andb are in different
orbital subspacedgdoubly occupied, active, or exterpal
Equation(39) may be written in matrix form as,

(0] O
Amomo Amoc 0 XCAs,MO bcasmo
Acimo  Acict Acie || Xeascl | =| Peasc
0 Acg O XcasE 0
(44)
The coefficient matrixA consists of six nonzero parts,

AaO MO~ (5bpxaq+quab_(qu))_(aHb)y (45

?A%Aéﬁ—E XAE —(a=h) (a>b;p>qeO),
(46)
ASS= (a)% Ca(a)(XhE—XAaD), (47)
AR EP=[Hga— SsAE (@) 18,5, (48)
AL =—2Cp(@) 8,4, (49)
AR =—Cg(a) 8.4, (50)

whereX4P andY pqap are defined in EqgA12) and(A13) in
the Appendix, respectively. The vectbron the rhs of Eq.
(39 has two nonzero parts, given in Eq51) and (52):

Acimo, andAg ¢, are very similar to those in the coupled
perturbed state-averaged CASSCF equattBridexcept that
the terms corresponding to the normalization of the CI vec-
tors are missing. These normalization conditions are in-
cluded inAg g andAg ¢ instead.

G. The multipliers for the MO orthonormalization
conditions

The final step in solving the linear equations for the mul-
tipliers is the computation of the multipliers for the orthonor-
malization conditions of the orbitals,

J J
+ L =0, (a=b 54
0
which reduces to
(3= =211+ 8,) Léap. (55)

The &,, are obtained by changing the sign from minus to
plus in subsections IV D—F and collecting them,

Eap= 2 2 §CASCIE XQECB(Q)
+ E gg%&MO(‘prXaq"'quab_(pHQ))
p>qeO

+ >

025D gg(/-i\S,Mo( 5praq+ 5quap

2 {Pui

+22 DinPpgia] +2

+(a=b). (56)

+22, (J¥(ij|ka)
ijk
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V. MOLECULAR ENERGY GRADIENT

The Lagrangian multipliers obtained in the previous sec

Nakano, Hirao, and Gordon

These densities are transformed back into the atomic orbital
(AO) basis, and the energy gradients may be obtained by
multiplying the densities in the AO basis by the first-

tion may now be combined with the molecular integrals toyarivative integrals

compute the molecular energy gradients:

dL | oW de
d_Xx=x0_ ax "X X=X,
_ oe
17X Koxg
" IH ag
:g EA §CAS,C|B —x_ osla

J
+ RAs MO o (Xpg— X
p>§e0 gCAS,MO ax ( pq qp)

JF
+ > 5 gqus,MOa_Qq“‘ > ZR%pla)*

p=qe p=q

+2 %plvla)*+ X 59 (pglrs)*
Pq pars
= dR%plhja)*+ X d&%plq)*
Pq pw
pars, X
+pqErSDg (palrs)*,

(57)

where @|h|q)*, (p|a)*, and (pg|rs)* are transformed inte-
gral derivatives in the MO basis defined by E, (7), and
(8), respectively, and?, d8?, andD§" are effective den-

sities for the Lagrangian in the MO basis. The densities are

given by

dhd= E E éXs,cKA| qu| @)

a A
+i>jEO {las o Ave( 8y a|Ejgla)— (i)

{EAsmo (P>geD)

+ 89+ , 58
fu 0 (otherwise 8)
d§%= g1, (59
and
DSqrs=2 ; géZS,CKA|qu,rs|a’>/2

+ Eo giéAs,Mo Ave(6pi{ a|Ejq rsla)—(i=]))

1>] e
pars ij Ave
gt i>]2 5 {éasmol OpidgiDrs
€

+85105;Dr°). (60)

dL
x|, _

d d
— mv [
0

d
+ 2 Dg"p‘rd—x(uﬂp(r). (62

unvpo
The following is the summary of the computational
steps:

(1) In step 1 the wave function is determineth). Compute
the CASSCF wave functionstb). Canonicalize the
CASSCF MOs and transform the integrals to the MO
basis. Then, recompute the CASSCF wave functions for
the canonical Fock MOs(c). Compute the MC-QDPT
effective Hamiltonian and obtain the final energy by di-
agonalizing it.

In step 2 the zeroth-order Lagrangian multipliers are
determined by solving the appropriate linear equations:
(@). Compute thely; (b). Compute the diagonal
Lcasmd(= {BAsmo); (€). Compute the block-diagonal
part of thelcas mos (d). Solve the linear equation for the
{cas,ci and the off-diagonal part of thécasvo; (€).
Compute thels.

In the final step 3energy gradients are computed).
Compute the effective densities of the Lagrangian for the
overlap, one-, and two-electron integrals on the MO ba-
sis; (b). Transform the densities back to the AO basis;
(c). Multiply the densities and the derivative integrals to
obtain the gradient, which is looped over all the nuclear
coordinates.

)

)

VI. DISCUSSION AND CONCLUDING REMARKS

We have derived an analytic gradient method for the
second-order MC-QDPT energy along the lines of the re-
sponse function formalism without using a second-
quantization form of the energy expression and constraining
conditions or an exponential form of parameter relaxation. In
the present derivation, we have not used the independent set
of variables to describe the orbital rotations and CSF rota-
tions. The use of exponential parameter relaxation introduces
more than 100 term&l56 Goldstone diagrams versus only
25 diagrams in our derivationin the orbital relaxation of
the energy expression. Therefore, though some redundant
variables and relevant constraining conditions were neces-
sary in the present derivation, the formulas are more com-
pact. This suggests that one might expect better performance
in the actual computations. The equations presented here are
currently being implemented into the electronic structure
codescAMESS? and MR2D. 2

In the present work, we put some limitations on the deri-
vations to simplify the presentation. First, we have omitted
the contributions from doubly occupied orbitals in the energy
expression. To include those contributions, one introduces a
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change in the definition of the one-particle perturbation masince the reference functions and orbital energies are differ-

trix (14), making the equations more complex,
doc

(plola)=(plhla)+ 2 [2(pdli) - (pili)], (62

ent from those described in Sec. Ill B. However, the effec-
tive Hamiltonian(10) and the energy expressidt6) may

also be used to express the QDPT energy. Thus, the deriva-
tion of the formulas for QDPT may be performed in the same

since they now depend on two-electron integrals as well agranner ggscrrl]bes 'rr‘] the.present article, and they will be
the one-electron perturbation integral. This, of course, affect@resented in the forthcoming paper.
{5 and the effective two-electron densif§?"® in Eqs.  ACKNOWLEDGMENTS

(32 and (60), respectively. Furthermore, the one- and two- One of the author§H.N.) thanks Dr. Tohru Nakajima

particle coupling constantgA|E,qB) and (A[Epqs|B) : : ) ) .

which include doubly occupied orbital labels should be re-{fr ?lscussgr;]_and rll)sbhelpfuldasdr\]/_lcekgan tIS fals?hg_rateful 0
placed by those not including doubly occupied orbital Iabels{. ro ess(;)rsd ) |ge_ruth a?rqt_aln ‘ Igeflth_a 0 ork Eersugggs-
according to the well-known formulae, ion and advice in the initial stage of this work. H.N. an

K.H. were supported by the Grant-in-Aid for Scientific Re-

(AIE.|B)= (AlEp(|B) (p.g:ach 63 search from the Ministry of Education, Science, Sports and
Pq 26pq0pe  (P,Q:doQ) Culture of Japan, and M.S.G. was supported by a U.S. De-
and partment of Defense High Performance Software Initiative
(CHSS) grant to M.S.G. from the Air Force Office of Sci-
(AlEpqrsIB)  (p.a.r,s:ach entific Research.
26,5(AlEpqg/B)  (p.g:actyr,s:doc) _
- 25pq<A|Ers|B> (p.q:docyr ,s:ach APPENDIX: NOTATION | o
(A[EpqrslBY=1 _ q(AlEpdB)  (p,s:actr,qg:doc) 'In the text.of th_e present grtlcle, some .deflnmons are
— 5,(AlE4|B)  (p,s:docy,q:ach Iomlltted to ar\1/0|d belr:g fI”:df'V\'”Fh Ion% equa.t|ons. The deI'_
2(28,815— Bys0rq) Oas (p’q’r’S:do(Cg4) tcr)]vew?egxfre the complete definitions of notations omitted in

in practical implementation.
Another limitation placed on the derivation is that the
reference functions of the perturbation are the same as that

V= E (hpq_ épgpq)qu"' %2 (pcﬂrs)qu,rs
pPqg pqrs

used for the CASSCF functions. However, we also perform = VpqEpgt %ZS (palrs)Epq,rs (A1)
calculations for which this is not the case. For example, we pa pa
might use just one of the state-averaged CASSCF wave func- Xpg=AVe X,q( @)= > W(a)Xpg( @), (A2)

tions as a reference function for a perturbation calculation.
To treat such a case introduces one more constraining CI
equation in the Lagrangian, giving rise to two kinds of CI

equations: one for CASSCF solutions coupled with the gen-

qu(a):Z hpi<a|Eqi|a>+”2k (pi|jk)<a|Eqi,jk|a>!

¢ onie: - = S [w(a) is the weight of theath state] (A3)
eralized Brillouin condition, and the other for determining
reference functions. Although this makes formulas a litle @)=, Ca(a)|A), (A4)
more complicated, the extension is straightforward. A
The present formulation is not applicable to conven- DAve:Ave<a|E |a>:2 w(a){alE,da) (A5)
tional QDPT based on a single configuration wave function, s © m e
(2) d 1 2 a5ebue +u e5ea5 b
d, =——E® == > DDl — a|E L4 B)C P SR L L a|E q,s|B)C
ab T Ko 4 azﬁ B p%B< | pql > Bﬁze €o— 5q+AEBa pt%,8< | pq,rs| ) B
Opadetd OpersOead
paPebYeqrs persea®qb
X +
Ee: €c— €t € —€+AEg, T €.~ €4tAEg, (a=p), (AG)
(2) d 1 u e5ea5 b‘src‘ssd
DE = (2) [ D.D _ E BYC P q
208 99apea X=X, 4 HEB «p P%,B (el pq,rs| Ces g €e—€qt €~ €+ AEg,
+2 5pa5eb5rc5sa5eq E 2 5pa5a’b5rc5b’d5a'qb’s+gpa’rb’5a’a5qb5b’c55d
e (S 6q+AEBa 2 (a',b" Ea/_6q+ eb’_ES+AEBa
SpalebOreOsddeqtu™ IpersPeadqbOic
pa¥eb®rcUsdYeqtu persfeaqbtcud
+ + .
pqguB <a|qu,rs,tu|B>CBB§ o Eq+5t_fu+AEBa (a‘_’,B) (A7)
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It is convenient to employ the symmetrized effective densities:

dE,—3(dE, -+ dEL), (A8)
DEt(azc)d‘— B(Dabcd+ Dgl(azcj)c+ Dgfgﬁ DE;Zd)::+ DE&Z[# Dcd ba+ Dggﬁ Dg(czb) (A9)
to simplify the following equations.
{Re= &AaEBa E xxo:%QZB DaDﬁ[ %B (a|Epgl B>CB,B§ (o ::iquEBa)z
R P e e Al e
jL%(a,b) (ea— fqip:;igz:isAEBa)z JrpqrzstuB <a|qu’rs’tU|B>
XCBB; (ee—eq-?peir—sg:jrAEBa)z+(a(_>'8)]' (A10)
2 Y DaDﬁ[—E (@lEpglB)CosS (S 0md) ——ot = > (alEpgyslB)Co
Iem |x_x, 2P pa.B P i a (€e— €q+AEg,)” pirsp pa A
X| 2 (Ona~ Smet Sms~ dme) = eq+u:rege2;AEBa)2+ze (6mq~ ome) (ee—gezeieéBa)Z
+53% (na= Sna Sns= om0 (ea—eqip:;b—ngAEBA‘pqrsw,g (@|Epgrs.l B)Cap
%3 (S Ot S o) (Ee_eqf‘:’_’gju“;“AEBa)z+<a~ﬂ>], (A1)
Xpa= 2 <p|h||>[<A|Eq.|B>+<B|Eq.|A>]+2 (PiljK)[(AIEqjxIB) +(BIEq; Wl A)], (A12)
Ypqan= 2/ W(a)Ypgar( @), (A13)
quab(a)=(p|h|a)<a|Eqb|a>+;ﬂ[(palmn)<a|Eqb,mn|a>+(palmn)<a|Eqm,bnla>+(pmlan)<a|Eqm,nbla>], (A14)
3G, (a) W=2DLE (@) Ca(@) D, 3, D { 2 (BlEA) 2 { epng (=) |~ 2 (BlEpgrslA)
(D e e S e 2D A e (5
=3 BBl S | R (5 J . (15)

1Y. Yamaguchi, Y. Osamura, J. D. Goddard, and H. F. SchaefeA New
Dimension to Quantum Chemistry, Analytic Derivative Methods in Ab
Initio Molecular Electronic Structure Theor§Oxford University Press,
Oxford, 1994.

2p. Pulay, Adv. Chem. Phy$9, 241 (1987; P. Pulay, inModern Elec-
tronic Structure Theory Part Jledited by D. R. YarkonyWorld Scien-
tific, Singapore, 1995 p. 1191.

3T. U. Helgaker and P./Jgensen, Adv. Quantum Cherh9, 183 (1988.

4C. Mdller and M. S. Plesset, Phys. Ret6, 618(1934.

5J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quan-
tum Chem.S13 225(1979.

p. E. Siegbahn, A. Heiberg, B. O. Roos, and B. Levy, Phys. Bcr323
(1980; B. O. Roos, P. R. Taylor, and P. E. Siegbahn, Chem. Rtg/4.57
(1980; B. O. Roos, Int. J. Quantum Cher814 175(1980.

K. Ruedenberg and K. R. Sundberg,Quantum Scienceedited by J. L.
Calais, O. Goscinski, J. Linderberg, and Yhr@ (Plenum, New York,
1976, p. 505; L. M. Cheung, K. R. Sundberg, and K. Ruedenberg, Int. J.
Quantum Chem16, 1103(1979.

83, Kato and K. Morokuma, Chem. Phys. Lé§, 19 (1979.

°R. Shepard, H. Lischka, P. G. Szalay, T. Kovar, and M. Ernzerhof, J.
Chem. Phys96, 2085(1992; R. Shepard, itModern Electronic Structure



J. Chem. Phys., Vol. 108, No. 14, 8 April 1998

Theory Part 1| edited by D. R. YarkonyWorld Scientific, Singapore,
1995, p. 345, and references therein.

10K, Hirao, Chem. Phys. Lett190, 374 (1992; 196, 397 (1992; 201, 59
(1993; Int. J. Quantum Chent526 517 (1992.

11H, Nakano, J. Chem. Phy89, 7983 (1993; H. Nakano, Chem. Phys.
Lett. 207, 372(1993.

12\M. W. Schmidt and M. S. Gordon, Annu. Rev. Phys. Chém.be pub-
lished.

137, Tsuneda, H. Nakano, and K. Hirao, J. Chem. Ph@8 6520(1995;
K. Hirao, H. Nakano, and T. Hashimoto, Chem. Phys. L2885 430

Nakano, Hirao, and Gordon 5669

1H. Nakano, K. Nakayama, K. Hirao, and M. Dupuis, J. Chem. Phg8,
4912(1997).

15p. Jugensen and T. Helgaker, J. Chem. P88.1560(1988.

18N, C. Handy and H. F. Schaefer, J. Chem. P845.5031(1984).

17C. C. J. Roothaan and P. S. Bagus, Methods Comput. Rhyg.(1963.

18T, Nakajima and S. Kato, J. Chem. Ph¢95 5927 (1996.

19y, Osamura, Y. Yamaguchi, and H. F. Schaefer I, J. Chem. PTys.
383(1982.

20M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon,

(1993; H. Nakano, T. Tsuneda, T. Hashimoto, and K. Hirao, J. Chem. J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Win-

Phys.104, 2312 (1996; T. Hashimoto, H. Nakano, and K. Hiradid.
104, 6244 (1996; Y. Kawashima, K. Nakayama, H. Nakano, and K.
Hirao, Chem. Phys. LetR67, 82 (1997); K. Nakayama, H. Nakano, and
K. Hirao, Int. J. Quantum Chen6, 157 (1998.

dus, M. Dupuis, and J. A. Montgomery, Jr., J. Comp. Chéd).1347
(1993.
2'mRr2p Ver. 2, H. Nakano, University of Tokyo, 1995.



