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Second-order quasi-degenerate perturbation theory with quasi -complete
active space self-consistent field reference functions
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A quasi-degenerate perturbation theory~QDPT! is presented that is based on quasi-complete active
space self-consistent field~QCAS-SCF! reference functions. The perturbation method shown here is
an extension of a previously proposed QDPT with CAS-SCF reference functions~CAS-QDPT! but
is a more compact perturbation method that can employ a much smaller reference configuration
space with the same number of active electrons and orbitals as the CAS case. A computational
scheme to second-order using a diagrammatic approach is described. The second-order effective
Hamiltonian consists of the contribution from external excitations, which involve core or/and virtual
orbitals, and internal excitations, which involve only active orbitals. The importance of the internal
excitation contribution is emphasized. The method is tested on the potential energy curves of the LiF
molecule, the Rydberg excitation energies of furan, and the transition state barrier height of the
reaction, H2CO→H21CO. The results are in very good agreement with the corresponding
CAS-SCF reference QDPT results and available experimental data. The deviations from the
CAS-QDPT values in the energy are less than 0.1 eV on the average for the excitation energies of
furan and less than 1 kcal for the barrier height of the reaction, H2CO→H21CO. The deviation from
the experimental values is 0.11 eV at most for the excitation energies, and 1.2 kcal/mol, which is
within the twice the experimental uncertainty, for the barrier height. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1332992#
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I. INTRODUCTION

Development of multireference methods represents
portant progress in electronic structure theory in the last
decades. In particular, multireference perturbation theo
~MRPTs! based on multiconfiguration self-consistent fie
function references have been successfully used as effi
and accurate methods.

We have developed perturbation theory methods suc
MRMP PT ~multireference Møller–Plesset perturbatio
theory!1–3 and MC-QDPT ~quasi-degenerate perturbatio
theory with multiconfiguration self-consistent field referen
functions!.4,5 MRMP PT is a multiconfiguration basissingle
reference state method based on Rayleigh–Schro¨dinger per-
turbation theory. MC-QDPT is a multiconfiguration bas
multireference state method based on van Vleck perturba
theory and therefore includes MRMP PT as a subset. Us
these perturbation methods, we have clarified the electr
structures of various systems and demonstrated that the
powerful tools for investigating excitation spectra and pot
tial energy surfaces of chemical reactions. The code
MC-QDPT6 has been implemented in the program packa
GAMESS7 andHONDO8 and is now open to researchers.

However, so far the implementation of these PTs is o
for the complete active space self-consistent fi
~CAS-SCF! reference functions.9 The CAS-SCF method an
the perturbation methods based on it are certainly effect

a!Electronic mail: nakano@qcl.t.u-tokyo.ac.jp
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if the active space is appropriately selected, it is applicabl
any open-shell states, as well as closed-shell states, and
spin-states, and it is stable on the whole potential ene
surface of chemical reactions. However, the dimension
CAS grows very rapidly as the number of active orbita
increases, which sometimes makes implementation of a
turbation computation impossible. Perturbation methods
ing a selected reference configuration space but retaining
advantages of the CAS-based PTs are necessary.

Recently, we proposed a quasi-complete active sp
~QCAS! SCF method, which is one of the multiconfiguratio
~MC! SCF methods and a natural extension of the CAS-S
method.10 In this method, the quasi-complete active spa
which is a product space of CASs, is used as a variatio
space. The dimension of QCAS can be much smaller t
the CAS that is constructed with the same number of ac
orbitals and electrons. We have shown that the QCAS-S
method can yield results comparable to those of CAS-S
with much smaller computational cost. Combining QCA
with MC-QDPT mentioned above provides an effective to
for electronic structure theory. In this article we prese
MC-QDPT using QCAS-SCF reference functions.~Hereaf-
ter, we call it QCAS-QDPT, while we call MC-QDPT with
CAS reference CAS-QDPT.!

Until now much effort has been devoted to developi
multireference theories for an incomplete reference~or
model! space.

In the 1980s, many papers were published11–19 that
3 © 2001 American Institute of Physics
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mainly treated formal aspects, such as the linked diag
expansion~LDE!, in perturbation and coupled-cluster met
ods. These works open the possibility that more general
flexible MRPTs and MRCC~multireference coupled-cluster!
methods than those based on CAS reference can pla
active role. However, application of methods enjoying t
benefits of the LDE for an incomplete reference space se
limited even today.

These works are for the conventional QDPT and C
method in the category of valence-universal or sta
universal formalisms. MC-QDPT uses reference CI~configu-
ration interaction! solutions that span only a subspace of t
whole reference determinant or CSF~configuration state
function! space as reference; hence, it is neither sta
universal nor valence-universal. Thus we cannot use th
results for our development of MC-QDPT based on one
the incomplete spaces, QCAS.

Two papers20,21were recently published on state-speci
PTs with an incomplete reference space. These papers
cuss practical aspects rather than formal aspects. The p
of Celani and Werner20 proposes a second-order multirefe
ence perturbation theory for the restricted active space~RAS!
and a general selected active space, which is a generaliz
of the second-order complete active space perturba
theory ~CASPT2!.22,23 On the other hand, the paper o
Grimme and Waletzke21 presents computational strategi
and algorithms for the second-order MRPT of Murphy a
Messmer24,25 with a RAS-CI wave function as reference.
selected first-order interacting space and the resolution
identity method for molecular integrals are used for furth
efficiency. These perturbation methods use a CI-based
proach; namely the computation of the second-order ene
is done via the first-order Bloch equation.

The present article is also oriented to a practical way
computing the energy of a multireference PT, MC-QDPT,
the second-order level. Here a fully diagrammatic appro
is adopted. The second-order effective Hamiltonian is co
puted by a sum-over-orbital method without solving the fir
order Bloch equation. This computation is not affected
the size of the first-order interacting space, differing from
CI-based approach. Cimiraglia26 has proposed a diagram
matic method for CIPSI~configuration interaction by pertur
bation with multiconfigurational zeroth-order wave functio
selected by iterative process! approach.27 In his method, dia-
grams are used that are defined for the vacuum states d
mined so as to be identical to the reference configuration
the creation and annihilation operators act on; hence i
quite a general method. We use diagrams defined for ano
vacuum state, the more traditional one consisting of c
orbitals. These are not so suitable for a general refere
space, but are quite effective for the quasi-complete re
ence space.

In the QCAS-QDPT, the second-order effective Ham
tonian consists ofexternaland internal excitation contribu-
tion, as will be shown in the next section. The external
citation is one that involves core and/or virtual orbitals in
On the other hand, the internal excitation is an excitat
among active orbitals. The internal excitation contributi
plays a role that bridges the gap between QCAS-SCF
m
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CAS-SCF. This contribution is rather small but is very im
portant, which will be shown later by illustrative calcula
tions.

The contents of the present article are as follows: in S
II, following the introduction of QCAS, formulas for the
second-order QCAS-QDPT effective Hamiltonian are d
rived and details of the computational method are given
Sec. III, the scheme is tested for the potential energy cur
of the LiF molecule, Rydberg excitation energies of fur
C4H4O, and the barrier height of a unimolecular dissociati
reaction of formaldehyde H2CO→H21CO; and in Sec. IV,
conclusions are drawn. Information on the diagram rule
deriving mathematical expressions from each diagram
given in the Appendix.

II. METHOD

A. Quasi-complete active space „QCAS…

In the CAS-SCF method, we partition orbitals into cor
active, and virtual, then construct the CI space by distrib
ing active electrons among the active orbitals. Let us furt
divide the active electron and orbital sets intoN subsets and
fix the number of active electrons,mi , and orbitals,ni , in
each subset:

mact5(
i

N

mi , nact5(
i

N

ni , ~1!

where mact and nact denote the number of active electron
and orbitals, respectively. We define the quasi-comp
space10,28as the product space of CAS spanned by the de
minants or CSFs as follows:

QCASF)
i

N

~mi ,ni !G
5CAS~m1 ,n1!3CAS~m2 ,n2!3¯CAS~mN ,nN!, ~2!

such that the number of electrons in each orbital group
isfies the restriction in Eq.~1!.

This definition may be readily extended to the direct su
of the above QCAS@Eq. ~2!# ,

QCASF)
i

M

~ki ,l i !1)
i

N

~mi ,ni !1¯G
5QCASF)

i

M

~ki ,l i !G1QCASF)
i

N

~mi ,ni !G1¯, ~3!

which will appear in the application to furan in Sec. III.

B. Second-order QDPT with QCAS-SCF reference
functions „QCAS-QDPT…

The effective Hamiltonian up to the second-orderKeff
(0-2)

of van Vleck perturbation theory with unitary normalizatio
on which MC-QDPT4,5 is based, is given by

~Keff
~0-2!!AB5HAB1

1

2 H (
I ¹Ref

^FAuVuF I&^F I uVuFB&

EB
~0!2EI

~0!

1~A↔B!J , ~4!
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whereFA(FB) and F I are reference wave functions and
function in the complement space (Q) of the reference spac
(P), respectively, andEB

(0) and EI
(0) are zeroth-order ener

gies of functionsFB and F I . The notation (A↔B) means
interchangeA with B from the first term in curly brackets
Adopting ~state-averaged! QCAS-SCF wave functionsa~b!
as reference functionsFA(FB) ~i!, which defineP space, Eq.
~4! becomes

~Keff
~0-2!!ab5Ea

QCASdab1
1

2 H (
I ¹QCAS

^auVuI &^I uVub&

Eb
~0!2EI

~0!

1~a↔b!J , ~5!

where I is now a determinant/CSF outside the QCAS. T
complementary eigenfunctions of the QCAS-CI Hamiltoni
~ii ! and the determinants/CSFs generated by exciting e
trons out of the determinants/CSFs in the QCAS~iii ! are
orthogonal to the reference functions and defineQ space.
The functions in the complementary space ofP space in
QCAS, namely the abovementioned~ii !, however, do not
appear in Eq.~5! since the interaction between the functio
and the reference functions is zero.

Let us define acorresponding complete active spa
~CCAS! to a QCAS as the complete active space that has
same active orbital set and electron but does not have
limitation, Eq.~1!. In other words, the corresponding CAS
the minimal CAS that includes the QCAS. Then the summ
tion for I in Eq. ~2! may be divided into the summations fo
determinants/CSFs outside the CAS and for
determinants/CSFs outside the QCAS but inside the co
sponding CAS:

(
I ¹QCAS

5 (
I ¹CCAS

1 (
I PCCAS∧I ¹QCAS

, ~6!

and then the former second-order term in Eq.~5! may be
written as

~Keff
~2!!ab5 (

I ¹CCAS

^auVuI &^I uVub&

Eb
~0!2EI

~0!

1 (
I PCCAS∧I ¹QCAS

^auVuI &^I uVub&

Eb
~0!2EI

~0! . ~7!

The former term in Eq.~7! involves excitations from core
orbitals and excitations to virtual orbitals in the intermedia
statesI, while the latter term involves excitations where on
active orbitals are involved. Hereafter, we call the form
term theexternalterms and the latter theinternal terms.

The external terms may be calculated in a similar m
ner to the MC-QDPT with CAS reference function
~CAS-QDPT!. If we adopted the particle-hole formalism u
ing the vacuum state defined by the determinant with all
core orbitals occupied and the remaining active and virt
orbitals unoccupied, the second-order effective Hamilton
is expressed by 25 Goldstone diagrams. These diagr
themselves are identical to those used in the open-she
conventional quasidegenerate perturbation theory.~They are
not listed here. See Ref. 29, p. 298, for example.! The dif-
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ference is in the energy denominator and the coupling co
ficient in deriving explicit formulas from the diagrams~see
the Appendix!. Take the following three-body diagram as a
example:

This diagram is translated to a mathematical expression
cording to the diagram rule in the Appendix,

~Dext
3-body!ab5 (

pqrstu

act

(
e

vir

(
B

QCAS
~pqure!~esutu!

es2ee1eu2e t2EB
~0!1Eb

~0!

3^auEpq,rs,tuuB&CB~b!. ~8!

In Eq. ~8!, (pqurs) are the two-electron integrals in the mo
lecular orbital basis;ep are orbital energies;B is a determi-
nant or CSF in QCAS;CB(b) is the QCAS-SCF CI coeffi-
cient for B in stateb; EB

(0) is the zeroth-order energy ofB;
andEpq,rs,tu is a shift operator,

Epq,rs,tu5 (
s5a,b

(
s85a,b

(
s95a,b

aps
1 ars8

1 ats9
1 aus9ass8aqs .

~9!

The definition of the orbital energiesep will be given in the
subsequent subsection. The other terms are derived simil
which are apparently the same as the ones of CAS-QDP

Note the following points on the computational aspec
~1! In spite of the outward similarity, the efficiency i

different. In CAS-QDPT the labelB runs over the CAS while
in QCAS-QDPT it runs over only the QCAS, a subspace
the CAS; hence the number of coupling coefficients betw
a statea and a determinant/CSFB is much smaller in QCAS-
QDPT than in CAS-QDPT. Since the computational cos
roughly proportional to the number of coupling coefficien
the evaluation of the external terms of QCAS-QDPT is mo
efficient than that of CAS-QDPT.

~2! In a calculation of QCAS-SCF, only one- and two
body coupling coefficients appear in the computation a
they are decoupled into the alpha- and beta-strings in e
active orbital subset, which makes the computation of the
part efficient.10 On the contrary, the three-body coupling c
efficients that appear in the perturbation calculation may
be decoupled in a similar manner. However, from the nat
of QCAS, the three-body as well as one- and two-body c
pling coefficients may be decoupled into alpha- and be
strings. This is enough for the efficiency of the perturbati
calculations, since the summation of the integral product
vided by energy denominator for each coupling coefficien
the major part in computational time rather than the coupl
coefficient computation.

For the calculation of the internal terms, there are seve
strategies. One approach is a diagram method similar to
external terms. For the internal terms only the particle lin
are concerned. Hence, the 5 diagrams that do not inc
hole lines among the external 25 diagrams appear:
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The mathematical expression for the three-body diagram
for example, given by the following:

~D int
3-body!ab5 (

pqrstu

act

(
a

act

(
B

QCAS
~pqura !~asutu!

es2ea1eu2e t2EB
~0!1Eb

~0!

3^auEpq,rs,tuuB&CB~b!. ~10!

The summations only run over active orbitals, but these s
mations are restricted so that the intermediate determina
CSFs are outside the QCAS. This may be easily hand
because of the nature of the QCAS. In the QCAS refere
case, this restriction is done only with orbital indices witho
referring to the reference determinants/CSFs, whereas in
general reference case the restriction scheme also depen
the reference determinant/CSFB. For the internal terms, be
sides the connected diagrams drawn above, all the four
connected diagrams appear that originate from the produ
the one- and two-body perturbation operators:

Up to four-body diagrams are necessary. The four-body t
is, for example, given by

~D int
4-body!ab5

1

4 (
pqrstuvw

act

(
B

QCAS
~pqurs!~ tuuvw!

eu2e t1ew2ev2EB
~0!1Eb

~0!

3^auEpq,rs,tu,vwuB&CB~b!. ~11!

Again the summations are restricted so that the intermed
determinants/CSFs are outside the QCAS and they ma
easily handled due to the nature of the QCAS for the sa
reason.

Another scheme is a more straightforward one where
creation and annihilation operators are not arranged in
mal order and, instead, the coupling coefficients for the pr
uct of the operators are used directly. The diagrams are
same as the disconnected diagrams drawn above. How
the rule in the Appendix is somewhat different: the creat
and annihilation operator part is replaced by the origi
product,

~D int
4-body!ab5

1

4 (
pqrstuvw

act

(
B

QCAS
~pqurs!~ tuuvw!

eu2e t1ew2ev2EB
~0!1Eb

~0!

3^auEpq,rsEtu,vwuB&CB~b!. ~12!

As with the internal terms, this scheme is also effective
addition to the previous one. However, since in general
coupling coefficient for the normal ordered produ
^auEpq,¯,rsuB& is sparser than that for the general produ
^auEpq,¯Ers,¯uB&, this scheme is less efficient than the pr
vious one. An advantage of this scheme is that it is rea
extended to the general reference space case.
is,

-
ts/
d
e

t
he
on

is-
of

m

te
be
e

e
r-
-

he
er,

n
l

n
e

t
-
ly

A third scheme is one where matrix operations for t
Hamiltonian matrix are used:

~K int
~2!!ab5 (

AB,I
CA~a!HAIHIBCB~b!/~Eb

~0!2EI
~0!!. ~13!

The intermediate determinants/CSFsI are made by exciting
one or two electron~s! from the reference QCAS
determinants/CSFs within the active orbital space. In g
eral, the number ofI is not large, and thus they may b
managed in computer memory. This scheme is espec
useful when determinant/CSF selection is done. We may
ficiently take into account the contribution from the uns
lected determinants/CSFs using Eq.~13!.

In the current implementation the first scheme has b
adopted. The computation is done with the coupling coe
cient driven method. These coupling coefficients are spa
and can be pre-screened according to the condition,

~vB
pq¯rs!ab5^auEpq,¯,rsuB&CB~b!

5 (
A

QCAS

CA~a!^AuEpq,¯,rsuB&CB~b!.d, ~14!

whered5131028 is usually sufficient to keep the energ
accuracy better than 1025 hartree. Thus the multiple summa
tion for active orbitals in Eqs.~10!, ~11!, ~12!, and other
terms, which seemingly scales as the power of the numbe
active orbitals, is actually diminished considerably.

It is worth noting that the contribution of the interna
terms is usually small but is very important. It plays a ro
that bridges the gap between QCAS-SCF and CAS-S
Without internal contribution, if the results include some e
ror at QCAS-SCF levels compared to those of CAS-SC
they cannot be recovered even if we go beyond the seco
order of perturbation.

C. Definition of orbital energies

There is an arbitrariness in choosing orbitals since
QCAS-SCF energies are invariant under rotation in core
virtual orbital spaces and ineach active orbital subspace.
We determine the orbitals so that the generalized Fock
trix,

Fpq5hpq1(
rs

Drs
AveF ~pqurs!2

1

2
~psurq !G , ~15!

is diagonal in each orbital space and sub-space, whereDrs
Ave

represents the averaged one-particle density matrix, and
fine their energiesep by the corresponding diagonal elemen
Fpp . This definition is simply an extension from th
CAS-QDPT case.

III. APPLICATIONS

We applied the present method to some molecular s
tems to illustrate its performance. We calculated w
QCAS-QDPT the potential energy curves~PECs! of the two
lowest 1S1 states of the LiF molecule, Rydberg excite
states of furan C4H4O, and the transition state barrier heig
of the reaction H2CO→H21CO, and compared the resul
with those of CAS-QDPT with corresponding active spac
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A. Potential energy curves of the two lowest 1S¿

states of the LiF molecule

The first example is the calculation of the PECs of t
two lowest1S1 states of the LiF molecule. In the diabat
picture, one of the1S1 states is ionic and the other state
covalent. In the equilibrium structure region the ionic state
lower in energy~the ground state!, while at the dissociation
limit the covalent state is lower. The two potential curv
therefore show avoided-crossing in the middle in the ad
batic picture. It has been reported4,30 that these two adiabati
states strongly interact in the avoided-crossing region
single-state multiconfigurational perturbation theories fai
in that region.

The basis set used is 6-31111G(3d f ,3pd).31 The ac-
tive spaces were constructed from six electrons and n
~4s-6s, 1p-3p, and 1p8-3p8! orbitals. CAS was used fo
comparison and was constructed by distributing these
electrons among all nine orbitals. QCAS was construc
by first dividing the orbitals into three groups,$4s-6s%,
$1p-3p%, and$1p8-3p8%, and then distributing two electron
among each group. Hereafter, we call this active sp
QCAS@(2,3)3#. The dimension of this QCAS is 729~in
Slater determinants basis; without symmetry! and that of the
corresponding CAS is 7 056. The 1s orbital corresponding
to F(1s) was frozen in the perturbation calculations.

Results are shown in Figs. 1–3. Figure 1 shows PEC
the QCAS- and CAS-SCF levels and Fig. 2 shows PEC
the QCAS- and CAS-QDPT levels. The errors of the ref
ence function~QCAS-SCF/CAS-SCF! level and perturbation
theory ~QCAS-QDPT/CAS-QDPT! level are plotted in Fig.
3. The QCAS-SCF curves have systematic errors from
CAS-SCF results depending on the nature of the states: a
4 kcal/mol for the ionic state~in the diabatic picture; lower
the near equilibrium structure, higher at the dissociat
limit ! and about 1.5 kcal/mol for the covalent state. The
are well recovered by QCAS-QDPT. At this level, the erro
from CAS-QDPT are less than 1 kcal/mol for both stat
except for one point (r 510.0 bohr).

FIG. 1. The QCAS-SCF~d,j! and CAS-SCF~s,h! potential energy
curves of the two lowest1S1 states of LiF.
s
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e
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Plotted in Fig. 4 is the energy difference betwe
QCAS-QDPT results without the internal term contributio
~i.e., external only term contribution! and CAS-QDPT results
as well as that between QCAS-SCF and CAS-SCF resu
This figure well illustrates the importance of the contributi
from the internal terms. The external term only contributi
describes PECs relatively well and the errors are small to
sure, but the error pattern is similar to that of the QCAS-S
against CAS-SCF. This indicates that, when the PECs ha
deficiency at the QCAS-SCF level, without the internal te
contribution this deficiency is carried over to th
QCAS-QDPT level. The internal terms are essential for b
anced description of relative energies or potential energy
faces although the contribution is small and sometimes
four-body internal terms are time-consuming.

FIG. 2. The QCAS-QDPT~d,j! and CAS-QDPT~s,h! potential energy
curves of the two lowest1S1 states of LiF.

FIG. 3. The energy differences of the two lowest1S1 states of LiF between
QCAS- and CAS-QDPT~the symbolsd and j are for the ground and
excited states, respectively! and between QCAS- and CAS-SCF~s, h for
the ground and excited state, respectively!.
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B. Rydberg excitation energies of furan, C 4H4O

Calculations were next carried out for the ground st
and triplet and singlet Rydberg excited states of furan.
experimental geometry was used~the molecule is placed in
the yz-plane!.32 The basis sets used for carbon and oxyg
atoms are Dunning’s correlation consistent polarized vale
triple zeta~cc-pVTZ! set33 except for the polarization func
tions, which were taken from those of cc-pVDZ.33 The Ry-
dberg functions (2s2p2d) were also placed on the charg
center of the heavy atoms~C and O! of the molecule. The
primitive Rydberg functions for C and O determined
Dunning and Hay34 were weight-averaged and split into tw
with splitting factors of 1.9 and 0.75. The obtained exp
nents are 0.0471 (s), 0.0186 (s), 0.0426 (p), 0.0168 (p),
0.0285 (d), and 0.0113 (d). The cc-pVDZ set33 was used
for hydrogen atoms~no polarization on H!.

We carried out the nine-state-averaged QCAS-SCF
culations for all 3s, 3p, and 3d Rydberg states. The activ
orbital set consists of five valencep andp* orbitals and nine
Rydberg orbitals. This orbital set was divided into tw
groups, five valence orbitals and nine Rydberg orbitals.
triplet Rydberg states, QCAS was constructed by distribut
five electrons~three alpha and two beta electrons! to five
valence orbitals and one alpha electron to nine Rydberg
bitals, QCAS@~3a2b,5!3~1a,9!#. For singlet Rydberg states
the active space was constructed from the QCASs that w
made in a similar way to the triplet case, QCAS@~3a2b,5!
3~1b,9!# and QCAS@~2a3b,5!3~1a,9!#. Since both of them
are necessary for the active space to take into account pr
spin-coupling, we use their direct sum, QCAS@~3a2b,5!
3~1b,9!1~2a3b,5!3~1a,9!#. These QCASs are applicable
the single excitations from ap valence orbital to a 3spd
Rydberg orbital. The dimensions of the triplet and sing
QCASs are 900 and 1800, respectively. For the ground s
we used QCAS@~6,5!3~0,9!#, which is equivalent to
CAS~6,5!.

Perturbation calculations were performed for the n

FIG. 4. The energy difference between QCAS-QDPT without the inte
term contribution and CAS-QDPT~the symbolsd andj are for the ground
and excited states, respectively! and between QCAS-SCF and CAS-SCF~s,
h for the ground and excited state, respectively!.
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triplet and nine singlet 3spd Rydberg states and the groun
state. The results are summarized in Table I as well as
experimental and our previous results.35 We should note that
the CAS-SCF calculations in the table were done for e
individual symmetry including valence states. They a
therefore different from the CAS-SCF using thecorrespond-
ing CAS defined in Sec. II.

Singlet QCAS-SCF results are in good agreement w
the CAS-SCF results~,0.1 eV! except for the 3p 1B2 ,
3d 1B2 , and 3d 1A1 Rydberg states. For these states t
CAS-SCF values are 0.21 (3p 1B2), 0.18 (3d 1B2), and 0.52
eV (3d 1A1) higher than the QCAS-SCF values, since t
CAS-SCF optimizations also included valence states of
same symmetry. On the other hand, the QCAS-QDPT res
are very close to the CAS-QDPT results in all states. T
average and maximum differences are only 0.03 eV and 0
eV, respectively. Moreover, the QCAS-QDPT excitation e
ergies also reproduce the available experimental results w
The error is at most 0.11 eV.

Most triplet states are slightly lower than the correspon
ing singlet states~by 0.8 eV at maximum! in both the refer-
ence and QCAS-QDPT levels. Also in the triplet states,
QCAS-QDPT results are very close to the CAS-QDPT
sults, except for the 3d 3B2 state. The average and maximu
differences are only 0.06 eV and 0.24 eV, respectively.

C. Transition state barrier height for the unimolecular
dissociation reaction of formaldehyde
H2CO\H2¿CO

The third example is the calculation of the transitio
state barrier height of the unimolecular dissociation react
of formaldehyde, H2CO→H21CO. This reaction is
Woodward–Hoffmann forbidden and therefore proceeds
the highly asymmetric transition structure as shown, for
ample, in Fig. 2 of the paper of Scuseria and Schaefer.36 We
examined in previous papers37,10 the barrier height using a
multireference perturbation method with the CAS-SCF r
erence function37 and the QCAS-SCF method.9 We now
compare the QCAS-QDPT results with the CAS-QDPT
sults in the present article. Note that, since the reference
single state, the QCAS-QDPT and CAS-QDPT are equi
lent to QCAS-MRMP and CAS-MRMP, respectively.

The equilibrium and transition structures used are
same as in previous papers.36,10,37The complete active spac
we used for comparison is CAS~12,10!, which is the full
valence active space. We split the active orbitals in
$CO~s,s* !%, $CO~p,p* !%, and $CH~s,s* !,CH~s8,s8* !,
O(lp,lp)%, wherelp denotes a lone pair orbital, and then w
distributed two, two, and eight electrons among the ab
groups, respectively, to construct QCAS@(2,2)23(8,6)#. The
dimension of the CAS is 44 100, while that of the QCAS
3600.

The results with cc-pVTZ and cc-pVQZ33 are shown in
Table II. First let us compare the results at the refere
function ~QCAS- and CAS-SCF! level. Although differences
in the energy itself between QCAS- and CAS-SCF are ab
10 mhartree for both basis sets, the differences in the ba
height are 1.65 and 1.62 mhartree~1.0 and 1.0 kcal/mol! for

l
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TABLE I. Rydberg excitation energies of furan~eV!.

State

Singlet Triplet

QCAS-
SCF

QCAS-
QDPT

CAS-
SCFa

CAS-
QDPTa Exptl.b

QCAS-
SCF

QCAS-
QDPT

CAS-
SCF

CAS-
QDPT

A2(1a2→3s) 5.62 5.84 5.67 5.84 5.91 5.56 5.76 5.61 5.7
B1(1a2→3pb2) 6.03 6.37 6.10 6.40 6.48 5.99 6.31 6.08 6.3
B2(1a2→3pb1) 6.21 6.41 6.42 6.51 6.48 6.16 6.49 6.34 6.5
A2(1a2→3pa1) 6.19 6.53 6.20 6.54 6.61 6.18 6.50 6.19 6.5
A2(1a2→3da1) 6.61 6.96 6.64 6.98 ¯ 6.55 6.86 6.58 6.88
B1(1a2→3db2) 6.69 7.09 6.71 7.12 ¯ 6.67 7.05 6.69 7.09
A2(1a2→3da1) 6.77 7.19 6.77 7.19 ¯ 6.75 7.15 6.75 7.16
B2(1a2→3db1) 6.87 7.10 7.05 7.21 ¯ 6.87 7.16 7.06 7.40
A1(1a2→3da2) 6.82 7.30 7.34 7.29 7.28 6.77 7.23 7.11 7.2

aReference 35.
bSee references in Ref. 35.
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cc-pVTZ and cc-pVQZ, respectively. The agreement
QCAS-SCF with CAS-SCF is very good.

Now let us compare the results at the MC-QDPT lev
In total energy, there still remains a difference of abou
mhartree between the results of QCAS- and CAS-QDPT
contrast to the LiF case. In relative energy, for the bar
height the QCAS-QDPT results are very close to those
CAS-QDPT in both basis sets. The barrier height of QCA
QDPT is 83.7 kcal/mol in both basis sets; the differenc
from those of CAS-QDPT are only 0.1 and 0.3 kcal/mol f
cc-pVTZ and cc-pVQZ, respectively. Moreover, the barr
height is also close to the experimental value, 8
kcal/mol.38 The error of 0.9 kcal/mol is within twice the
experimental uncertainty 0.8 kcal/mol.

IV. CONCLUDING REMARKS

A second-order quasi-degenerate perturbation the
~QDPT! has been presented that is based on quasi-com
active space self-consistent field~QCAS-SCF! reference
functions. The perturbation method shown here is an ex
sion of a previously proposed QDPT with CAS-SCF ref
ence functions and yet is a more efficient perturbat

TABLE II. Transition state barrier height for the reaction H2CO→H21CO.

Eq./hartreea Tr./hartreeb
DE/

~kcal/mol!
Error/

~kcal/mol!

cc-pVTZ
CAS-SCF 2114.046 96 2113.913 81 83.6 21.0
QCAS-SCF 2114.037 86 2113.903 06 84.6 0.0
CAS-QDPTc 2114.304 51 2114.171 34 83.6 21.0
QCAS-QDPTd 2114.296 74 2114.163 38 83.7 20.9

cc-pVQZ
CAS-SCF 2114.056 24 2113.923 00 83.6 21.0
QCAS-SCF 2114.047 12 2113.912 26 84.6 0.0
CAS-QDPTc 2114.330 57 2114.197 63 83.4 21.2
QCAS-QDPTd 2114.323 16 2114.189 81 83.7 20.9
Exptl. ~classical!e 84.660.8

aEquilibrium structure.
bTransition state structure.
cEquivalent to CAS-MRMP.
dEquivalent to QCAS-MRMP.
eReference 38. Barrier height not including zero-point energy correction
f
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method that may employ a much smaller reference confi
ration space with the same number of active electrons
orbitals as in the CAS case.

A computational scheme using diagrammatic appro
has been derived. The second-order QCAS-QDPT effec
Hamiltonian is expressed by 25 external term and 9 inter
term diagrams. The external term diagrams and five of
internal term diagrams are the same as those in CAS-QD
and the conventional QDPT. The remaining four intern
term diagrams are disconnected ones that do not appe
the CAS-QDPT case.

Since QCAS is a natural extension of CAS, computat
of these diagrams can be done efficiently in a similar man
to CAS-QDPT. The summations for the orbital lines in t
diagrams are done under the restriction such that the in
mediate determinants/CSFs are outside the QCAS. In
QCAS reference case, this restriction is done only with
bital indices without referring to reference determinan
CSFs, whereas in the general reference case the restri
scheme depends also on the reference determinants/CS

The method was tested on the potential energy curve
the LiF molecule, the Rydberg excitation energies of fur
and the transition state barrier height of the reacti
H2CO→H21CO. The results show that the present meth
yields very close results to the corresponding CAS-SCF
erence MC-QDPT results and, moreover, it gives accu
estimates for the experimental values. Deviations fr
CAS-QDPT values in the energy were less than 0.1 eV
the average for the excitation energies of furan and less
1 kcal for the barrier height of the reaction, H2CO→H21CO.
The deviation from the experimental values was 0.11 eV
most for the excitation energies, and 1.2 kcal/mol, which
within the twice the experimental uncertainty, for the barr
height.
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SCF and perturbation calculations were carried out wit
modified version ofGAMESS~Ref. 7! and withMR2D ~Ref. 6!,
respectively.

APPENDIX: DIAGRAM RULE IN THE SECOND-ORDER
MC-QDPT

In the text, we used diagrams rather than the mathem
cal expression as often as we could in order to avoid leng
equations. The effective Hamiltonian diagrams appearing
MC-QDPT to the second-order are identical to those in
conventional QDPT except for some disconnected on
However, the rule for translating them into mathematical
pression is somewhat different. In this Appendix, we d
scribe it briefly for readers’ convenience.

There are 25 diagrams for the external terms. Take o
for example:

The diagram rule in conventional QDPT says that the c
tribution of this diagram to the second-order effective Ham
tonian is

~Dext
3-body!pq,rs,tu52(

i

core
~pqu is!~ri utu!

e i2e r1eu2e t
Epq,rs,tu ~A1!

in operator form and

~Dext
3-body!AB52 (

pqrstu

act

(
i

core
~pqu is!~ri utu!

e i2e r1eu2e t
^AuEpq,rs,tuuB&

~A2!

in matrix form. In MC-QDPT, the numerator and shift o
erator parts are common; however, the energy denomin
is dependent of the determinant/CSFB and the reference
stateb:

D5e i2e r1eu2e t2EB
~0!1Eb

~0! . ~A3!

Hence

~Dext
3-body!AB52 (

pqrstu

act

(
i

core
~pqu is!~ri utu!

e i2e r1eu2e t2EB
~0!1Eb

~0!

3^AuEpq,rs,tuuB& ~A4!

in matrix form. Multiplying Eq.~A4! by CA(a) andCB(b)
and taking summations over reference determinants/CSA
and B, we obtain formulas for the second-order effecti
Hamiltonian for the reference statesa andb from those forA
andB:

~Dext
3-body!ab52 (

pqrstu

act

(
i

core

(
AB

Ref
~pqu is!~ri utu!

e i2e r1eu2e t2EB
~0!1Eb

~0!

3CA~a!^AuEpq,rs,tuuB&CB~b!
a

ti-
y

in
e
s.
-
-

e,

-
-

tor

52 (
pqrstu

act

(
i

core

(
B

Ref
~pqu is!~ri utu!

e i2e r1eu2e t2EB
~0!1Eb

~0!

3^auEpq,rs,tuuB&CB~b!. ~A5!

The other external diagrams may be translated similarly.
For internal terms, all orbital lines in the product of th

perturbation Hamiltonian are active orbital lines by defin
tion: for example, the product of the two-body perturbati
Hamiltonian,

V2-body
•V2-body5 (

pqrs

act
1

2
~pqurs!Epq,rs

3 (
tuvw

act
1

2
~ tuuvw!Etu,vw . ~A6!

The summation over active orbitals is restricted so that
intermediate determinants/CSFs should be outside the re
ence space, differing from the external term case. Thus
the diagrams derived from the product including disco
nected one survive:

The three-body connected and four-body disconnected
gram have been already given in Eqs.~10! and ~11! in the
text, respectively. The two-body connected diagram rep
sents the following mathematical expression:

~D int
2-body!ab5

1

2 (
pqrstu

act

(
ab

act

(
AB

Ref
~paurb !~aqubs!

eq2ea1es2eb2EB
~0!1Eb

~0!

3^auEpq,rsuB&CB~b!. ~A7!

The other internal terms, derived from the product includi
one-body perturbation, may be derived similarly.

The rules for obtaining mathematical expressions for
second-order effective Hamiltonian diagram are summari
as follows:

~a! The product of the CI coefficientCB(b) and the cou-
pling coefficient ^auEpq,¯,rsuB& between the statea
and determinant/CSFB for free particle lines. The in-
dex pair (pq),¯,(rs) in the shift operatorEpq,¯,rs

originate from the lines connected through a vertex~or
vertices!.

~b! A molecular integral@a two-electron integral (i j ukl) or
a modified one-electron integralvpq# for each interac-
tion line, where the modified one-electron integralnpq

is defined by

vpq5hpq1(
i

core

@2~pqu i i !2~piu iq !#. ~A8!

An energy denominator for the lower interaction line,

D5( ~eannihilation2ecreation!2EB
~0!1Eb

~0! , ~A9!
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where eannihilation and ecreation represent energies of orbita
corresponding to annihilation and creation operators, res
tively. The summation is taken for all the annihilation a
creation operator labels associated with the lower interac
line.

A factor of (1/2)n1 l , wheren is the number of equiva
lent diagrams andl is the number of loops.

A factor of (21)h1 l , whereh is the number of interna
hole ~core! lines.

Summation for all the orbital lines. Here, for the intern
term diagrams, the summation for active orbitals is restric
so that the intermediate determinants/CSFs should be ou
the reference space.

Summation for determinants/CSFsB.

Factors~a! and~c! and summation~g! are different from
the usual Goldstone diagram rule. We should note that th
rules are specialized to the second-order effective Ha
tonian and do not apply for higher order.

1K. Hirao, Chem. Phys. Lett.190, 374 ~1992!.
2K. Hirao, Chem. Phys. Lett.196, 397 ~1992!.
3K. Hirao, Int. J. Quantum Chem., Symp.26, 517 ~1992!.
4H. Nakano, J. Chem. Phys.99, 7983~1993!.
5H. Nakano, Chem. Phys. Lett.207, 372 ~1993!.
6MR2D Ver. 2, H. Nakano, University of Tokyo, 1995.
7M. W. Schmidt, K. K. Baldridge, J. A. Boatzet al., J. Comput. Chem.14,
1347 ~1993!.

8M. Dupuis, S. Chin, and A. Marquez, inRelativistic and Electron Corre-
lation Effects in Molecules and Clusters, NATO ASI Series, edited by G.
L. Malli ~Plenum, New York, 1992!, p. 315.

9Exactly, CSF selection according to the magnitude of the CAS-CI coe
cients is now available in bothGAMESS andHONDO. The contribution from
unselected CSFs is taken into account perturbatively.

10H. Nakano and K. Hirao, Chem. Phys. Lett.317, 90 ~2000!.
11G. Hose and U. Kaldor, J. Phys. B12, 3827~1979!.
12A. Haque and D. Mukherjee, Pramana23, 651 ~1984!.
c-

n

l
d
ide

se
il-

-

13B. Jeziorski and H. J. Monkhorst, Phys. Rev. A24, 1668~1981!.
14D. Mukherjee, Proc. Indian Acad. Sci. Chem. Sci.96, 145 ~1986!.
15D. Mukherjee, Chem. Phys. Lett.125, 207 ~1986!.
16W. Kutzelnigg, J. Chem. Phys.77, 3081~1982!.
17W. Kutzelnigg and S. Koch, J. Chem. Phys.79, 4315~1983!.
18W. Kutzelnigg, D. Mukherjee, and S. Koch, J. Chem. Phys.87, 5902

~1987!.
19D. Mukherjee, W. Kutzelnigg, and S. Koch, J. Chem. Phys.87, 5911

~1987!.
20P. Celani and H.-J. Werner, J. Chem. Phys.112, 5546~2000!.
21S. Grimme and M. Waletzke, Phys. Chem. Chem. Phys.2, 2075~2000!.
22K. Andersson, P.-A˚ . Malmqvist, B. O. Roos, A. J. Sadley, and K

Wolinski, J. Phys. Chem.94, 5483~1990!.
23K. Andersson, P.-A˚ . Malmqvist, and B. O. Roos, J. Chem. Phys.96, 1218

~1992!.
24R. B. Murphy and R. P. Messmer, Chem. Phys. Lett.183, 443 ~1991!.
25R. B. Murphy and R. P. Messmer, J. Chem. Phys.97, 4170~1992!.
26R. Cimiraglia, J. Chem. Phys.83, 1746~1985!.
27B. Huron, J.-P. Malrieu, and P. Rancurel, J. Chem. Phys.58, 5745~1973!.
28The definition of QCAS in the present paper is somewhat different fr

that of Ref. 18.
29I. Lindgren and J. Morrison,Atomic Many-Body Theory, 2nd ed.

~Springer-Verlag, New York, 1982!.
30J.-P. Malrieu, J.-L. Heully, and A. Zaitsevskii, Theor. Chim. Acta90, 167

~1995!.
31R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys72,

650 ~1980!.
32B. Bak, L. Hansen, and J. Rastrup-Andersen, Discuss. Faraday Soc.19, 30

~1955!.
33T. H. Dunning, Jr., J. Chem. Phys.90, 1007~1989!.
34T. H. Dunning, Jr. and P. J. Hay, inMethods of Electronic Structure

Theory, edited by H. F. Schaefer III~Plenum, New York, 1977!, Vol. 3,
p. 1.

35H. Nakano, T. Tsuneda, T. Hashimoto, and K. Hirao, J. Chem. Phys.104,
2312 ~1996!.

36G. E. Scuseria and H. F. Schaefer III, J. Chem. Phys.90, 3629~1989!.
37H. Nakano, K. Nakayama, K. Hirao, and M. Dupuis, J. Chem. Phys.106,

4912 ~1997!.
38W. F. Polik, D. R. Guyer, and C. B. Moore, J. Chem. Phys.92, 3453

~1990!.


