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A quasi-degenerate perturbation the@@DPT) is presented that is based on quasi-complete active
space self-consistent fiel@CAS-SCH reference functions. The perturbation method shown here is

an extension of a previously proposed QDPT with CAS-SCF reference fun¢@é&-QDPT) but

is a more compact perturbation method that can employ a much smaller reference configuration
space with the same number of active electrons and orbitals as the CAS case. A computational
scheme to second-order using a diagrammatic approach is described. The second-order effective
Hamiltonian consists of the contribution from external excitations, which involve core or/and virtual
orbitals, and internal excitations, which involve only active orbitals. The importance of the internal
excitation contribution is emphasized. The method is tested on the potential energy curves of the LiF
molecule, the Rydberg excitation energies of furan, and the transition state barrier height of the
reaction, HCO—H,+CO. The results are in very good agreement with the corresponding
CAS-SCF reference QDPT results and available experimental data. The deviations from the
CAS-QDPT values in the energy are less than 0.1 eV on the average for the excitation energies of
furan and less than 1 kcal for the barrier height of the reactigf34-H,+CO. The deviation from

the experimental values is 0.11 eV at most for the excitation energies, and 1.2 kcal/mol, which is
within the twice the experimental uncertainty, for the barrier height.2@1 American Institute of
Physics. [DOI: 10.1063/1.1332992

I. INTRODUCTION if the active space is appropriately selected, it is applicable to
Development of multireference methods represents im&ny open-shell states, as well as closed-shell states, and any
portant progress in electronic structure theory in the last tw$Pin-states, and it is stable on the whole potential energy
decades. In particular, multireference perturbation theorie§urface of chemical reactions. However, the dimension of
(MRPTS based on multiconfiguration self-consistent field CAS grows very rapidly as the number of active orbitals
function references have been successfully used as efficietitcreases, which sometimes makes implementation of a per-
and accurate methods. turbation computation impossible. Perturbation methods us-
We have developed perturbation theory methods such d89 a selected reference configuration space but retaining the
MRMP PT (multireference Mgller—Plesset perturbation advantages of the CAS-based PTs are necessary.
theory!=® and MC-QDPT (quasi-degenerate perturbation ~ Recently, we proposed a quasi-complete active space
theory with multiconfiguration self-consistent field reference(QCAS) SCF method, which is one of the multiconfiguration
functions.*® MRMP PT is a multiconfiguration basiingle  (MC) SCF methods and a natural extension of the CAS-SCF
reference state method based on Rayleigh—@ithger per- method® In this method, the quasi-complete active space,
turbation theory. MC-QDPT is a multiconfiguration basis which is a product space of CASs, is used as a variational
multireference state method based on van Vleck perturbatiogpace. The dimension of QCAS can be much smaller than
theory and therefore includes MRMP PT as a subset. Usinthe CAS that is constructed with the same number of active
these perturbation methods, we have clarified the electronigrbitals and electrons. We have shown that the QCAS-SCF
structures of various systems and demonstrated that they angethod can yield results comparable to those of CAS-SCF,
powerful tools for investigating excitation spectra and potenwith much smaller computational cost. Combining QCAS
tial energy surfaces of chemical reactions. The code ofyvith MC-QDPT mentioned above provides an effective tool
MC-QDPT® has been implemented in the program packagesor electronic structure theory. In this article we present
caMess andHONDC? and is now open to researchers. MC-QDPT using QCAS-SCF reference functiorislereaf-
However, so far the implementation of these PTs is onlyter, we call it QCAS-QDPT, while we call MC-QDPT with
for the complete active space self-consistent fieldcas reference CAS-QDPY.
(CAS-SCH reference function$The CAS-SCF method and Until now much effort has been devoted to developing
the perturbation methods based on it are certainly effectivey, tireference theories for an incomplete referertoe

mode) space.
dElectronic mail: nakano@qcl.t.u-tokyo.ac.jp In the 1980s, many papers were publistetf that
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mainly treated formal aspects, such as the linked diagrarf®AS-SCF. This contribution is rather small but is very im-
expansionLDE), in perturbation and coupled-cluster meth- portant, which will be shown later by illustrative calcula-
ods. These works open the possibility that more general antions.
flexible MRPTs and MRCQmultireference coupled-cluster The contents of the present article are as follows: in Sec.
methods than those based on CAS reference can play dh following the introduction of QCAS, formulas for the
active role. However, application of methods enjoying thesecond-order QCAS-QDPT effective Hamiltonian are de-
benefits of the LDE for an incomplete reference space seentived and details of the computational method are given; in
limited even today. Sec. lll, the scheme is tested for the potential energy curves
These works are for the conventional QDPT and CCof the LiF molecule, Rydberg excitation energies of furan
method in the category of valence-universal or stateC,H4O, and the barrier height of a unimolecular dissociation
universal formalisms. MC-QDPT uses referencg@@Infigu-  reaction of formaldehyde }£O—H,+CO; and in Sec. IV,
ration interactioh solutions that span only a subspace of theconclusions are drawn. Information on the diagram rule for
whole reference determinant or CSEonfiguration state deriving mathematical expressions from each diagram is
function) space as reference; hence, it is neither stategiven in the Appendix.
universal nor valence-universal. Thus we cannot use these
results for our development of MC-QDPT based on one of- METHOD
the incomplete (')sglaces, QCAS. A. Quasi-complete active space (QCAS)
TW.O papgr% “were recently published on state-specmc. In the CAS-SCF method, we partition orbitals into core,
PTs with an incomplete reference space. These papers dig

. active, and virtual, then construct the Cl space by distribut-
cuss practical aspects rather than formal aspects. The paper P y

of Celani and Wem@P proposes a second-order multirefer- Ing active electrons among the active orbitals. Let us further
. . . divide the active electron and orbital sets iNsubsets and
ence perturbation theory for the restricted active sHR&S) fix the number of active electrons . and orbitalsy; . in
and a general selected active space, which is a generalizati%gch subset: v e
of the second-order complete active space perturbation '
theory (CASPT2.2223 On the other hand, the paper of N N
Grimme and WaletzKé presents computational strategies mact:Z mi, ”actzzi ni, @
and algorithms for the second-order MRPT of Murphy and
Messmef*?> with a RAS-CI wave function as reference. A Where my.; and n,; denote the number of active electrons
selected first-order interacting space and the resolution gind orbitals, respectively. We define the quasi-complete
identity method for molecular integrals are used for furtherspace®*®as the product space of CAS spanned by the deter-
efficiency. These perturbation methods use a Cl-based afpinants or CSFs as follows:
proach; namely the computation of the second-order energy N
is done via the first-order Bloch equation. QCAS{H (m;,n;)
The present article is also oriented to a practical way of i

computing the energy of a multireference PT, MC-QDPT, at  — cag(m,,n,) X CAS(m,,n,) X+ --CAS(my,Ny),  (2)
the second-order level. Here a fully diagrammatic approach ) )
is adopted. The second-order effective Hamiltonian is comSuch that the number of electrons in each orbital group sat-
puted by a sum-over-orbital method without solving the first-ISfies the restriction in Eq(1). .
order Bloch equation. This computation is not affected by This definition may be readily extended to the direct sum
the size of the first-order interacting space, differing from the®f the above QCASEQq. (2)],
Cl-based approach. Cimiragifahas proposed a diagram- M N
matic method for CIPS(configuration interaction by pertur- QCAS{ H (ki 1)+ H (m;,n;)+---
bation with multiconfigurational zeroth-order wave functions ! '
selected by iterative procesapproactt’ In his method, dia- M

9[ IT ki1

N
grams are used that are defined for the vacuum states deter- =QCA +QCA€{H (m; ,n;)
mined so as to be identical to the reference configuration that !
the creation and annihilation operators act on; hence it isvhich will appear in the application to furan in Sec. Ill.
quite a general method. We use diagrams defined for another
vacuum state, the more traditional one consisting of cord. Second-order QDPT with QCAS-SCF reference
orbitals. These are not so suitable for a general referendgnctions (QCAS-QDPT)

space, but are quite effective for the quasi-complete refer-  The effective Hamiltonian up to the second-ordef:?

ence space. of van Vleck perturbation theory with unitary normalization,
In the QCAS-QDPT, the second-order effective Hamil-on \which MC-QDPT® is based, is given by

tonian consists oéxternaland internal excitation contribu-
tion, as will be shown in the next section. The external ex- (K02 1[ S (Pa|V[P))(D|V|Dg)

+eee (3)

) =Hant+ —
citation is one that involves core and/or virtual orbitals in it. e )as=Hast 5 | $Ref EQ-E©®
On the other hand, the internal excitation is an excitation
among active orbitals. The internal excitation contribution +(A-B) Y, (4
plays a role that bridges the gap between QCAS-SCF and
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where® ,(dg) and d, are reference wave functions and a ference is in the energy denominator and the coupling coef-
function in the complement spac@] of the reference space ficient in deriving explicit formulas from the diagrantsee
(P), respectively, anEL) and E(”) are zeroth-order ener- the Appendix. Take the following three-body diagram as an
gies of functionsbg and ®,. The notation A~ B) means example:

interchangeA with B from the first term in curly brackets. pnt

Adopting (state-averagedQCAS-SCF wave functiona(B)

as reference functionB (P g) (i), which defineP space, Eq.

(4) becomes q

e

st u

(KE2)  —EQoASs 1{ (alVIXIIVIB) This diagram is translated to a mathematical expression ac-
ap B2 +Eas E(B°>—E§°> cording to the diagram rule in the Appendix,
+(a<—>ﬂ)}, 6 paey _ S E Qg‘s (palre)(estu)
ext aB parstu e 6e+ €, €&— E(BO)+ E(BO)
wherel is now a determinant/CSF outside the QCAS. The
complementary eigenfunctions of the QCAS-CI Hamiltonian ><<“|qu,rs,tu|B>CB(13)- ®

(i) and the determinants/CSFs generated by exciting eleﬁ- . .

trons out of the determinants/CSFs in the QCAH) are n Eq. (8), (_pq|rs) _a.re the twojelectron !nteg_rals in the mo-
orthogonal to the reference functions and deftpespace. lecular orb|tal_ basisg, are ort_ntal energies is a determ|?
The functions in the complementary space Pofspace in n_ant or CS_F in QCAS%?)({B) is the QCAS-SCF CI coeffi-
QCAS, namely the abovementiongil), however, do not cient forB in state,l_’j’; Eg’ is the zeroth-order energy &;
appear in Eq(5) since the interaction between the function @M Epq,rs,w IS @ shift operator,

and the reference functions is zero.

Let us define acorresponding complete active space
a’ a’,a’,amas,
(CCAS) to a QCAS as the complete active space that has thepq rstu= —Euzﬁ ” Za p U,_Ea 5 poy o' 8ior8uc8sg’ Xgg -
same active orbital set and electron but does not have the 9

limitation, Eq.(1). In other words, the corresponding CAS is

the minimal CAS that includes the QCAS. Then the summaThe definition of the orbital energies, will be given in the

tion for | in Eq. (2) may be divided into the summations for subsequent subsection. The other terms are derived similarly,
determinants/CSFs outside the CAS and for thewhich are apparently the same as the ones of CAS-QDPT.
determinants/CSFs outside the QCAS but inside the corre- Note the following points on the computational aspects:

sponding CAS: (1) In spite of the outward similarity, the efficiency is
different. In CAS-QDPT the labd3 runs over the CAS while
_ + ' (6) in QCAS-QDPT it runs over only the QCAS, a subspace of
1¢€QCAS 1 CCAS |eCCASIl & QCAS the CAS; hence the number of coupling coefficients between

a statex and a determinant/CS&is much smaller in QCAS-

and then the former second-order term in &5). may be QDPT than in CAS-QDPT. Since the computational cost is

written as : : -
roughly proportional to the number of coupling coefficients,
(a|V|)(1|V|B) the evaluation of the external terms of QCAS-QDPT is more
(Kgf))aﬁz ——0_ =0 efficient than that of CAS-QDPT.
1¢ccas  Eg —Ej

(2) In a calculation of QCAS-SCF, only one- and two-
{a|VI)(1|V|B) body coupling coefficients appear in the computation and
(7)  they are decoupled into the alpha- and beta-strings in each
active orbital subset, which makes the computation of the ClI
The former term in Eq(7) involves excitations from core part efficient'® On the contrary, the three-body coupling co-
orbitals and excitations to virtual orbitals in the intermediateefficients that appear in the perturbation calculation may not
stated, while the latter term involves excitations where only be decoupled in a similar manner. However, from the nature
active orbitals are involved. Hereafter, we call the formerof QCAS, the three-body as well as one- and two-body cou-
term theexternalterms and the latter thiaternal terms. pling coefficients may be decoupled into alpha- and beta-
The external terms may be calculated in a similar manstrings. This is enough for the efficiency of the perturbation
ner to the MC-QDPT with CAS reference functions calculations, since the summation of the integral product di-
(CAS-QDPT). If we adopted the particle-hole formalism us- vided by energy denominator for each coupling coefficient is
ing the vacuum state defined by the determinant with all thehe major part in computational time rather than the coupling
core orbitals occupied and the remaining active and virtuatoefficient computation.
orbitals unoccupied, the second-order effective Hamiltonian  For the calculation of the internal terms, there are several
is expressed by 25 Goldstone diagrams. These diagranstrategies. One approach is a diagram method similar to the
themselves are identical to those used in the open-shell @xternal terms. For the internal terms only the particle lines
conventional quasidegenerate perturbation the@ryey are  are concerned. Hence, the 5 diagrams that do not include
not listed here. See Ref. 29, p. 298, for exampléde dif-  hole lines among the external 25 diagrams appear:

+ — -
I e CCAST ¢ QCAS E(ﬁo) —E{?
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..... ® ® Pl e A third scheme is one where matrix operations for the
a Hamiltonian matrix are used:
..... .@ PP .® PR q -
| , b (K ap= 2 Cal@)HaHiCa(B)/(ER' ~E(?). (13
The mathematical expression for the three-body diagram is, AB,I
for example, given by the following: The intermediate determinants/CSFare made by exciting

act act QCAS

¥y = > S (pglra)(asitu)

pqrstu 'a B €g— €5+ Eu—et—Eg))-i-E(Bo)

one or two electrofs) from the reference QCAS
determinants/CSFs within the active orbital space. In gen-
eral, the number of is not large, and thus they may be
X<a|qu,rs,tu|B>CB(ﬂ)- (10) managed in compu_ter memory. Thi_s s_cheme is especially
useful when determinant/CSF selection is done. We may ef-
The summations only run over active orbitals, but these sumjciently take into account the contribution from the unse-

mations are restricted so that the intermediate determinantgdcted determinants/CSFs using E43).
CSFs are outside the QCAS. This may be easily handled | the current implementation the first scheme has been
because of the nature of the QCAS. In the QCAS referencgqopted. The computation is done with the coupling coeffi-

case, this restriction is done only with orbital indices withoutcjent driven method. These coupling coefficients are sparse
referring to the reference determinants/CSFs, whereas in thgg can be pre-screened according to the condition,
general reference case the restriction scheme also depends on

the reference determinant/CEE For the internal terms, be- (VB* ") ag=(a|Epq...s|B)Ca(B)

sides the connected diagrams drawn above, all the four dis- QCAS
connected diagrams appear that originate from the product of = 2 Ca(@)(AlEpq...rs|B)Ca(B)>5,  (19)
the one- and two-body perturbation operators: A n

where §=1x10 8 is usually sufficient to keep the energy
accuracy better than 16 hartree. Thus the multiple summa-
tion for active orbitals in Eqs(10), (11), (12), and other
terms, which seemingly scales as the power of the number of
-® -- ® gl s o active orbitals, is actually diminished considerably.
It is worth noting that the contribution of the internal
Up to four-body diagrams are necessary. The four-body terfterms is usually small but is very important. It plays a role

.
® ® POy

is, for example, given by that bridges the gap between QCAS-SCF and CAS-SCF.
act  QCAS Without internal contribution, if the results include some er-
oty Lo (pqlrs)(tulow) ror at QCAS-SCF levels compared to those of CAS-SCF,
it JeB 4 oitow T oe— et ey—e,—EQ+ Ey they cannot be recovered even if we go beyond the second-

order of perturbation.
X<a|qu,rs,tu,uW|B>CB(IB)- (13) _ . .

) . . . . C. Definition of orbital energies
Again the summations are restricted so that the intermediate
determinants/CSFs are outside the QCAS and they may be There is an arbitrariness in choosing orbitals since the
easily handled due to the nature of the QCAS for the sam&@CAS-SCF energies are invariant under rotation in core and
reason. virtual orbital spaces and ieach active orbital subspace

Another scheme is a more straightforward one where th&Ve determine the orbitals so that the generalized Fock ma-
creation and annihilation operators are not arranged in notf1X,
mal order and, instead, the coupling coefficients for the prod- 1
uct of the operators are used directly. The diagrams are the qu=hpq+2 DAY (pqlrs)— E(p5|fq) , (15
same as the disconnected diagrams drawn above. However, e
the rule in the Appendix is somewhat different: the creationis diagonal in each orbital space and sub-space, \Mhég‘%
and annihilation operator part is replaced by the originalrepresents the averaged one-particle density matrix, and de-

product, fine their energieg, by the corresponding diagonal elements
act  QCAS Fpp- This definition is simply an extension from the
(Di‘:q-tbOd _l 2 2 (pq|rs)(tU|vW) CAS-QDPT case.

“B_qurstu;w B €, €&t ey—€,— Eg))+ E(ﬁo)
X{a|EpqrsEtu.ow/B)Cs(B). (12 Ill. APPLICATIONS

As with the internal terms, this scheme is also effective in ~ We applied the present method to some molecular sys-
addition to the previous one. However, since in general théems to illustrate its performance. We calculated with
coupling coefficient for the normal ordered product QCAS-QDPT the potential energy curvd®ECS of the two
<a|qu’...’rS|B> is sparser than that for the general productlowest 3" states of the LiF molecule, Rydberg excited
(af qu,~~Ers,~-|B>r this scheme is less efficient than the pre-states of furan @H,0, and the transition state barrier height
vious one. An advantage of this scheme is that it is readilyof the reaction HCO—H,+CO, and compared the results
extended to the general reference space case. with those of CAS-QDPT with corresponding active spaces.
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FIG. 1. The QCAS-SCH® M) and CAS-SCF(O,0) potential energy ~ FIG. 2. The QCAS-QDPT® M) and CAS-QDPT(O,0) potential energy
curves of the two lowestS, * states of LiF. curves of the two lowestS. " states of LiF.

A. Potential energy curves of the two lowest — 'X%* Plotted in Fig. 4 is the energy difference between
states of the LiF molecule QCAS-QDPT results without the internal term contribution
The first example is the calculation of the PECs of the(i-€., external only term contributiorand CAS-QDPT results
two lowest'3 " states of the LiF molecule. In the diabatic &5 Well as that between QCAS-SCF and CAS-SCF results.
picture, one of théS* states is ionic and the other state is This figure well illustrates the importance of the contribution
covalent. In the equilibrium structure region the ionic state isT0M the internal terms. The external term only contribution
lower in energy(the ground state while at the dissociation describes PECs relatively well and the errors are small to be
limit the covalent state is lower. The two potential curvesSUre, but the error pattern is similar to that of the QCAS-SCF
therefore show avoided-crossing in the middle in the adia®92inst CAS-SCF. This indicates that, when the PECs have a
batic picture. It has been reporfelthat these two adiabatic deficiency at the QCAS-SCF level, without the internal term

states strongly interact in the avoided-crossing region angontribution this deficiency is carried over to the

single-state multiconfigurational perturbation theories failed@CAS-QDPT level. The internal terms are essential for bal-
in that region. anced description of relative energies or potential energy sur-

The basis set used is 6-3t% G(3df,3pd).%! The ac- faces although the contribution is small and sometimes the

tive spaces were constructed from six electrons and ninfPur-pody internal terms are time-consuming.
(40-60, 1m-3m, and Ir'-37’) orbitals. CAS was used for

comparison and was constructed by distributing these six

electrons among all nine orbitals. QCAS was constructed
by first dividing the orbitals into three group$4o-6q}, 80
{17-3x}, and{17'-3#'}, and then distributing two electrons I : : |

among each group. Hereafter, we call this active spaceg

QCAS(2,3)°]. The dimension of this QCAS is 726n = *O[ i A ]
Slater determinants basis; without symmegtpd that of the 2 ; ; 4 ‘ : ‘
corresponding CAS is 7 056. Therorbital corresponding ;_: 4.0 _%QDDDD __________ I @0@0@ ........ 4
to F(1s) was frozen in the perturbation calculations. %) : : 7o : = ]

Results are shown in Figs. 1-3. Figure 1 shows PECs aZ()
the QCAS- and CAS-SCF levels and Fig. 2 shows PECs afu" g : : c 3 :
the QCAS- and CAS-QDPT levels. The errors of the refer- [camoo © @ © o ° e O ooo oo b EJ

n
o
>
¢
o
i

@) :
ence functionQCAS-SCF/CAS-SCHevel and perturbation oo o * .
theory (QCAS-QDPT/CAS-QDPY level are plotted in Fig. G 00 [agem® w s w jgre e e e e
3. The QCAS-SCF curves have systematic errors from thet! ; : " : 1 :
CAS-SCF results depending on the nature of the states: abot 4 [.__, N P P T T T
4 kcal/mol for the ionic statéin the diabatic picture; lower 2 4 6 8 10 12 14 16 18
the near equilibrium structure, higher at the dissociation r(LiF) / bohr

limit) and about 1.5 kcal/mol for the covalent state. These

_ ; FIG. 3. The energy differences of the two low&st" states of LiF between
are well recovered by QCAS-QDPT. At this level, the errorsQCAs_ and CAS-QDPTithe symbols® and M are for the ground and

from CAS-QDPT are less than 1 kcal/mol for both stateseycited states, respectivelgnd between QCAS- and CAS-STB, O for
except for one pointr(=10.0 bohr). the ground and excited state, respectiyely
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80 triplet and nine singlet 8pd Rydberg states and the ground
I ’ : 5 | 5 : ] state. The results are summarized in Table | as well as the
experimental and our previous resuftaVe should note that
the CAS-SCF calculations in the table were done for each
individual symmetry including valence states. They are
: : therefore different from the CAS-SCF using tberrespond-
© 5w | i 5 4 ing CAS defined in Sec. II.
» 3 ] Singlet QCAS-SCF results are in good agreement with
; 3 | 5w the CAS-SCF result$<0.1 e\) except for the p'B,,
B LEL R BN B N N N 3d!B,, and 31'A; Rydberg states. For these states the
1 ? 1 ’ : F f CAS-SCF values are 0.21 p3B,), 0.18 (3 B,), and 0.52
eV (3d'A;) higher than the QCAS-SCF values, since the
: ; CAS-SCF optimizations also included valence states of the
20 i, L same symmetry. On the other hand, the QCAS-QDPT results
T 4 6 8 10 12 14 16 18 are very close to the CAS-QDPT results in all states. The
r(LiF) / bohr average and maximum differences are only 0.03 eV and 0.11
eV, respectively. Moreover, the QCAS-QDPT excitation en-

FIG. 4. The energy difference between QCAS-QDPT without the intema|ergies also reproduce the available experimenta| results well.
term contribution and CAS-QDP{he symbols#® andM are for the ground The error is at most 0.11 eV

and excited states, respectiveind between QCAS-SCF and CAS-SCF, . .
O for the ground and excited state, respectiyely Most triplet states are slightly lower than the correspond-

ing singlet stategby 0.8 eV at maximumin both the refer-

ence and QCAS-QDPT levels. Also in the triplet states, the
B. Rydberg excitation energies of furan, C  ,H,0 QCAS-QDPT results are very close to the CAS-QDPT re-
esults, except for the 8°B, state. The average and maximum

Calculations were next carried out for the ground state”. .
and triplet and singlet Rydberg excited states of furan. Andlfferences are only 0.06 eV and 0.24 eV, respectively.

experimental geometry was usétie molecule is placed in
the yz-plan@.? The basis sets used for carbon and oxygen N ) _ _
atoms are Dunning’s correlation consistent polarized valencE: Transition state barrier height for the unimolecular
triple zeta(cc-pVT2) sef® except for the polarization func- dissociation reaction of formaldehyde
tions, which were taken from those of cc-pvVBZThe Ry- H,CO—H,+CO
dberg functions (82p2d) were also placed on the charge The third example is the calculation of the transition
center of the heavy atom€ and Q of the molecule. The state barrier height of the unimolecular dissociation reaction
primitive Rydberg functions for C and O determined by of formaldehyde, HCO—H,+CO. This reaction is
Dunning and Haj were weight-averaged and split into two Woodward—Hoffmann forbidden and therefore proceeds via
with splitting factors of 1.9 and 0.75. The obtained expo-the highly asymmetric transition structure as shown, for ex-
nents are 0.0471sf, 0.0186 €), 0.0426 @), 0.0168 f), ample, in Fig. 2 of the paper of Scuseria and Scha¥fére
0.0285 @), and 0.0113 §). The cc-pVDZ sef was used examined in previous papéfs® the barrier height using a
for hydrogen atomsno polarization on K multireference perturbation method with the CAS-SCF ref-
We carried out the nine-state-averaged QCAS-SCF calerence functioff and the QCAS-SCF methddWe now
culations for all 3, 3p, and 3 Rydberg states. The active compare the QCAS-QDPT results with the CAS-QDPT re-
orbital set consists of five valeneeand #* orbitals and nine  sults in the present article. Note that, since the reference is a
Rydberg orbitals. This orbital set was divided into two single state, the QCAS-QDPT and CAS-QDPT are equiva-
groups, five valence orbitals and nine Rydberg orbitals. Fotent to QCAS-MRMP and CAS-MRMP, respectively.
triplet Rydberg states, QCAS was constructed by distributing  The equilibrium and transition structures used are the
five electrons(three alpha and two beta electrorte five — same as in previous papefs:®3'The complete active space
valence orbitals and one alpha electron to nine Rydberg omwe used for comparison is CAR,10, which is the full
bitals, QCA$(3a23,5) X (1«,9)]. For singlet Rydberg states, valence active space. We split the active orbitals into
the active space was constructed from the QCASs that wefO(a,0*)}, {CO(m,7*)}, and {CH(o,0*),CH(c",0"*),
made in a similar way to the triplet case, QJA&x23,5  O(lp,Ip)}, wherelp denotes a lone pair orbital, and then we
X(18,9)] and QCA$(2a3B,5) X (1a,9)]. Since both of them distributed two, two, and eight electrons among the above
are necessary for the active space to take into account propgroups, respectively, to construct QOAS,2)?x (8,6)]. The
spin-coupling, we use their direct sum, QUA®¥283,5) dimension of the CAS is 44 100, while that of the QCAS is
X(18,9)+(2a38,5) X (1,9)]. These QCASs are applicable to 3600.
the single excitations from a valence orbital to a 8pd The results with cc-pVTZ and cc-pVG@Zare shown in
Rydberg orbital. The dimensions of the triplet and singletTable II. First let us compare the results at the reference
QCASs are 900 and 1800, respectively. For the ground statéynction (QCAS- and CAS-SCHevel. Although differences
we used QCAB6,5x(0,9], which is equivalent to in the energy itself between QCAS- and CAS-SCF are about
CAS(6,5). 10 mhartree for both basis sets, the differences in the barrier
Perturbation calculations were performed for the nineheight are 1.65 and 1.62 mhartrgle0 and 1.0 kcal/molfor
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TABLE I. Rydberg excitation energies of furgaV).

Singlet Triplet
QCAS- QCAS- CAS- CAS- QCAS- QCAS- CAS- CAS-

State SCF  QDPT SCP QDPT Exptl® SCF QDPT SCF QDPT
A,(la,—3s) 5.62 5.84 5.67 5.84 5.91 5.56 5.76 5.61 5.78
B,(la,—3pb,)  6.03 6.37 6.10 6.40 6.48 5.99 6.31 6.08  6.37
B,(la,—3pb;)  6.21 6.41 6.42 6.51 6.48 6.16 6.49 6.34  6.57
A,(la,—3pa;)  6.19 6.53 6.20 6.54 6.61 6.18 6.50 6.19  6.52
Ay(la,—3da) 6.61 6.96 6.64 6.98 6.55 6.86 6.58 6.88
B,(la,—3db,)  6.69 7.09 6.71 7.12 6.67 7.05 6.69  7.09
A,(la,—3da;)  6.77 7.19 6.77 7.19 6.75 7.15 6.75  7.16
B,(la,—3db;)  6.87 7.10 7.05 721 - 6.87 7.16 7.06  7.40
A,(la,—3da,)  6.82 7.30 7.34 7.29 7.28 6.77 7.23 711 7.28

aReference 35.
bSee references in Ref. 35.

cc-pVTZ and cc-pvVQZ, respectively. The agreement ofmethod that may employ a much smaller reference configu-
QCAS-SCF with CAS-SCF is very good. ration space with the same number of active electrons and
Now let us compare the results at the MC-QDPT level.orbitals as in the CAS case.
In total energy, there still remains a difference of about 8 A computational scheme using diagrammatic approach
mhartree between the results of QCAS- and CAS-QDPT, irhas been derived. The second-order QCAS-QDPT effective
contrast to the LiF case. In relative energy, for the barrieHamiltonian is expressed by 25 external term and 9 internal
height the QCAS-QDPT results are very close to those oferm diagrams. The external term diagrams and five of the
CAS-QDPT in both basis sets. The barrier height of QCAS-nternal term diagrams are the same as those in CAS-QDPT
QDPT is 83.7 kcal/mol in both basis sets; the differencesand the conventional QDPT. The remaining four internal
from those of CAS-QDPT are only 0.1 and 0.3 kcal/mol forterm diagrams are disconnected ones that do not appear in
cc-pVTZ and cc-pVQZ, respectively. Moreover, the barrierthe CAS-QDPT case.
height is also close to the experimental value, 84.6 Since QCAS is a natural extension of CAS, computation
kcal/mol® The error of 0.9 kcal/mol is within twice the of these diagrams can be done efficiently in a similar manner
experimental uncertainty 0.8 kcal/mol. to CAS-QDPT. The summations for the orbital lines in the
diagrams are done under the restriction such that the inter-
mediate determinants/CSFs are outside the QCAS. In the
) ) QCAS reference case, this restriction is done only with or-
A second-order quasi-degenerate perturbation theonjiia| indices without referring to reference determinants/
(QDPT) has been presented that is based on quasi-completesks, whereas in the general reference case the restriction
active space self-consistent fielQCAS-SCF reference  scheme depends also on the reference determinants/CSFs.
fL_mct|ons. The_ perturbation method shoyvn here is an exten-  The method was tested on the potential energy curves of
sion of a previously proposed QDPT with CAS-SCF refer-ihe | iF molecule, the Rydberg excitation energies of furan,
ence functions and yet is a more efficient perturbationyng the transition state barrier height of the reaction,
H,CO—H,+CO. The results show that the present method
yields very close results to the corresponding CAS-SCF ref-
erence MC-QDPT results and, moreover, it gives accurate

IV. CONCLUDING REMARKS

TABLE II. Transition state barrier height for the reactiopGO—H,+CO.

AE/ Error/ estimates for the experimental values. Deviations from
Eq/hartreé  Tr./hartreé  (kcal/mo) (kcallmo)  CAS-QDPT values in the energy were less than 0.1 eV on
cC-pVTZ the average for the excitation energies of furan and less than
CAS-SCF —114.046 96 —113.91381 83.6 -1.0 1 kcal for the barrier height of the reaction,GO—H,+CO.
QCAS-SCF —114.03786 —113.90306  84.6 0.0 The deviation from the experimental values was 0.11 eV at
CAS-QDPT ~114.30451 ~114.17134 836 -10 most for the excitation energies, and 1.2 kcal/mol, which is
QCAS-QDPT —114.296 74 —114.16338  83.7 -0.9 o . . i .
within the twice the experimental uncertainty, for the barrier
cc-pvQz height.
CAS-SCF —~114.05624 —113.92300  83.6 -1.0
QCAS-SCF —114.04712 —113.91226  84.6 0.0
CAS-QDPT ~114.33057 —114.19763  83.4 -1.2 ACKNOWLEDGMENTS
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SCF and perturbation calculations were carried out with a act core Ref (pqlis)(ri|tu)
modified version oGAMESS (Ref. 7) and withmRr2D (Ref. 6), == > : 0 =0
respectively. parstu T B €~ €&+ e, e~ Eg tEg
X(@|Epg,rs,tul B)Ca(B). (AS5)
The other external diagrams may be translated similarly.
APPENDIX: DIAGRAM RULE IN THE SECOND-ORDER For internal terms, all orbital lines in the product of the

MC-QDPT perturbation Hamiltonian are active orbital lines by defini-

In the text, we used diagrams rather than the mathematfion: for example, the product of the two-body perturbation

cal expression as often as we could in order to avoid lengthi@miltonian,

equations. The effective Hamiltonian diagrams appearing in act

MC-QDPT to the second-order are identical to those in the  \/2-body.y2-00d= > — (pq|rs)Epq s

conventional QDPT except for some disconnected ones. pars 2 '

However, the rule for translating them into mathematical ex- act

pression is somewhat different. In this Appendix, we de- X = (tu]oW)Eqy yw - (AB)
scribe it briefly for readers’ convenience. tiow 2 '

There are 25 diagrams for the external terms. Take ONerhe symmation over active orbitals is restricted so that the
for example: intermediate determinants/CSFs should be outside the refer-
ence space, differing from the external term case. Thus all
the diagrams derived from the product including discon-
nected one survive:

Pl r¢

al gl ™y T

The diagram rule in conventional QDPT says that the con- a b
tribution of this diagram to the second-order effective Hamil-
tonian is q9 $

core

-bod
(Dgxto y)pq,rs,tu: - EI

The three-body connected and four-body disconnected dia-

Epgrstu (A1) gram have been already given in E4$0) and (11) in the
text, respectively. The two-body connected diagram repre-
sents the following mathematical expression:

(pglis)(ri|tu)

€i—€te— €

in operator form and

act act Ref
oo act core (pq|is)(ri |tu) (DZ-bOd :E 2 (pa||'b)(aQ|bS)
(Dext- M ag= —pqErSw Z ete—e (AlEpqrs.lB) it TP piret 2D AB €q— €at €s— eb—Efao)-i-E(BO)
I r u

(A2) X(a|Epqrs|B)Ca(B). (A7)

in matrix form. In MC-QDPT, the numerator and shift op- The other internal terms, derived from the product including
erator parts are common; however, the energy denominat@ne-body perturbation, may be derived similarly.

is dependent of the determinant/C®&~and the reference The rules for obtaining mathematical expressions for the
stateg: second-order effective Hamiltonian diagram are summarized
as follows:
D=¢—¢+e,——EL+ E'(BO) . (A3)
(@ The product of the CI coefficie®g(8) and the cou-
Hence pling coefficient(a|E,...,s|B) between the stater
act core _ _ and determinant/CSB for free particle lines. The in-
(D3O, 3 (pqlis)(ri|tu) dex pair ), --,(rs) in the shift operatorE,... s
et JABT iR T e—e+e—e—ED+ Eg)) originate from the lines connected through a veif@x
vertices.
X(A[Epgyrs,ulB) (A4 (b A molecular integrala two-electron integrali{ |kl) or

a modified one-electron integraj,,] for each interac-

in matrix form. Multiplying Eq.(A4) by Ca(a) andCg(p) tion line, where the modified one-electron integrgl,

and taking summations over reference determinants/@SFs

and B, we obtain formulas for the second-order effective IS deflnedcol?g/
Hamiltonian for the reference statesand 8 from those forA .. -
andB: A qu:hpq+i2 [Z(DQ|||)_(p|||Q)]- (A8)
act core Ref . .
(pdlis)(riftu) An energy denominator for the lower interaction line,

D3-b0d = —
( ext ap pqzrstu T AB Ei—e‘r+€u_€t_E(Bo)+E‘(BO)

= T R =) (0)
XCA(a)<A|qu,rs,tu|B>CB(,3) D E ( €anninilatior— €creatiod — EB +E.B ) (A9)
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