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Multireference perturbation theory with optimized partitioning.
I. Theoretical and computational aspects

Henryk A. Witek,a) Haruyuki Nakano, and Kimihiko Hirao
Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
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A multireference perturbation method is formulated, that uses an optimized partitioning. The
zeroth-order energies are chosen in a way that guarantees vanishing the first neglected term in the
perturbational ansatz for the wave function,C (n)50. This procedure yields a family of zeroth-order
Hamiltonians that allows for systematic control of errors arising from truncating the perturbative
expansion of the wave function. The second-order version of the proposed method, denoted as
MROPT~2!, is shown to be~almost! size-consistent. The slight extensivity violation is shown
numerically. The total energies obtained with MROPT~2! are similar to these obtained using the
multireference configuration interaction method with Davidson-type corrections. We discuss
connections of the MROPT~2! method to related approaches, the optimized partitioning introduced
by Szabados and Surja´n and the linearized multireference coupled-cluster method. The MROPT~2!
method requires using state-optimized orbitals; we show on example of N2 that using Hartree–Fock
orbitals for some excited states may lead to nonphysical results. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1563618#
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I. INTRODUCTION

Partitioning the HamiltonianĤ into the zeroth-order

HamiltonianĤ0 and the perturbation operatorV̂ is one of the
most crucial decisions for quantum-chemical calculation
ing perturbation theory~PT!. The two most popular choice
are Møller–Plesset~MP! partitioning1 and Epstein–Nesbe
~EN! partitioning.2,3 These two partitionings were introduce
relatively early ~1930s! and since then they proved man
advantages and disadvantages. Epstein–Nesbet partitio
is very simple conceptually and can be very easily app
for computations using both single- and multi-referen
zeroth-order wave functions. Moreover, sinceE(1)50, it al-
lows one to simplify considerably the wave function form
las in Rayleigh–Schro¨dinger perturbation theory~RSPT!.
Unfortunately, deviations from size-consistency in low-ord
EN-RSPT are rather large. EN-RSPT also lacks an effic
and easily computable sum-over-orbitals formula. Therefo
Rayleigh–Schro¨dinger perturbation theory using Epstein
Nesbet partitioning did not become very popular. Mølle
Plesset partitioning uses a zeroth-order Hamiltonian that
sum of one-electron operators. This allows for using fa
sum-over-orbitals computation formulas. Unfortunately, g
eralization of the MP partitioning for calculations using mu
ticonfigurational wave function is not unique and may lead
nondiagonal resolvents. Usually, these problems are o
come by using a diagonal approximation to the zeroth-or
HamiltonianĤ0 in the multideterminant basis after diagona
izing the density matrix by canonicalization of orbitals
define the orbital set. The MP partitioning used with lo
order RSPT is the most popular perturbative method in qu
tum chemistry.

a!Electronic mail: cedziu@qcl.t.u-tokyo.ac.jp
8190021-9606/2003/118(18)/8197/10/$20.00
-

ing
d
e

r
nt
e,

a
t,
-

o
r-
r

n-

In the last few decades, many new partitionings ha
been proposed.4–20Usually, they are various modifications o
the MP partitioning designed for some specific purposes.
would like to focus here on the formulations that were d
signed to enhance convergence of perturbation the
Amos,4 following Feenberg and Goldhammer,21,22 used a
single variational parameter in the definition ofĤ0 that was
adjusted to make the third-order energy vanish,E(3)50. This
procedure yielded better second-order energies than that
with nonoptimized zeroth-order Hamiltonian. A similar a
proach but using multiple variational parameters was s
gested by Szabados and Surja´n.10,11 The number of varia-
tional parameters—interpreted as a state-dependent sh
the zeroth-order energy—is equal to the number of Hilb
space states used in the first-order perturbational expan
of the wave function. These parameters are obtained
variational optimization of Rayleigh quotient taken with th
first-order perturbational ansatz for the wave function. T
optimized partitioning was shown to work in much mo
efficient way than the original EN and MP partitionings. A
other way of optimizing the zeroth-order energies, emplo
ing a concept of maximum radius of convergence, was p
posed by Finley.15 He used a two-state model—consisting
the reference state and one excited state at each time
obtain an approximate equation for the radius of converge
for every state used in the wave function perturbation exp
sion. Subsequently, the zeroth-order energies were chose
such a way that they yield the maximum radius of conv
gence for every state. Another approach presented by Fi
and co-workers12,23 used a small subspace of the most im
portant zeroth-order states to optimize the functional

uE2E[3] u1uE2E[4] u, ~1.1!

with respect to the zeroth-order energies. In Eq.~1.1!, E
7 © 2003 American Institute of Physics
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denotes the FCI energy andE[3] , andE[4] denote the pertur-
bational energy through the third- and fourth-order, resp
tively; all quantities are determined within the chos
subspace.

In this paper we are going to develop a multireferen
perturbation method that is based on RSPT and uses
mized partitioning. This method is abbreviated as MROP
The presented approach of optimizing the zeroth-order e
gies has an advantage that it can be systematically impro
The second-order version of our method, MROPT~2!, can be
considered as a multireference version of the perturba
technique presented by Szabados and Surja´n.10,11 The equa-
tions defining MROPT~2! are also identical to those for th
linearized multireference coupled cluster method propo
by Laidig, Saxe, and Bartlett.24,25 The present paper gives
general theory of the MROPT method. We also give h
discussion of theoretical and computational aspects of
second-order MROPT~2! method, such as size-consistenc
orbital dependence, and a comparison of total MROPT~2!
energies with those obtained using other related meth
Applications of MROPT~2! to molecular systems will be
presented in a subsequent paper.26

II. THEORY

A. Multireference perturbation theory
with optimized partitioning

The aim of this Section is to develop a perturbation
technique, based on Rayleigh–Schro¨dinger perturbation
theory and using a multideterminantal wave functionua& as
the zeroth-order reference function, which is characteri
by fast convergence of energy and wave function pertur
tion series. This is done by introducing a family of optimiz
zeroth-order Hamiltonians that allow for partial control
the errors arising from truncation of perturbational series

Let ua& be a multideterminantal wave function, obtain
by diagonalizing the Hamiltonian within a reference spa
spanned by a given set of configuration state functi
~CSFs! $F i%, and corresponding to the ground or some e
cited statea of a given molecular system. The wave functio
ua& is determined uniquely by specifying a set of on
electron orbitals, a set of configuration state functions$F j%
constituting the reference space, and a set of CI coeffici
of ua& in the basis of the functions$F i%. We solve perturba-
tively the Schro¨dinger equation for the statea

ĤCa5EaCa , ~2.1!

using the multideterminantal wave functionua& as the zeroth-
order reference function. We use a matrix representatioH

of the Hamiltonian operatorĤ in a space spanned by mult
configurational functionsua&, uk1&, uk2&,... and all thenon-
redundant single-configurational CSFsuq1&, uq2&, uq3&,...
obtained by applying single, double, triple, and higher ex
tations to the set of reference space configuration state f
tions. ~Excitations from reference space orbitals to refere
space orbitals are not considered.! The multiconfigurational
functionsua&, uk1&, uk2&,... areobtained by diagonalizing the
Hamiltonian within the reference space. It is convenient
distinguish here the set of all singly and doubly excited CS
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with respect to the reference space single-configuratio
functions$F i%. For further use, we call this set a first-ord
interacting space~FOCI!. Similarly, we distinguish the set o
all triply and quadruply excited CSFs and call it a third-ord
interacting space~TOCI!. The set of all multiconfigurationa
functionsuki& different thanua& is denoted by REF.

We define the zeroth-order HamiltonianH0 as a diagonal
matrix operator

~H0! i j 5d i j Ei
(0) , ~2.2!

where the zeroth-order energiesEi
(0) are defined by

Ei
(0)5H Haa if i 5a

Hii 1D i if i 5ks ,qs .
~2.3!

Subsequently, the matrixV of the perturbation operatorV̂ is
given by

Vi j 5Hi j 2~H0! i j 5H Hi j if iÞ j

0 if i 5 j 5a

2D i if i 5 j Þa .

~2.4!

The state-dependent zeroth-energy shift parametersD i are
going to be determined below in a manner ensuring fast c
vergence of energy and wave function perturbation serie

In practical applications, the perturbational expansion
wave functionCa is usually cut in some low order produc
ing an appropriatenth-order perturbational ansatz for th
wave function

Ca
[n]5ua&1Ca

(1)1•••1Ca
(n) . ~2.5!

This approximation generally works well, since the n
glected terms are rather small. However, for slowly conve
ing series, the neglected terms may introduce rather la
error when calculating energy and other molecular prop
ties. There is no standard way of estimating these err
since the higher-order terms of the wave function pertur
tional expansion are usually not computed. The pertur
tional technique proposed in this Section allows for a par
control of these errors. The state-dependent zeroth-en
shift parametersD i in Eqs.~2.3! and~2.4! are chosen in such
a way that the largest neglected term in Eq.~2.5!, namely
Ca

(n11) , is identically equal to zero. The implicit equatio
used to determineD i is

Ca
(n11)50. ~2.6!

Since

Ca
(n11)5 (

j Þa
cj

(n11)u j & for u j &5uqi&,uki&. ~2.7!

Equation ~2.6! can be written more explicitly as a set o
equations

; j : cj
(n11)50 for j 5qi ,ki , ~2.8!

where cj
(p) are the usual wave function expansion coe

cients inpth-order of RSPT. It is difficult to give an explici
and compact equation defining the shift parametersD i for a
general case. However, after introducing a diagonally shif
HamiltonianH̃ given by



T

u

-

s
o

s
th

fi-
o

i-

he

to

me;

lied

l

e
sbet
e
a-

l-
and
eir
ifi-
the

nt
uce
if

-

n

e.,

ll–
ar

a-

8199J. Chem. Phys., Vol. 118, No. 18, 8 May 2003 MRPT with optimized partitioning
H̃ i j 5Hi j 2d i j Ea
(0) , ~2.9!

and a new variableL i given by

L i5
1

Hii 1D i2Ea
(0)

5
1

H̃ ii 1D i

, ~2.10!

it is possible to give appropriate equations for low-order P
The explicit equations definingL i for the second-, third-,
and fourth-order perturbation theory are given below.~Note,
that for calculating energy through the second-order, we
the wave function through thefirst-order. Therefore, the ap-
propriate form of Eq.~2.6! for the second-order perturba
tional energy is notCa

(211)50, butCa
(111)50.) We have

Ca
(2)50⇔; j : (

sÞa
H̃asH̃s jLs5H̃a j , ~2.11!

Ca
(3)50⇔; j :

2(
sÞa

H̃asH̃s jLs

2 (
sÞa

(
tÞa

H̃as~H̃stH̃ t j2H̃at
2 ds j!LsL t5H̃a j ~2.12!

and

Ca
(4)50⇔; j :

3(
sÞa

H̃asH̃s jLs23(
sÞa

(
tÞa

H̃as~H̃stH̃ t j2H̃at
2 ds j!LsL t

1 (
sÞa

(
tÞa

(
uÞa

H̃au@H̃ js~H̃stH̃ tu2H̃at
2 dus!

2~H̃atds j1H̃asd t j !H̃asH̃tu]LsL tLu5H̃a j , ~2.13!

where the indexj runs over all FOCI states in Eq.~2.11! and
over all FOCI, TOCI, and REF states in Eqs.~2.12! and
~2.13!. These equations do not define the shift parameterD i

for other states; they can be set to zero, since anyway th
states are not coupled to the reference stateua&. Note, that
Eqs. ~2.11!–~2.13! have a rather high symmetry: All term
appearing in lower order appear also in higher order, and
coefficients in front of every term are the binomial coef
cients. Further analysis of these equations may lead to m
general formulas.

B. Connection to optimized partitioning
of Szabados and Surja ´n

Surján and Szabados10,11 proposed another way of der
vation of Eq.~2.11!. Similarly, their partitioning is defined by
Eqs.~2.2! and~2.4!. The shift parametersD i are determined
by optimizing the Rayleigh quotient

; j :
]

]D j

^Ca
[1] uĤuCa

[1]&

^Ca
[1] uCa

[1]&
50, ~2.14!

where Ca
[1] is the first-order perturbational ansatz for t

wave function

Ca
[1]5ua&1Ca

(1) . ~2.15!
.

se

se

e

re

This leads exactly to Eq.~2.11!, if all nonlinear terms are
neglected. AllD i not determined by this procedure are set
zero. Neglecting the nonlinear terms inL j corresponds to
neglecting all the unconnected terms in the CISD sche
these terms violate size extensivity.

Surján and Szabados showed10,11that the partitioning de-
fined by them exhibits many appealing features when app
to single-reference RSPT:~i! It is size-consistent,~ii ! it is
orbital invariant,~iii ! third-order energy is identically equa
zero,~iv! most fifth-order terms vanish,~v! low-order ~2, 4!
corrections are quite accurate,~vi! it has better convergenc
characteristic than the Møller–Plesset and Epstein–Ne
partitioning RSPTs,~vii ! the second-order single referenc
PT using the optimized partitioning is shown to be equiv
lent to the linearized coupled cluster method27 and to
CEPA-0 ~coupled electron pair approximation! method.28

Recently, Szabados, Surja´n, and Szekeres20 have applied
their optimized partitioning for general nonsymmetrical mu
tireference perturbation theory to correct the energies
wave functions obtained from limited CC calculations. Th
results show that the optimized partitioning yields sign
cantly better corrections than these ones obtained with
MP and Dyson-type29 zeroth-order energies.

One may expect that optimizing the Rayleigh quotie
using a higher-order perturbational ansatz would prod
Eqs.~2.12! and~2.13!. This is not, however, the case, even
the resulting formulas are somewhat similar.

C. Connection to linearized multireference coupled
cluster method „MR-LCCM…

Another way of deriving Eq.~2.11! was proposed by
Laidig, Saxe, and Bartlett.24,25 They start from the exponen
tial ansatz for a CASSCF wave function

Ca5exp~ T̂!ua&, ~2.16!

where the wave operatorT̂ is a sum of one- and two-electro
excitation operators with coefficients,t r

u and t rs
uv , to be de-

termined. All active to active excitation were excluded, i.
all tb

a and tab
cd were set to zero, wherea, b, c, andd denote

active orbitals. The Schro¨dinger equation, Eq.~2.1!, is then
transformed to the following form:

exp~2T̂!Ĥ exp~ T̂!ua&5Eaua&. ~2.17!

Expanding the exponentials using the Baker–Campbe
Hausdorff commutator expansion and retaining only line
terms in T̂, yields, after projection onua&, the MR-LCCM
equation for energy

Ea
MR-LCCM5Ea

(0)1 (
qPFOCI

H̃aqTqa , ~2.18!

whereTqa is given by

Tqa5^quT̂ua&. ~2.19!

Similar projection on the statesu j & from first-order configu-
ration interaction~FOCI! space, produces the set of equ
tions

; j : (
sPFOCI

H̃ js~2Tsa!1 (
sPFOCI

Ts jH̃as5H̃a j , ~2.20!
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which defines the coefficientsTsa . The second term
(Ts jH̃as , is shown to be rather small, and it is neglect
yielding the set of linear equations

; j : (
sPFOCI

H̃ js~2Tsa!5H̃a j , ~2.21!

defining the MR-LCCM Tsa amplitudes. Note, that Eq
~2.21! is formally identical to Eq.~2.11!, what allows for an
identification of the MR-LCCM cluster amplitudesTsa as
the components of the first-order perturbational wave fu
tion with optimized partitioning

Tsa52H̃asLs . ~2.22!

D. Second-order multireference perturbation theory
with optimized partitioning

Multireference second-order Rayleigh–Schro¨dinger per-
turbation theory using the optimized partitioning is deriv
from Eqs.~2.2!, ~2.4!, and~2.11!. Energy of statea is given
by

Ea5^auĤuCa
[1]&5Ea

(0)2 (
qPFOCI

Haq
2 Lq , ~2.23!

where the parametersL i are obtained by solving a set o
linear equations given by Eq.~2.11!. The third-order energy
Ea

(3) is identically equal to zero. The higher-order ener
corrections are believed to be small. Therefore, Eq.~2.23!
should give a good approximation of the exact energy of
statea. For further use, this approach is referred to as
MROPT~2! method.

E. Iterative convergence of the MROPT „2… method

Using the MROPT~2! method requires solving a set o
linear equations for the state-dependent shift parame
given by Eq.~2.11!. Even for small size of a reference spa
and a basis set, the dimension of this set of equations ca
very large; in our largest calculations it is close to 40 m
lions. Such huge sets of linear equations cannot be so
directly, they require using some iterative methods. We h
used various iterative approaches:~i! Jacobi method,~ii ! a
modified Jacobi method,~iii ! a modified Jacobi method with
least-square fitting. In this section, we analyze the itera
convergence of these approaches.

In order to solve Eq.~2.11! iteratively, we rearrange it to
a following form:

; j :L j5
1

H j j 2Haa
2(

sÞ j

HasHs j

Ha j~H j j 2Haa!
Ls . ~2.24!

This form of Eq.~2.11! allows us to use iterative technique
Introducing new symbols,bj andAjs , we write Eq.~2.24! as

; j :L j
(k11)5bj2(

sÞ j
AjsLs

(k) . ~2.25!

Equations~2.24! and~2.25! are not well defined for states fo
which Ha j50; for these states, we setD j50. Note, that
sinceHa j50, such a choice anyway satisfies the condit
Ca

(2)50.
-

e
e

rs

be

ed
e

e

n

Direct use of Eq.~2.25! leads to Jacobi method.30 Un-
fortunately, convergence of this method is rather poor. In
calculations it has converged only for around 20% of cas
Much better convergence characteristics is obtained if
modify Jacobi method in a following way. We split the set
linear equation in Eq.~2.25! into two halves, denoted by
FOCI1 and FOCI2. The choice of these subspaces of FO
can be done in principle in any way. In our calculation
FOCI1 consists of statesj for which Ha j.0, and FOCI2, of
statesj for which Ha j,0. ~Note, that it is not a good choice
in a general case, since the sign ofHa j can be easily modi-
fied by changing the phase ofu j &.) Subsequently a four-ste
algorithm is used which is repeated until convergence. T
four steps are given by the following equations:

1. L j
(k11)5bj2(

sÞ j
AjsLs

(k) if j PFOCI, ~2.26!

2. L j
(k12)5H bj2(

sÞ j
AjsLs

(k11) if j PFOCI1

L j
(k11) if j PFOCI2 ,

~2.27!

3. L j
(k13)5bj2(

sÞ j
AjsLs

(k12) if j PFOCI, ~2.28!

4. L j
(k14)5H L j

(k13) if j PFOCI1

bj2(
sÞ j

AjsLs
(k13) if j PFOCI2 .

~2.29!

This modified Jacobi method works significantly better th
the original Jacobi method. We have been able to obta
solution of Eq.~2.11! with it in more than 80% of cases
Still, in about 20% of cases this method has produce
diverging iterative sequence, especially for large dimens
of FOCI.

The most successful approach has proved to be
modified Jacobi method combined with the least-squares
ting of the iterative sequence to the final solution. The fitti
has been performed in a spirit similar to Refs. 31 and 32. T
iterative sequence,L(1),L(2),...,L(M ), is used to construc
the best approximation to the unknown vectorLt

Lt5b1L(1)1b2L(2)1¯1bML(M ). ~2.30!

The parametersb1 , b2 ,..., bM are obtained by minimizing
the 2-normi•i2 ~defined as a square-root of a sum of squa
of vector’s coordinates! of the residual vector derived from
Eq. ~2.11! and given by

iBLt2Hai2 , ~2.31!

where

Bi j 5Ha j~Hi j 2d i j Haa! ~2.32!

and

~Ha! i5Ha i . ~2.33!

This approach yields a solution very fast; usually from 20
40 expansion vectors is needed to obtain the vectorL for all
the calculated molecular states. In our calculations, no s
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TABLE I. Total energies~hartree! for the ground state and the two lowest excited states of ethylene, butad
benzene, N2 , and O2 calculated using various methods. MRCI1Q denotes the MRCI energies with the reno
malized Davidson correction.

Ground state
Method Ethylene (1Ag) Butadiene (1Ag) Benzene (1A1g) N2 (1Sg

1) O2 (3Sg
2)

CASSCF 278.092 447 2155.029 010 2230.852 983 2109.118 337 2149.767 682
MRCI 20.327 976 20.556 500 20.590 521 20.204 220 20.352 464
MRCI1Q 20.360 959 20.646 059 20.705 446 20.217 539 20.380 728
MREN~2! 20.381 799 20.668 080 20.728 801 20.207 107 20.397 444
MREN~3! 20.349 358 20.633 677 20.692 039 20.200 325 20.356 657
MRMP~2! 20.334 299 20.607 738 20.672 865 20.183 352 20.365 566
MRMP~3! 20.350 793 20.633 684 20.691 085 20.198 246 20.357 682
MROPT~2! 20.365 149 20.665 552 20.733 773 20.217 746 20.381 312

First excited state
Method Ethylene (3B1u) Butadiene (3Bu) Benzene (3B1u) N2 (3Su

1) O2 (1Dg)

CASSCF 277.934 492 2154.903 559 2230.710 847 2108.882 612 2149.732 733
MRCI 20.320 801 20.555 026 20.581 885 20.218 137 20.350 832
MRCI1Q 20.352 579 20.644 452 20.693 976 20.235 033 20.378 098
MREN~2! 20.370 857 20.669 357 20.701 804 20.227 167 20.391 673
MREN~3! 20.345 585 20.633 939 20.684 894 20.215 108 20.356 640
MRMP~2! 20.329 159 20.615 689 20.670 721 20.214 378 20.363 026
MRMP~3! 20.345 716 20.634 578 20.681 841 20.210 119 20.357 262
MROPT~2! 20.356 576 20.663 806 20.721 779 20.233 529 20.379 231

Second excited state
Method Ethylene (1B1u) Butadiene (3Ag) Benzene (3E1u) N2 (3Pg) O2 (1Sg

1)

CASSCF 277.752 001 2154.840 959 2230.669 142 2108.771 292 2149.713 722
MRCI 20.351 324 20.552 637 20.592 251 20.274 115 20.346 537
MRCI1Q 20.396 822 20.641 087 20.709 362 20.307 732 20.372 895
MREN~2! 20.436 258 20.653 294 20.728 431 20.327 963 20.384 126
MREN~3! 20.368 609 20.635 157 20.695 870 20.244 002 20.353 246
MRMP~2! 20.372 029 20.613 711 20.693 730 20.284 540 20.357 817
MRMP~3! 20.379 414 20.634 405 20.690 304 20.258 511 20.351 914
MROPT~2! 20.422 609 20.660 604 20.737 537 20.306 926 20.374 366
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tion could be obtained for one of the computed states,
1E1u state of benzene.~For results of calculations on ben
zene, see the subsequent paper.26! The reason for it is prob-
ably the quasi-singularity of the matrixB for 1E1u . Note,
that if the matrixB is singular, no solution of Eq.~2.11!
exists, and if some of eigenvalues ofB are close to zero, the
iterative techniques are not stable any more.

III. NUMERICAL AND COMPUTATIONAL ASPECTS
OF THE MROPT„2… METHOD

Second-order multireference perturbation theory w
optimized partitioning, abbreviated as MROPT~2!, defined
by Eqs.~2.2!, ~2.4!, ~2.11!, and ~2.23!, is applied for calcu-
lating various molecular properties of ground and exci
states for a set of small and medium-size molecules.
results are given in the subsequent paper;26 here, we focus on
various numerical and computational issues concerning
MROPT~2! method.

A. Total energies

We perform a comparison of total MROPT~2! energies
with the total energies obtained by other methods. Tab
gives energies of the ground and two lowest excited state
N2 , O2 , ethylene, butadiene, and benzene, calculated u
eight different methods. For the complete active space s
e

d
e

e

I
of
ng
lf-

consisted field~CASSCF! method, total energies are give
For other methods, the entries are different to the CASS
energy. We compare following methods: CASSCF, the m
tireference configuration interaction~MRCI! method, MRCI
with the renormalized Davidson correction@MRCI1Q#,
second-@MREN~2!# and third-order@MREN~3!# multirefer-
ence Rayleigh–Schro¨dinger perturbation theory with
Epstein–Nesbet partitioning, second-@MRMP~2!# and third-
order@MRMP~3!# multireference Rayleigh–Schro¨dinger per-
turbation theory with Møller–Plesset partitioning, and t
MROPT~2! method. Table II gives average differences
total energies for MROPT~2! and other methods. These re
sults have been obtained by performing several single p
calculations for low-lying states using different basis sets
geometries; for details, see below. Here, MRCI1Q1 denotes
MRCI with the original Davidson correction,33 and MRCI
1Q2, MRCI with the renormalized Davidson correction.34

The MROPT~2! total energies are most similar to th
energies obtained using MRCI with the renormalized Dav
son correction. Since MROPT~2! is an ~almost! size-
consistent method and corrected MRCI approaches are
consistent only in an approximate manner—for comparis
see Table III—we believe that the MROPT~2! energies
would be very similar to the MRCI energies calculated w
an ‘‘ideal’’ Davidson correction. Among the perturbativ
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TABLE II. Average differences of total energies~millihartree! between MROPT~2! and other methods. Num
bers in parentheses denote the number of single-point calculations performed for every molecule.~For details,
see text.! Q1 stands for the original Davidson correction and Q2 for the renormalized Davidson correcti

Method Ethylene~9! Butadiene~10! Benzene~7! N2 ~56! O2 ~60!

MRCI 42.0 104.6 151.2 24.6 29.7
MRCI1Q1 11.6 31.5 52.0 3.2 3.9
MRCI1Q2 8.3 19.5 32.3 1.7 1.8
MREN~2! 18.8 16.7 27.5 8.0 9.7
MREN~3! 24.5 35.2 45.0 34.2 21.0
MRMP~2! 36.2 52.6 50.0 26.9 18.0
MRMP~3! 19.6 41.8 55.0 33.0 21.4
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methods, we observe rather large discrepancy with meth
using the Møller–Plesset partitioning. As anticipated,
MROPT~2! and MREN~2! energies are rather similar, sinc
the state-dependent shift parametersD i used in the optimized
partitioning are expected to be rather small. Note, that ifD i

50 for all FOCI states, the MROPT~2! and MREN~2! ener-
gies are identical.

The results given in Table I are obtained using the f
lowing basis sets, geometries and active spaces:~i! ethylene:
The basis set is cc-pVQZ~the acronym cc-pVnZ stands for
correlation-consistent polarized Valencen Zeta basis set o
Dunning,35 wheren is double, triple, etc.!; the geometry is
taken from experiment36 (r CC51.337 Å, r CH51.086 Å, and
/CCH5117.6°); the active space consists of two orbit
~p and p* ) and two electrons;~ii ! butadiene: The basi
set is cc-pVTZ;35 the geometry is taken from experiment37

(r C1C2
51.467 Å, r C2C3

51.343 Å, r CH51.094 Å, /CCC
5122.8°, and/CCH5119.5°); the active space consists
four orbitals (p1 ,p2 ,p1* ,p2* ) and four electrons;~iii ! ben-
zene: The basis sets are of the ANO~atomic natural orbitals!
type38 with (14s9p4d)/@4s3p2d# contraction scheme fo
carbon and (8s4p)/@3s2p# for hydrogen; the geometry i
very close to the experimental one36 (r CC51.395 Å, r CH

51.084 Å); the active space consists of six orbita
(a2u ,e1g ,e2u ,b2g) and six electrons;~iv! N2: the basis set is
an ANO-type39 (10s6p3d)/@4s3p2d# contraction scheme
the internuclear distances correspond to the minima
potential energy curves (r NN51.100 Å for X 1Sg

1 , r NN
ds
e

-

s

f

51.275 Å for A 3Su
1 , and r NN51.225 Å for B 3Pg); the

active space consists of eight orbitals (s2pz
, p2px

,

p2py
, p2px

* , p2py
* , s2pz

* , s3s , and s3s* ) and six electrons;

~v! O2: The basis set is an ANO-type38

(14s9p4d3 f )/@4s3p2d1 f # contraction scheme; the inter
nuclear distances correspond to the minima of potential
ergy curves (r OO51.207 52 Å forX 3Sg

2 , r OO51.225 Å for
a 1Dg , andr OO51.225 Å forb 1Sg

1); the active space con
sists of eight orbitals (s2s ,s2s* ,s2pz

,p2px
,p2py

,p2px
* ,p2py

* ,

ands2pz
* ) and 12 electrons. The results in Table II have be

obtained using the same active spaces as above; also
geometries for ethylene, butadiene and benzene are iden
to these described above. In the averaging, we have con
ered three electronic states of ethylene (X 1Ag , 1 1B1u , and
1 3B1u) in three different basis sets~cc-pVDZ, cc-pVTZ, and
cc-pVQZ35!, five states of butadiene (X 1Ag , 2 1Ag , 1 1Bu ,
1 3Bu , and 13Ag) in two basis sets~cc-pVDZ and cc-
pVTZ!, and seven states of benzene (X 1Ag , 1E2g , 1B1u ,
1B2u , 3B1u , 3B2u , and 3E1u) in the ANO-type basis se
described above. For N2 , we have considered eight elec
tronic states (X 1Sg

1 , w 1Du , W 3Du , A 3Su
1 , a8 1Su

2 ,
a 1Pg , B8 3Su

2 , andB 3Pg) at seven different geometries i
range @r e20.1 Å,r e10.1 Å#, where r e is the equilibrium
geometry of a given state. For O2 , we have considered six
states (b 1Sg

1 , c 1Su
2 , a 1Dg , A8 3Du , X 3Sg

2 , andA 3Su
1)

at ten intermolecular distances. The basis sets used for
culations on O2 and N2 are the same as described above.
nt active
taken from
TABLE III. Size-consistency check for the MROPT~2! method. Entries~kcal/mol! are the differencies between the energy of the Ne2 molecule at nuclear
separationr 5100 Å and the energy of two Ne atoms. For comparison, we give also deviations from size-consistency for other methods. Two differe
spaces have been used; for details look text. The basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ denoted, respectively, as DZ, TZ, and QZ, are
Duning ~Ref. 35!. Q1 stands for the original Davidson correction and Q2 for the renormalized Davidson correction.

Method

RHF orbitals CASSCF orbitals

Active space 1 Active space 2 Active space 1 Active space 2

DZ TZ QZ DZ TZ DZ TZ QZ DZ TZ

CASCI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MRCI 5.39 9.05 10.62 5.28 9.54 5.39 9.02 10.51 5.28 9.55
MRCI1Q1 0.71 1.55 2.05 0.62 1.78 0.71 1.54 1.98 0.62 1.80
MRCI1Q2 0.35 0.85 1.20 0.26 1.05 0.35 0.84 1.14 0.26 1.06
MREN~2! 30.74 33.30 32.48 30.21 33.30 30.74 34.11 33.49 30.12 28.35
MREN~3! 28.28 27.75 26.80 28.07 27.63 28.28 29.28 28.84 28.07 25.41
MRMP~2! 20.05 20.04 20.02 20.09 20.08 20.05 20.06 20.07 20.09 20.15
MRMP~3! 0.04 0.04 0.02 0.09 0.08 0.04 0.06 0.07 0.09 0.14
MROPT~2! 0.02 20.02 20.05 20.17 20.08 0.02 20.01 20.02 20.18 0.00
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TABLE IV. Comparison of the MROPT~2! rotational barrier~kcal/mol! and excitation energies~eV! of ethylene
calculated using two sets of orbitals, the ground-state RHF orbitals and the state-specific CASSCF orb

Excitation energies

Rotational barrier 11B1u 1 3B1u

Method RHF orb. CAS orb. RHF orb. CAS orb. RHF orb. CAS orb.

CASSCF 81.6 67.5 9.34 9.26 5.01 4.30
MRCI 75.1 67.9 8.55 8.63 4.84 4.49
MRCI1Q1 68.2 67.2 8.27 8.35 4.59 4.52
MRCI1Q2 66.3 67.0 8.21 8.29 4.52 4.53
MREN~2! 74.4 72.4 7.41 7.78 4.77 4.60
MREN~3! 70.9 65.5 8.64 8.74 4.38 4.40
MRMP~2! 67.1 65.0 7.93 8.24 4.65 4.44
MRMP~3! 70.8 65.8 8.28 8.48 4.46 4.44
MROPT~2! 49.2 65.6 7.89 7.70 4.09 4.53
Exp. '65a '8.0b 4.36c

aReferences 44 and 45.
bEstimated vertical excitation energy from earlier theoretical work~Refs. 46–49!.
cReferences 50 and 51.
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B. Size-consistency test

Size consistency test has been performed using two n
atoms placed at the distance of 100 Å. We have used t
different basis sets35 ~cc-pVDZ, cc-pVTZ, and cc-pVQZ!
and two different complete active spaces. The active sp
denoted by 1 consisted of atomic 2p and 3s orbitals. The 2s
orbital has been correlated in the MRCI and perturbatio
calculations, while the 1s orbital has been kept frozen. Th
active space denoted by 2 consisted of atomic 2s, 2p, and
3s orbitals. The 1s orbital has been correlated in the MRC
and perturbational calculations. We have also used two
ferent sets of orbitals, the ground-state RHF and CASS
orbitals.

Results are given in Table III. Entries are the differenc
between the energy of the molecule and doubled atomic
ergy. The MROPT~2! method, similarly to MRMP~2! and
MRMP~3!, is almost size-consistent; the largest deviat
from size-consistency is 0.18 kcal/mol. Very large deviatio
from size-consistency are observed for the MRCI meth
and the perturbative methods using Epstein–Nesbet p
tioning. Davidson-type corrections improve the MRCI r
sults significantly, the renormalized correction of Siegba
doing noticeably better than the original correction of Lan
hoff and Davidson.

C. Orbital dependence of the MROPT „2… method

In order to investigate the orbital dependence of
MROPT~2! method, simultaneous calculations using diffe
ent sets of orbitals have been performed for a few molec
systems. We have tested performance of the state-spe
CASSCF orbitals versus ground-state restricted Hartr
Fock ~RHF! orbitals for calculations of internal rotation ba
rier of ethylene, valence excitation energies of ethylene,
tential energy curves of eight states of N2 , and size-
consistency check employing the Ne2 molecule. We have
also performed calculations of potential energy curves of
states of O2 using two sets of orbitals, the state-speci
CASSCF and ground state ROHF orbitals. For calculati
on the rotational barrier in ethylene, we have used an ac
on
ee
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space consisting of two electrons and two orbitals~p and
p* ) and ANO-type basis sets39 with (10s6p3d)/@7s6p3d#
contraction scheme for C and (7s3p)/@6s3p# for H. The
geometries have been fully optimized for every value of
dihedral anglef on the B3LYP/6-3111G(2d,2p) level of
theory. The basis set used for calculations on excitations
ergies of ethylene is cc-pVQZ;35 the geometry and active

FIG. 1. Potential energy curve for the internal rotation barrier in ethyle
calculated using various methods.
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FIG. 2. Potential energy curves and reference weights in the equilibrium region for three excited states of N2 calculated using the MROPT~2! method with
the state-specific CASSCF orbitals~solid line! and the ground-state RHF orbitals~dotted line!.
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space are the same as described in Sec. III A. The ac
space and basis sets used in the calculations on dimers
been given above.

The results for Ne2 are given in Table III. The ground
state of Ne2 has a closed-shell character and the differe
between the CASSCF and RHF orbitals is believed to
rather small. As expected, also the difference between
ve
ave

e
e
e

results calculated with the two sets of orbitals is found to
small for all used methods. Similar situation happens for
ground state of other calculated molecules: The MROPT~2!
ground-state energy depends rather weakly on the set o
bitals used for calculations.

The internal rotation barrier of ethylene and vertical e
citation energies of two excited states of this molecule c
FIG. 3. Potential energy curves and reference weights in the equilibrium region for three excited states of O2 calculated using the MROPT~2! method with
the state-specific CASSCF orbitals~solid line! and the ground-state ROHF orbitals~dotted line!.
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culated using the RHF and CASSCF sets of orbitals
given in Table IV. These results clearly show that the orb
dependence of the MROPT~2! method is rather strong; i
is largest among the perturbative methods. The corre
MRCI results almost does not depend on the set of
bitals used for calculations. The difference between
MROPT~2!/RHF and MROPT~2!/CASSCF results is espe
cially large for the rotational barrier of ethylene. This
caused by the erroneous shape of the MROPT~2!/RHF po-
tential energy curve shown in Fig. 1. For the geometr
close to planar, the MROPT~2!/RHF and MROPT~2!/
CASSCF curves almost coincide. For the twisted geome
where the RHF orbitals rather poorly describe the electro
structure of ethylene, the MROPT~2!/RHF potential energy
curve displays some nonphysical features. Similar feature
however, in much smaller degree—can be observed for
other second-order perturbative methods, MRMP/RHF
MREN/RHF.

The equilibrium regions of the MROPT~2! potential en-
ergy curves for three excited states of the N2 molecule,
w 1Du , A 3Su

1 , andB 3Pg , are shown in Fig. 2. The curve
obtained using the state-specific CASSCF orbitals co
spond to experiment very well.~For comparison of calcu
lated spectroscopic parameters with experiment, see the
sequent paper.26! However, the curves obtained using th
RHF orbitals are not bounded; a closer inspection shows
for every state the weight of the reference function in
MROPT~2!/RHF wave function is very small. Such a situ
tion indicates an occurrence of intruder states in the per
bation calculations, associated with quasidegeneracies in
spectrum of the zeroth-order Hamiltonian. These quas
generacies occur for seven of eight calculated states of2 .
Only for the ground state, for which the RHF orbitals ha
been obtained, there is no intruder states. The reason for
situation can be the character of the RHF orbitals: They
obtained for theX 1Sg

1 state that corresponds in the equili
rium region to the 1pu

43sg
2 electronic configuration, while

the lowest excited states originate mostly from t
1pu

33sg
21pg*

1 and 1pu
33sg

23su*
1 electronic configurations

A poor description of the 1pg* and 3su* molecular orbitals in
the set of RHF orbitals can cause divergencies. This exam
shows how important is using state-specific CASSCF or
als for the MROPT~2! calculations. Note, that potential en
ergy curves obtained using the RHF orbitals with other p
turbative methods do not suffer from quasidegenerac
even if the resultant curves differ noticably from those o
tained using the state-specific CASSCF orbitals.

Figure 3 displays the MROPT~2! potential energy curves
in their equilibrium regions for three excited states of the2
molecule,a 1Dg , b 1Sg

1 , and A 1Su
1 , obtained using the

state-specific CASSCF and ground-state ROHF orbit
Similarly to N2 , we give also the reference weights. T
MROPT~2!/CASSCF and MROPT~2!/ROHF curves are
similar. We observe no intruder states in the perturbat
calculations; the reference state weights are larger than
for all six calculated states. The essential difference betw
the ground-state RHF orbitals of N2 and the ground-state
ROHF orbitals of O2 is a good description of the oxygenp*
molecular orbitals. We believe that the poor description
e
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these orbitals for N2 is the main source of differences be
tween the MROPT~2! results for these two molecules.

IV. CONCLUSIONS

We have presented a multireference perturbation met
that is based on Rayleigh–Schro¨dinger perturbation theory
and uses an optimized partitioning. We abbreviate t
method as MROPT. The optimization of the zeroth-order
ergies for thenth-order MROPT method is performed b
putting a conditionC (n)50 on the first neglected term in th
perturbative expansion of the wave function. This allows
cancellation of a large part of errors arising from truncati
the wave function. We give explicit equations that ena
determining the optimized zeroth-order energies for
second-, third-, and fourth-order perturbation theory.

The second-order multireference perturbation meth
with the optimized partitioning is derived from the conditio
C (2)50. The resulting partitioning is shown to be identic
to the partitioning derived by Surja´n and Szabados by mini
mizing the Rayleigh quotient with respect to a set of t
zeroth-order energies. The MROPT energy formula is a
clearly the same as the energy formula for the lineariz
multireference coupled cluster method.

We analyze various numerical and computational iss
concerning the MROPT~2! method. We show on example o
Ne2 that the MROPT~2! method is~almost! size-consistent.
The averaged deviations of total energies of MROPT~2! to
some related methods are shown in Table II for a set of
molecules. The MROPT~2! energies show close resemblan
to those computed using MRCI with Davidson-type corre
tions. We notice also relatively small deviations for th
second-order multireference PT with the EN partitioning.
clearly shows that the state-dependent shifts in Eq.~2.2! are
not large.

We have noticed large dependence of the MROPT~2!
energies on a set of one-electron orbitals used for calc
tions. The RHF orbitals used for calculations on excit
states produce some nonphysical results. The potential
ergy curve for barrier of internal rotation in ethylene does n
depend on the set of orbitals for the geometries close
planar. However, for the distorted geometries, the curve
tained using the RHF orbitals deviates strongly from t
analogous curve obtained with CASSCF orbitals, showing
artificial minimum. The situation is even more severe wh
the RHF orbitals are used for calculations on potential
ergy curves of low-lying excited states of N2 ; none of the
calculated curves is bounded. At the same time,
MROPT~2! curves obtained with the state-specific CASSC
orbitals show very good agreement with the experimen
data. This example stresses the importance of using s
optimized orbitals for calculations with the MROPT~2!
method.
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