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Multireference perturbation theory with optimized partitioning.
I. Theoretical and computational aspects
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A multireference perturbation method is formulated, that uses an optimized partitioning. The
zeroth-order energies are chosen in a way that guarantees vanishing the first neglected term in the
perturbational ansatz for the wave functid(™=0. This procedure yields a family of zeroth-order
Hamiltonians that allows for systematic control of errors arising from truncating the perturbative
expansion of the wave function. The second-order version of the proposed method, denoted as
MROPT(2), is shown to be(almos} size-consistent. The slight extensivity violation is shown
numerically. The total energies obtained with MR@PTare similar to these obtained using the
multireference configuration interaction method with Davidson-type corrections. We discuss
connections of the MRORZ) method to related approaches, the optimized partitioning introduced
by Szabados and Sunjand the linearized multireference coupled-cluster method. The MRDPT
method requires using state-optimized orbitals; we show on examplg thialusing Hartree—Fock
orbitals for some excited states may lead to nonphysical result20@3 American Institute of
Physics. [DOI: 10.1063/1.1563618

I. INTRODUCTION In the last few decades, many new partitionings have
been proposet:>° Usually, they are various modifications of
Partitioning the HamiltonianH into the zeroth-order the MP partitioning designed for some specific purposes. We
HamiltonianH, and the perturbation operatdris one of the would like to focus here on the formulations that_ were de-
most crucial decisions for quantum-chemical calculation usS'Qneq1 to enhance convergence of perturbgltlon theory.
ing perturbation theoryPT). The two most popular choices Amos,” following Feenberg and Goldhamn?AéE used a
are Mgller—PlessetMP) partitioning and Epstein—Nesbet single variational parameter in the definitiontdf that was
(EN) partitioning?® These two partitionings were introduced adjusted to make the third-order energy van&f)=0. This
relatively early (19303 and since then they proved many procedure yielded better second-order energies than that one
advantages and disadvantages. Epstein—Nesbet partitioniidth nonoptimized zeroth-order Hamiltonian. A similar ap-
is very simple conceptually and can be very easily appliedroach but using multiple variational parameters was sug-
for computations using both single- and multi-referencegested by Szabados and Sajd&™ The number of varia-
zeroth-order wave functions. Moreover, sifgé)=0, it al-  tional parameters—interpreted as a state-dependent shift of
lows one to simplify considerably the wave function formu- the zeroth-order energy—is equal to the number of Hilbert
las in Rayleigh—Schuinger perturbation theoryRSPT).  sSpace states used in the first-order perturbational expansion
Unfortunately, deviations from size-consistency in low-orderof the wave function. These parameters are obtained by
EN-RSPT are rather large. EN-RSPT also lacks an efficienariational optimization of Rayleigh quotient taken with the
and easily computable sum-over-orbitals formula. Thereforefirst-order perturbational ansatz for the wave function. This
Rayleigh—Schidinger perturbation theory using Epstein— optimized partitioning was shown to work in much more
Nesbet partitioning did not become very popular. Mgller—efficient way than the original EN and MP partitionings. An-
Plesset partitioning uses a zeroth-order Hamiltonian that is ather way of optimizing the zeroth-order energies, employ-
sum of one-electron operators. This allows for using fastjng a concept of maximum radius of convergence, was pro-
sum-over-orbitals computation formulas. Unfortunately, genosed by Finley® He used a two-state model—consisting of
eralization of the MP partitioning for calculations using mul- the reference state and one excited state at each time—to
ticonfigurational wave function is not unique and may lead toobtain an approximate equation for the radius of convergence
nondiagonal resolvents. Usually, these problems are ovefor every state used in the wave function perturbation expan-
come by using a diagonal approximation to the zeroth-ordegion. Subsequently, the zeroth-order energies were chosen in
HamiltonianH, in the multideterminant basis after diagonal- SUch @ way that they yield the maximum radius of conver-
izing the density matrix by canonicalization of orbitals to 9ence for every state. Another approach presented by Finley
define the orbital set. The MP partitioning used with low-and co-worker$* used a small subspace of the most im-
order RSPT is the most popular perturbative method in quanRortant zeroth-order states to optimize the functional

tum chemistry. |[E—EBI|+|E-EM)], (1.1

dElectronic mail: cedziu@qcl.t.u-tokyo.ac.jp with respect to the zeroth-order energies. In Ehl), E
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denotes the FCI energy afid®!, andE!*! denote the pertur- with respect to the reference space single-configurational

bational energy through the third- and fourth-order, respecfunctions{®;}. For further use, we call this set a first-order

tively; all quantities are determined within the choseninteracting spacé~OCI). Similarly, we distinguish the set of

subspace. all triply and quadruply excited CSFs and call it a third-order
In this paper we are going to develop a multireferencenteracting spac€TOCI). The set of all multiconfigurational

perturbation method that is based on RSPT and uses opfiunctions|k;) different than|a) is denoted by REF.

mized partitioning. This method is abbreviated as MROPT.  We define the zeroth-order Hamiltonigh as a diagonal

The presented approach of optimizing the zeroth-order enematrix operator

gies has an advantage that it can be systematically improved. _ )

The second-order version of our method, MR@BTcan be (Hoij=&i B, (2.2

considered as a multireference version of the perturbatiogyhere the zeroth-order energiE&o) are defined by

technique presented by Szabados and 8dfi& The equa- o

tions defining MROPTR) are also identical to those for the £(0)_ Hoo If i=a 2.3

linearized multireference coupled cluster method proposed ! Hi+4; if i=ks,0. ’

by Laidig, Saxe, and Bartletf:?° The present paper gives a _ .

general theory of the MROPT method. We also give hereS_ubsequently, the matriX of the perturbation operatdf is

discussion of theoretical and computational aspects of thgiven by

second-order MROR®) method, such as size-consistency, Hy if i#]

orbital dependence, and a comparison of total MRQ@PT .

energies with those obtained using other related methods. Vii=Hij—(Ho)j={ 0 if i=j=a (2.4

Applications of MROPT2) to molecular systems will be A ifi=jFa.

presented in a subsequent pafer. The state-dependent zeroth-energy shift parameterare

going to be determined below in a manner ensuring fast con-

Il. THEORY vergence of energy and wave function perturbation series.
A. Multireference perturbation theory In pracycal ap_pllcatlons, the_ perturbational expansion of
with optimized partitioning wave functionV , is usually cut in some low order produc-

) ] o ) ing an appropriatenth-order perturbational ansatz for the
The aim of this Section is to develop a perturbationalyyave function

technique, based on Rayleigh—Sdlirmer perturbation )
theory and using a multideterminantal wave functjah as = |a)+ 0P+ e, (2.5
the zeroth-order reference function, which is characterized . approximation generally works well, since the ne-

by fast convergence of energy ano_l wave fu_nctlon p_ert_urbaglected terms are rather small. However, for slowly converg-
tion series. This is done by introducing a family of optimized

N _ ing series, the neglected terms may introduce rather large
zeroth-order_I-_|amﬂtomans tha_t allow for part_|al contrpl of error when calculating energy and other molecular proper-
the errars arising from trunc_atlon of perturbatu_)nal SEIIES. " ties. There is no standard way of estimating these errors,

L.et ) b.e.a multldetermmqntal wave function, obtained since the higher-order terms of the wave function perturba-
by diagonalizing the Hamiltonian within a reference spac

d b . t of i i wate funcli ional expansion are usually not computed. The perturba-
spanned Dy a given set of configuration state functiong,,, technique proposed in this Section allows for a partial
(CSFs {®;}, and corresponding to the ground or some ex-

ited statey of a gi lecul i Th funct control of these errors. The state-dependent zeroth-energy
cited Statax of a given molecurar system. 1he wave TUNCUon gp;q parameterq; in Egs.(2.3) and(2.4) are chosen in such
|@) is determined uniquely by specifying a set of one-

a way that the largest neglected term in E2.5), namely

T e enil ) 13 dentcaly ecua 0 zero. The mpicit cuator
g pace, ﬁsed to determing; is

of |a) in the basis of the functiongb;}. We solve perturba-
tively the Schrdinger equation for the state p+l=q, (2.6)

HY =E,V,,, (2.1)  Since

using the multideterminantal wave functipp as the zeroth- ) )

order reference function. We use a matrix representation anﬂ):j;a CJ(n+l)|J> for [j)=lai),|ki). 2.7)

of the Hamiltonian operatdH in a space spanned by multi- . , .

configurational functionga), |K,), |Ko),... and all thenon- Equat'lon (2.6) can be written more explicitly as a set of
redundant single-configurational CSks,), |q,), |qs),...  €duations

obtained by applying single, double, triple, and higher exci- ;. Cj(n+1)=O for j=q; ki, (2.9
tations to the set of reference space configuration state func-

tions. (Excitations from reference space orbitals to referencavhere c(”’ are the usual wave function expansion coeffi-
space orbitals are not considete@ihe multiconfigurational ~cients inpth-order of RSPT. It is difficult to give an explicit
functions|a), |k,), |k,),... areobtained by diagonalizing the and compact equation defining the shift paramefgréor a
Hamiltonian within the reference space. It is convenient togeneral case. However, after introducing a diagonally shifted
distinguish here the set of all singly and doubly excited CSF#amiltonianH given by
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Hij:Hij_éingyo), (29)
and a new variablé\; given by
1 1
A (2.10

CHi+A—EQ Hy+a
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This leads exactly to Eq2.11), if all nonlinear terms are
neglected. AllA; not determined by this procedure are set to
zero. Neglecting the nonlinear terms iy corresponds to
neglecting all the unconnected terms in the CISD scheme;
these terms violate size extensivity.

Surjan and Szabados showd@d'that the partitioning de-

it is possible to give appropriate equations for low-order PT.IN€d by them exhibits many appealing features when applied

The explicit equations defining; for the second-, third-,
and fourth-order perturbation theory are given bel@Mote,

that for calculating energy through the second-order, we us

the wave function through thiérst-order. Therefore, the ap-

propriate form of Eq.(2.6) for the second-order perturba-

tional energy is now 2*Y=0, butw*Y=0.) We have

VP=0aVj: > HuHA=H,, (2.1
SFa
v =0eVj:
22 Hasi:'sjAs
SFa

=2 X Hoo(HgH —R%85) AA =H,; (2.12
S*a t#a
and
TP=0eVj:

32 nozsﬁsjAs_sz 2 Has(ﬁstﬁtj_Hitasj)AsAt

S*a S¥Fa t#a

+Z E E ﬁozu[ﬁjs(ﬁstﬁtu_Hitﬁus)

SFa t¥a UFa

— (H 1 8sj+ Has8) HasH ] AA A =H,j (2.13

where the index runs over all FOCI states in E(R.11) and
over all FOCI, TOCI, and REF states in Eq2.12 and

(2.13. These equations do not define the shift parameters

to single-reference RSPTi) It is size-consistent(ii) it is
orbital invariant,(iii) third-order energy is identically equal
éero,(iv) most fifth-order terms vanistiy) low-order (2, 4
corrections are quite accurat@j) it has better convergence
characteristic than the Mgller—Plesset and Epstein—Nesbet
partitioning RSPTs(vii) the second-order single reference
PT using the optimized partitioning is shown to be equiva-
lent to the linearized coupled cluster methbdand to
CEPA-0(coupled electron pair approximatipmethod?®

Recently, Szabados, Sumjgand SzekeréShave applied
their optimized partitioning for general nonsymmetrical mul-
tireference perturbation theory to correct the energies and
wave functions obtained from limited CC calculations. Their
results show that the optimized partitioning yields signifi-
cantly better corrections than these ones obtained with the
MP and Dyson-typ® zeroth-order energies.

One may expect that optimizing the Rayleigh quotient
using a higher-order perturbational ansatz would produce
Egs.(2.12 and(2.13. This is not, however, the case, even if
the resulting formulas are somewhat similar.

C. Connection to linearized multireference coupled
cluster method (MR-LCCM)

Another way of deriving Eq(2.11) was proposed by
Laidig, Saxe, and Bartleff-?>> They start from the exponen-
tial ansatz for a CASSCF wave function

v, =expT)|a), (2.16
where the wave operat&ris a sum of one- and two-electron
excitation operators with coefficients, andt;?, to be de-

grmined. All active to active excitation were excluded, i.e.,

for other states; they can be set to zero, since anyway thod p

states are not coupled to the reference stateNote, that

all t§ andtSf were set to zero, wher, b, ¢, andd denote
active orbitals. The Schdinger equation, Eqg2.1), is then

Egs. (2.1)—(2.13 have a rather high symmetry: All terms
appearing in lower order appear also in higher order, and th
coefficients in front of every term are the binomial coeffi-

( _ _ exp(—T)H exp(T)|a)=E,|a). (2.17
cients. Further analysis of these equations may lead to more ) ] )
general formulas. Expanding the exponentials using the Baker—Campbell—-

Hausdorff commutator expansion and retaining only linear
terms inT, yields, after projection of), the MR-LCCM
equation for energy

transformed to the following form:

B. Connection to optimized partitioning
of Szabados and Surja’ n

Surjan and Szabadd%* proposed another way of deri-

EVMR-LCCM_ E(0) [= [ 2.1
vation of Eq.(2.11). Similarly, their partitioning is defined by “ “ qEEF‘()u ad”qa (218
Egs. (2.2 and(2.4). The shift parametera; are determined whereT. is given b
by optimizing the Rayleigh quotient qa 15 G y

Taa=(alT[a). (2.19

o (vEIReE)
Jiﬂ WZO’ (2.14 Similar projection on the state$) from first-order configu-
! al’a ration interaction(FOCI) space, produces the set of equa-
where W1l is the first-order perturbational ansatz for thetions
wave function
Pi=|a)+wd,

>

se FOCI

(2.15 vj: Hjs(—Tsa)JrSE;OCI ToHas=Hs, (220
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which defines the coefficientdg,. The second term, Direct use of Eq.(2.25 leads to Jacobi methad.Un-
ETstasr is shown to be rather small, and it is neglectedfortunately, convergence of this method is rather poor. In our
yielding the set of linear equations calculations it has converged only for around 20% of cases.
Much better convergence characteristics is obtained if we
vj: 2 F'js(_TSa):F'aj ’ (2.21) modify Jacobi method in a following way. We split the set of
seFOCI linear equation in Eq(2.25 into two halves, denoted by

defining the MR-LCCM T, amplitudes. Note, that Eq. FOCI1 and FO_CI2._The ch_oice of these subspaces of_FOCI
can be done in principle in any way. In our calculations,

(2.27) is formally identical to Eq(2.11), what allows for an ; X )
identification of the MR-LCCM cluster amplitudeg,, as [ OCI1 consists of statgsfor whichH,;>0, and FOCI2, of
statesj for whichH ,;<<0. (Note, that it is not a good choice

the components of the first-order perturbational wave funcs: , ; : ;
tion with optimized partitioning in a general case, since the signtbf; can be easily modi-

fied by changing the phase fify.) Subsequently a four-step

Teo=—H sAs. (2.22  algorithm is used which is repeated until convergence. The
four steps are given by the following equations:

D. Second-order multireference perturbation theory

with optlmlzed partitioning | B 1. AJ(kH):bj_gj AjsAQ‘) if jeFOCI, (2.26)
Multireference second-order Rayleigh—Sdlinger per-

turbation theory using the optimized partitioning is derived

from Egs.(2.2), (2.4), and(2.11). Energy of statex is given k+2) b—> AA¥Y if jeFOCIL

by 2. A = S#] (2.27

A it jeFOCI2,

E,=(alAWI=EQ— > HZA,, (2.23
a<FoC 3. AMFI=p,— > AAKD if jeFOCI, (2.28
where the parameters; are obtained by solving a set of 7]

linear equations given by E@2.11). The third-order energy

(k+3) i
E® is identically equal to zero. The higher-order energy Al it jeFOCIL

corrections are believed to be small. Therefore, @R3 4. A,(kH): b—> AAKD if jeFOCI2 (2.29
should give a good approximation of the exact energy of the & s J '

state. For further use, this approach is referred to as the B ] o

MROPT(2) method. This modified Jacobi method works significantly better than

the original Jacobi method. We have been able to obtain a
solution of Eq.(2.11) with it in more than 80% of cases.
E. Iterative convergence of the MROPT (2) method Still, in about 20% of cases this method has produced a

Using the MROPT2) method requires solving a set of glfvlggjlcnlg iterative sequence, especially for large dimension

linear equations for the state-dependent shift parameters The most successful approach has proved to be the

given by Eq.(2.13). Even for small size of a reference SPACE .y dified Jacobi method combined with the least-squares fit-

and a baS|s_set, the dimension of .th|s s.et. of equations can tﬂ%g of the iterative sequence to the final solution. The fitting
very large; in our largest calculations it is close to 40 m|I—h

lions. Such huge sets of linear equations cannot be solvegas been performed in a spirit similar to Refs. 31 and 32. The
direc.tl the reg uire using some itc(]erative methods. We havI erative sequenceA'™,A®),... A, is used to construct

Y, they require Y . . s e best approximation to the unknown vectdr
used various iterative approachés: Jacobi method(ii) a

modified Jacobi methodiii) a modified Jacobi method with A= BAD + B AP 4 B AM), (2.30
least-square fitting. In this section, we analyze the iterative ) o
convergence of these approaches. The parameterg,, B,,..., By are obtained by minimizing

In order to solve Eq(2.11) iteratively, we rearrange itto e 2-normi|- ||, (defined as a square-root of a sum of squares
a following form: of vector’s coordinatesof the residual vector derived from

Eqg. (2.11) and given by

N T I vy (2.31
ii~Haa 7] Hoj(Hjj—Hyy) all2:
This form of Eq.(2.11) allows us to use iterative techniques. Where
Introducing new symboldy; andAs, we write Eq.(2.24) as Bij=Hoj(Hij— 8iH 4e) (2.32
Vj :A}k”):bj—gj AAP (225 and
(Hyi=Hgi (2.33

Equationg2.24) and(2.25 are not well defined for states for

which H,;=0; for these states, we sé;=0. Note, that This approach yields a solution very fast; usually from 20 to
sinceH ,;=0, such a choice anyway satisfies the condition40 expansion vectors is needed to obtain the vesttor all
=0, the calculated molecular states. In our calculations, no solu-
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TABLE |. Total energieghartree for the ground state and the two lowest excited states of ethylene, butadiene,
benzene, Bl, and G calculated using various methods. MREGD denotes the MRCI energies with the renor-
malized Davidson correction.

Ground state

Method Ethylene{A;))  Butadiene {A;)  Benzene {A,) N, (*24) 0, (°3,)
CASSCF —78.092 447 —155.029 010 —230.852983 —109.118337 —149.767 682
MRCI —0.327 976 —0.556 500 —0.590521 —0.204 220 —0.352 464
MRCI+Q —0.360 959 —0.646 059 —0.705 446 —0.217 539 —0.380 728
MREN(2) —0.381 799 —0.668 080 —0.728 801 —0.207 107 —0.397 444
MREN(3) —0.349 358 —0.633677 —0.692 039 —0.200 325 —0.356 657
MRMP(2) —0.334 299 —0.607 738 —0.672 865 —0.183 352 —0.365 566
MRMP(3) —0.350793 —0.633684 —0.691 085 —0.198 246 —0.357 682
MROPT(2) —0.365 149 —0.665 552 —0.733773 —0.217 746 —0.381312

First excited state

Method Ethylene{B,,) Butadiene {B,) Benzene {By,) N, (335 0, (*Ay)
CASSCF —77.934 492 —154.903 559 —230.710847 —108.882612 —149.732733
MRCI —0.320801 —0.555 026 —0.581 885 —0.218 137 —0.350832
MRCI+Q —0.352 579 —0.644 452 —0.693976 —0.235033 —0.378 098
MREN(2) —0.370857 —0.669 357 —0.701 804 —0.227 167 —0.391673
MREN(3) —0.345 585 —0.633939 —0.684 894 —0.215108 —0.356 640
MRMP(2) —0.329 159 —0.615 689 —-0.670721 —0.214 378 —0.363 026
MRMP(3) —0.345716 —0.634 578 —0.681841 —0.210119 —0.357 262
MROPT(2) —0.356 576 —0.663 806 —0.721779 —0.233529 —0.379 231

Second excited state

Method Ethylene{B,,) Butadiene {A;))  Benzene iE,,) N, (3IL,) 0, (*2y)
CASSCF —77.752 001 —154.840 959 —230.669142 —108.771292 —149.713722
MRCI —0.351324 —0.552 637 —0.592 251 —0.274 115 —0.346 537
MRCI+Q —0.396 822 —0.641 087 —0.709 362 —0.307 732 —0.372 895
MREN(2) —0.436 258 —0.653 294 —0.728 431 —0.327 963 —0.384 126
MREN(3) —0.368 609 —0.635 157 —0.695 870 —0.244 002 —0.353 246
MRMP(2) —0.372029 —-0.613711 —0.693 730 —0.284 540 —0.357 817
MRMP(3) —-0.379414 —0.634 405 —0.690 304 —0.258 511 —0.351914
MROPT(2) —0.422 609 —0.660 604 —0.737 537 —0.306 926 —0.374 366

tion could be obtained for one of the computed states, theonsisted field CASSCH method, total energies are given.
1E,, state of benzengFor results of calculations on ben- For other methods, the entries are different to the CASSCF
zene, see the subsequent paPelhe reason for it is prob- energy. We compare following methods: CASSCF, the mul-
ably the quasi-singularity of the matri® for *E,,. Note, tireference configuration interactid®RCI) method, MRCI
that if the matrixB is singular, no solution of Eq2.1)  with the renormalized Davidson correctigiMRCI+ Q],
exists, and if some of eigenvalues®fare close to zero, the second{MREN(2)] and third-ordef MREN(3)] multirefer-

iterative techniques are not stable any more. ence Rayleigh—Schdinger perturbation theory with
Epstein—Nesbet partitioning, secofRMP(2)] and third-

IIl. NUMERICAL AND COMPUTATIONAL ASPECTS order[ MRMP(3)] multireference Rayleigh—Schdimger per-

OF THE MROPT(2) METHOD turbation theory with Mgller—Plesset partitioning, and the

Second-order multireference perturbation theory withMROPT(Z) .method. Table Il gives average differences of
optimized partitioning, abbreviated as MROR), defined total energies for MR_OP(E) and other methods. T_hese re-
by Egs.(2.2), (2.4, (2.1D, and(2.23, is applied for calcu- sults ha_ve been obta|_ned by perfo_rmlng several S|_ngle point
lating various molecular properties of ground and eXciteocalcuIatlpns for Iow-!ylng states using different basis sets or
states for a set of small and medium-size molecules. Th@eometries; for details, see below. Here, MR@Q1 denotes
results are given in the subsequent pa"ﬁdnere, we focus on MRCI with the original Davidson correctiot, and MRCI

various numerical and computational issues concerning th& Q2. MRCI with the renormalized Davidson correctin.
MROPT(2) method. The MROPT?2) total energies are most similar to the

energies obtained using MRCI with the renormalized David-
son correction. Since MROFZ) is an (almos) size-

We perform a comparison of total MROFZ energies consistent method and corrected MRCI approaches are size-
with the total energies obtained by other methods. Table tonsistent only in an approximate manner—for comparison
gives energies of the ground and two lowest excited states ¢fee Table Illl—we believe that the MROR) energies
N,, O,, ethylene, butadiene, and benzene, calculated usingould be very similar to the MRCI energies calculated with
eight different methods. For the complete active space selfan “ideal” Davidson correction. Among the perturbative

A. Total energies
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TABLE II. Average differences of total energiémnillihartree between MROPTR2) and other methods. Num-
bers in parentheses denote the number of single-point calculations performed for every m@fecudetails,
see tex). Q1 stands for the original Davidson correction and Q2 for the renormalized Davidson correction.

Method Ethylend9) Butadiene(10) Benzeng7) N, (56) 0O, (60)
MRCI 42.0 104.6 151.2 24.6 29.7
MRCI+ Q1 11.6 315 52.0 3.2 3.9
MRCI+ Q2 8.3 19.5 32.3 1.7 1.8
MREN(2) 18.8 16.7 27.5 8.0 9.7
MREN(3) 24.5 35.2 45.0 34.2 21.0
MRMP(2) 36.2 52.6 50.0 26.9 18.0
MRMP(3) 19.6 41.8 55.0 33.0 21.4

methods, we observe rather large discrepancy with methods 1.275 A forA3EJ , andryy=1.225 A forB 31‘[9); the

using the Mgller—Plesset partitioning. As anticipated, theactive space consists of eight orbitalsoaf , 7o ,

tho state.dependent s paramotysised i the opmizea 2% "ibct T, 7k 7, and ok and six elections
P P f P (v/ O,: The basis set is an ANO-type

partitioning are expected to be rather small. Note, tha; if . ) )
=0 for all FOCI states, the MRORZ) and MREN2) ener- (1439p4d3f )/[4s3p2d1f] contraction _sqheme, the mter-
nuclear distances correspond to the minima of potential en-

gies are identical. = A Fo — = A
The results given in Table | are obtained using the fol-ST9Y CUTVes oo=1.20752 A forX 2, roo_—1.225 for
g g a'Ay, androo=1.225 A forb '3 )); the active space con-

lowing basis sets, geometries and active spagesthylene: i ) ) * N M

The basis set is cc-pVQEhe acronym cc-pNZ stands for 'St of eight Orbitals das, 05, 02p, Tap, T2p,: T2p, 1 Tap, »
correlation-consistent polarized ValenoeZeta basis set of ando,) and 12 electrons. The results in Table Il have been
Dunning® wheren is double, triple, et¢; the geometry is obtained using the same active spaces as above; also, the
taken from experimefR (rc=1.337 A,rcy=1.086 A, and  geometries for ethylene, butadiene and benzene are identical
£ CCH=117.6°); the active space consists of two orbitalsto these described above. In the averaging, we have consid-
(w and 7*) and two electrons{ii) butadiene: The basis ered three electronic states of etherh@lAg, 11B,,, and

set is cc-pVTZ® the geometry is taken from experim&ht 13B,,) in three different basis setsc-pvVDZ, cc-pVTZ, and
(re,c,=1467 A, rc,c,=1.343 A, rcy;=1.094 A, LCCC  cc-pvQZ?), five states of butadieneX(A,, 2'A,, 1B,
=122.8°, andz CCH=119.5°); the active space consists of 1°B,, and 13Ag) in two basis setdcc-pvDZ and cc-

four orbitals (ry,7,, 7 ,m5) and four electronstiii) ben-  pVTZ), and seven states of benzen¢'@;, 'Eyqy, 'Byy,
zene: The basis sets are of the AN®omic natural orbita)s  *B,y, *Biy, °Bay, and3E,,) in the ANO-type basis set
type® with (14s9p4d)/[4s3p2d] contraction scheme for described above. For ]\ we have considered eight elec-
carbon and (84p)/[3s2p] for hydrogen; the geometry is tronic states X'S;, w'A,, W3A,, A3, a''3,,

very close to the experimental ofie(rcc=1.395 A, reyy a'lly, B’ 3%, andB ®Il,) at seven different geometries in
=1.084 A); the active space consists of six orbitalsrange[r.—0.1 A,r,+0.1 A], wherer, is the equilibrium
(azu,€19,€24,b24) and six electrongijv) N,: the basis setis geometry of a given state. For,Owe have considered six

an ANO-typé® (10s6p3d)/[4s3p2d] contraction scheme; states b'S;, ¢S, aAy, A’ 3A,, X33, andA®3)

the internuclear distances correspond to the minima ot ten intermolecular distances. The basis sets used for cal-
potential energy curvesr(y=1.100 A for xlzg NN culations on @ and N, are the same as described above.

TABLE IIl. Size-consistency check for the MROFZ] method. Entriegkcal/mo) are the differencies between the energy of the Nelecule at nuclear
separatiorr =100 A and the energy of two Ne atoms. For comparison, we give also deviations from size-consistency for other methods. Two different active
spaces have been used; for details look text. The basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ denoted, respectively, as DZ, TZ, and QZ, are taken from
Duning (Ref. 35. Q1 stands for the original Davidson correction and Q2 for the renormalized Davidson correction.

RHF orbitals CASSCF orbitals
Active space 1 Active space 2 Active space 1 Active space 2
Method Dz TZ Qz Dz TZ Dz TZ Qz Dz TZ

CASCI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MRCI 5.39 9.05 10.62 5.28 9.54 5.39 9.02 10.51 5.28 9.55
MRCI+Q1 0.71 1.55 2.05 0.62 1.78 0.71 1.54 1.98 0.62 1.80
MRCI+Q2 0.35 0.85 1.20 0.26 1.05 0.35 0.84 1.14 0.26 1.06
MREN(2) 30.74 33.30 32.48 30.21 33.30 30.74 34.11 33.49 30.12 28.35
MREN(3) —8.28 -7.75 —6.80 —-8.07 —7.63 —8.28 -9.28 -8.84 —-8.07 -5.41
MRMP(2) —0.05 —0.04 —0.02 —0.09 —0.08 —0.05 —0.06 —-0.07 —0.09 -0.15
MRMP(3) 0.04 0.04 0.02 0.09 0.08 0.04 0.06 0.07 0.09 0.14

MROPT(2) 0.02 —0.02 —0.05 -0.17 —0.08 0.02 -0.01 —0.02 —0.18 0.00
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TABLE IV. Comparison of the MROP(R) rotational barriefkcal/mol) and excitation energiggV) of ethylene
calculated using two sets of orbitals, the ground-state RHF orbitals and the state-specific CASSCF orbitals.

Excitation energies

Rotational barrier By, 13B,,

Method RHF orb. CAS orb. RHF orb. CAS orb. RHF orb. CAS orb.
CASSCF 81.6 67.5 9.34 9.26 5.01 4.30
MRCI 75.1 67.9 8.55 8.63 4.84 4.49
MRCI+ Q1 68.2 67.2 8.27 8.35 4.59 4.52
MRCI+Q2 66.3 67.0 8.21 8.29 4.52 4.53
MREN(2) 74.4 72.4 7.41 7.78 4.77 4.60
MREN(3) 70.9 65.5 8.64 8.74 4.38 4.40
MRMP(2) 67.1 65.0 7.93 8.24 4.65 4.44
MRMP(3) 70.8 65.8 8.28 8.48 4.46 4.44
MROPT(2) 49.2 65.6 7.89 7.70 4.09 4.53
Exp. ~65 ~8.0° 4.36°

aReferences 44 and 45.
PEstimated vertical excitation energy from earlier theoretical wet&fs. 46—49
‘References 50 and 51.

B. Size-consistency test space consisting of two electrons and two orbitaisand
Size consistency test has been performed using two neo’ﬁ*) and ANO-type basis sefswith (10s6p3d)/[7s6p3d]

atoms placed at the distance of 100 A. We have used thre%ontracti.on scheme for C a”d,f{:’fp)’[“?’p] for H. The
different basis sef& (cc-pvVDZ, cc-pVTZ, and cc-pVQY geometries have been fully optimized for every value of the

and two different complete active spaces. The active spacdinedral anglep on the B3LYP/6-3% +G(2d,2p) level of
denoted by 1 consisted of atomip 2nd 3 orbitals. The 2 thepry. The basis sgt used for calculations on excnanons en-
orbital has been correlated in the MRCI and perturbationaf"di€s of ethylene is cc-pVQZ; the geometry and active
calculations, while the 4 orbital has been kept frozen. The
active space denoted by 2 consisted of atonsc 2p, and
3s orbitals. The 5 orbital has been correlated in the MRCI
and perturbational calculations. We have also used two dif-
ferent sets of orbitals, the ground-state RHF and CASSCF
orbitals. ;T
Results are given in Table IlI. Entries are the differences’s
between the energy of the molecule and doubled atomic eng 7832 1
ergy. The MROPT2) method, similarly to MRMF2) and ;
MRMP(3), is almost size-consistent; the largest deviation 5] /
from size-consistency is 0.18 kcal/mol. Very large deviations
from size-consistency are observed for the MRCI method
and the perturbative methods using Epstein—Nesbet parti
tioning. Davidson-type corrections improve the MRCI re- _78.32-
sults significantly, the renormalized correction of Siegbahn
doing noticeably better than the original correction of Lang-
hoff and Davidson.

MRCI  MRMP(2)

[a.u.]

—— CAS orbitals

------- RHF orbitals

. MRClQ2 MROPT(2)

-78.36 4

C. Orbital dependence of the MROPT (2) method -78.40-__,,,/"':

In order to investigate the orbital dependence of the ..
MREN(3) 7, MRMP(3)

MROPT(2) method, simultaneous calculations using differ- MREN(2)
ent sets of orbitals have been performed for a few moleculal
systems. We have tested performance of the state-specifi
CASSCF orbitals versus ground-state restricted Hartree-
Fock (RHF) orbitals for calculations of internal rotation bar-
rier of ethylene, valence excitation energies of ethylene, po-
tential energy curves of eight states of,,Nand size-
consistency check employing the Nenolecule. We have
also performed calculations of potential energy curves of six
states of @ using two sets of orbitals, the state-specific
CASSCF and ground state ROHF orbitals. For calculationgg. 1. potential energy curve for the intemal rotation barrier in ethylene
on the rotational barrier in ethylene, we have used an activealculated using various methods.

-78.32

-78.36

-78.40 4

45 90 135 45 90 135 45 90 135 180
rotational angle ¢
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FIG. 2. Potential energy curves and reference weights in the equilibrium region for three excited stateslcliMdted using the MRORZ) method with
the state-specific CASSCF orbitdkolid line) and the ground-state RHF orbitdldotted line.

space are the same as described in Sec. IIlA. The activeesults calculated with the two sets of orbitals is found to be

space and basis sets used in the calculations on dimers hasmall for all used methods. Similar situation happens for the

been given above. ground state of other calculated molecules: The MRQPT
The results for Ng are given in Table lll. The ground ground-state energy depends rather weakly on the set of or-

state of Ng has a closed-shell character and the differencéitals used for calculations.

between the CASSCF and RHF orbitals is believed to be The internal rotation barrier of ethylene and vertical ex-

rather small. As expected, also the difference between theitation energies of two excited states of this molecule cal-
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FIG. 3. Potential energy curves and reference weights in the equilibrium region for three excited stateslii@ted using the MRORZ) method with
the state-specific CASSCF orbitgkolid line) and the ground-state ROHF orbitdbotted ling.
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culated using the RHF and CASSCF sets of orbitals argnhese orbitals for bl is the main source of differences be-
given in Table 1V. These results clearly show that the orbitaltween the MROPTR) results for these two molecules.
dependence of the MRORZ) method is rather strong; it

is largest among the perturbative methods. The correcte§, coNCLUSIONS

MRCI results almost does not depend on the set of or- ) )

bitals used for calculations. The difference between the \We have presented a multireference perturbation method
MROPT(2)/RHF and MROPT2)/CASSCF results is espe- that is based on Raylelgh—Sqtjroger perturbation t.heory '
cially large for the rotational barrier of ethylene. This is @1d uses an optimized partitioning. We abbreviate this
caused by the erroneous shape of the MR@FRHF po- method as MROPT. The optimization of the zeroth-order en-
tential energy curve shown in Fig. 1. For the geometrie€rgies for thenth-order MROPT method is performed by
close to planar, the MRORZ/RHF and MROPT2)/  Putting a condition? (M =0 on the first neglected term in the
CASSCF curves almost coincide. For the twisted geometryperturbative expansion of the wave function. This allows for
where the RHF orbitals rather poorly describe the electroni¢@ncellation of a large part of errors arising from truncating
structure of ethylene, the MROFZ/RHF potential energy the wave function. V_Ve.glve explicit equations t_hat enable
curve displays some nonphysical features. Similar features-d€t€rmining the optimized zeroth-order energies for the
however, in much smaller degree—can be observed for th&€cond-, third-, and fourth-order perturbation theory.

other second-order perturbative methods, MRMP/RHF and _ ' n€ second-order multireference perturbation method
MREN/RHE with the optimized partitioning is derived from the condition

W ()=0. The resulting partitioning is shown to be identical
to the partitioning derived by Surjand Szabados by mini-
mizing the Rayleigh quotient with respect to a set of the
zeroth-order energies. The MROPT energy formula is also
clearly the same as the energy formula for the linearized
fultireference coupled cluster method.

We analyze various numerical and computational issues

The equilibrium regions of the MRORZ) potential en-
ergy curves for three excited states of thg Molecule,
wlA,, A3SF, andB3Ily, are shown in Fig. 2. The curves
obtained using the state-specific CASSCF orbitals corre
spond to experiment very wel(For comparison of calcu-
lated spectroscopic parameters with experiment, see the su

sequent papéf) However, the curves obtained using the .
RHF orbitals are not bounded; a closer inspection shows th oncerning the MROR®) method. We show on example of

for every state the weight of the reference function in the € that the MROPT2) method is(almos) size-consistent.

MROPT(2)/RHF wave function is very small. Such a situa- The averaged deviations of total energies of MRQ@HTo )

C - . some related methods are shown in Table |l for a set of five

tion indicates an occurrence of intruder states in the pertur= .
molecules. The MROR®) energies show close resemblance

bation calculations, associated with quasidegeneracies in the . . .
spectrum of the zeroth-order Hamiltonian. These quaside?—0 those computed using MRCI with Davidson-type correc

. . tions. We notice also relatively small deviations for the
generacies occur for seven of eight calculated states,of N second-order multireference PT with the EN patrtitioning. It
Only for the ground state, for which the RHF orbitals have b g

been obtained, there is no intruder states. The reason for th%;alr{?r/gsehows that the state-dependent shifts in(@d) are

Slstoncan be e chaecler o e NP e Tk "™ e e noted e dependence of e WRGRT
P q energies on a set of one-electron orbitals used for calcula-

g
rium region to the ¥ 30 electronic configuration, while tions. The RHF orbitals used for calculations on excited
states produce some nonphysical results. The potential en-

the lowest excited states originate mostly from the
3 2 *1 3 2 *1 H : ;
lm3oglmy " and lm30y30;, " electronic configurations. ergy curve for barrier of internal rotation in ethylene does not
depend on the set of orbitals for the geometries close to

A poor description of the ar; and 3o molecular orbitals in

the set of RHF orbitals can cause divergencies. This examplgna: However, for the distorted geometries, the curve ob-
shows how important is using state-specific CASSCF orbityaineq ysing the RHF orbitals deviates strongly from the

als for the MROPT2) calculations. Note, that potential €n- 5n41040us curve obtained with CASSCF orbitals, showing an
ergy curves obtained using the RHF orbitals with other Pelartificial minimum. The situation is even more severe when

turbat?ve methods do not Sl%ﬁer from quasidegeneracieshe RHE orbitals are used for calculations on potential en-
even if the resultant curves differ noticably from those Ob'ergy curves of low-lying excited states of,Nnone of the

tai“e‘?' using the state-specific CASSCF prbitals. calculated curves is bounded. At the same time, the
. Figure 3 displays the MRORZ) potential energy curves \ipopi2) curves obtained with the state-specific CASSCF
in their equilibrium regions for three excited states of the O piia1s show very good agreement with the experimental

1 1+ 1y + i i

molecule,a”Ag, b2y, andA"%,, obtained using the s This example stresses the importance of using state-
state-specific CASSCF and ground-state ROHF Orb'talsoptimized orbitals for calculations with the MROEZ}
Similarly to N,, we give also the reference weights. The method.

MROPT(2)/CASSCF and MROPR)/ROHF curves are

similar. .We _observe no intruder stgtes in the perturbatio CKNOWLEDGMENTS
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