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A study of the ground state of manganese dimer using quasidegenerate
perturbation theory
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We study the electronic structure of the ground state of the manganese dimer using the
state-averaged complete active space self-consistent field method, followed by second-order
quasidegenerate perturbation theory. Overall potential energy curves are calculated for the 1�g

+,
11�u

+, and 11�u states, which are candidates for the ground state. Of these states, the 1�g
+ state has

the lowest energy and we therefore identify it as the ground state. We find values of 3.29 Å,
0.14 eV, and 53.46 cm−1 for the bond length, dissociation energy, and vibrational frequency, in good
agreement with the observed values of 3.4 Å, 0.1 eV, and 68.1 cm−1 in rare-gas matrices. These
values show that the manganese dimer is a van der Waals molecule with antiferromagnetic
coupling. © 2006 American Institute of Physics. �DOI: 10.1063/1.2178798�
I. INTRODUCTION

Transition metal dimers are starting points for studying
the fundamental properties of transition metal clusters. How-
ever, for some dimers it is difficult to calculate even the bond
length theoretically. For instance, obtaining a potential en-
ergy curve of Cr2 suitable for comparison with experiment
exceeds the capabilities of the Hartree-Fock and complete
active space self-consistent field �CASSCF� methods.1 It is
necessary to calculate at the level of the multiconfigurational
second-order perturbation theory with a CASSCF reference
function2,3 �CASPT2� or use the multireference configuration
interaction singles and doubles4 �MRCISD� method. As well
as Cr2, the Mn dimer is also a challenging molecular system
for theoretical study.

Mn displays an antiferromagnetic character in bulk
states, but behaves differently in cluster states. Specifically,
Mn4, and Mn5 were suggested to be ferromagnetic by
experiments.5,6 However, the dimer has the singlet ground
state, as indicated by resonance Raman spectra7,8 in rare-gas
matrices. Thus the dimer has antiferromagnetic character.
The resonance Raman experiments determined the bond
length to be 3.4 Å. An electron spin resonance �ESR�
experiment6 also supports the singlet ground state and found
−9±3 cm−1 for the Heisenberg effective exchange integral J.
Kant et al.9 accounted for the dissociation energy as 0.1 eV.
A comprehensive review has been made by Lombardi and
Davis10 for experimental research on transition metal dimers
and clusters.
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Extensive theoretical studies have been performed to
clarify the anomalous character of Mn2. Nesbet11 stated in
1964 that the bond length of the Mn dimer is 2.88 Å and that
it is antiferromagnetic on the basis of approximate Hartree-
Fock calculations. He suggested that the ground state of the
Mn dimer is singlet. The J value was calculated to be
−4.1 cm−1.

A number of studies12–22 based on density functional
theory �DFT� followed. Many results have been presented
from DFT calculations, but even fundamental properties such
as bond length differ from one another. For example, Nayak
and Jena14 performed DFT calculations with several func-
tionals �LSDA, BPW94, B3LYP� and gave 1.62, 2.50, and
3.55 Å as the bond lengths. These values are so different that
no reliable bond length can be quoted. The spin multiplicity
of the ground state also depends on the functional used, be-
ing 3, 11, and 11.

Yanagisawa et al.,18 Barden et al.,19 and Gutsev et al.20

performed a series of DFT calculations on the first-row
transition metal dimers. These research groups used
various functionals, but they did not reach the same conclu-
sion. Yanagisawa et al.18 suggested that the Mn dimer
is unbound. Barden et al.19 investigated several states
�1�g

+ , 11�u
+ , 11�u , 11�g

+� as candidates for the ground state, but
were prudent in drawing a conclusion. They pointed out that
DFT would not be a good choice for investigation of the Mn
dimer. Gutsev et al.20 reported that the 11�u state is the
ground state.

We now survey previous studies performed with ab ini-
tio molecular orbital �MO� methods. Calculations using

second-order Møller-Plesset perturbation theory �MP2� with
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the Hartree-Fock MOs in Ref. 18 did not yield a bound
ground state. The CASSCF potential energy curve23 was also
unbound. Wang and Chen24 recently performed CASPT2
�Ref. 25� calculations with an effective core potential on the
Mn dimer and obtained a singlet ground state with a bond
length of 3.64 Å. This is in good agreement with experiment.
However, they present potential energy curves only for the
long nuclear distance region �R=3.0–4.4 Å�, and the spatial
symmetry is not assigned for each spin state calculated.
More extensive investigations are needed, based on the over-
all potential energy curve.

We aim in this study to calculate properties accurately so
that they can be compared with experiment. We calculate the
potential energy curves using cutting-edge ab initio MO
methods. We then discuss the bonding mechanism in the Mn
dimer. As described by Bauschlicher,23 in the 1�g

+ CASSCF
wave function more than 100 electronic configurations mix
each other with small weight. It is necessary to use a method
which can treat a large number of reference configurations
equally.

The MRCISD method has high computational cost, be-
cause it must treat one- and two-electron excited configura-
tions from reference configurations exceeding 100. Also, the
configuration interaction �CI� method is not generally very
efficient in accounting for electronic correlation effects. We
therefore use second-order multiconfiguration quasidegener-
ate perturbation theory �MCQDPT2�.26 This method is effi-
cient in accounting for the electronic correlation effects in
the CAS wave function.

The ground state of the manganese atom is the 6S state
of the �4s�2�3d�5 configuration. The first excited state is the
6D state of the �4s�1�3d�6 configuration. It is expected that
the bond of the Mn dimer can be described by the combina-
tion of these two configurations. As the nuclear distance de-
creases starting from the two atomic states, the ground state
can be roughly represented by �6S+ 6S�, �6S+ 6D�, and �6D
+ 6D�. However, there are peculiar circumstances for Mn.
Since the Mn atom has a promotion energy27 �the one-
electron transfer energy from �4s�2�3d�5 to �4s�1�3d�6� of
2.14 eV, which is exceptionally high compared with other
transition metal atoms, hybridization between the 4s and 3d
atomic orbitals �AOs� would not emerge in the Mn dimer.
Accordingly, covalent bonds will not be formed and the out-
ermost four electrons will occupy the bonding and antibond-
ing MOs consisting of the 4s AOs. The 3d electrons will not
take part in bond formation, and overall a weak bond will be
formed by the attractive van der Waals force. An atomiclike
configuration of ��4s�2�3d�56S+ �4s�2�3d�56S� is therefore ex-
pected near the equilibrium bond length �3.4 Å�.

In summary, the bonds in the first-row transition metal
dimers can in general be described by a combination of
�4s�2�3d�n−2 and �4s�1�3d�n−1. This model is employed in the
studies of Sc2 and Ti2 by Suzuki et al.28,29 In the present
study we shall elucidate the electronic structure of the Mn

dimer, based on this model.
II. COMPUTATIONAL DETAILS

A. Basis set

We constructed a basis set from the Gaussian-type func-
tions �18s12p8d� developed by Koga et al.30 We augmented
this set with three p-type primitive functions, de-
veloped by Tatewaki et al.31 to describe the valence 4p AOs.
Using these primitive functions, we expanded 3s and 3p as
double zeta, 4s and 4p as triple zeta, and 3d as quadruple
zeta. We also added the 4f2g polarization functions devel-
oped by Sekiya et al.32 and contracted the entire set as
�18s15p8d4f2g� / �7s6p4d4f2g�. This basis set was used in
the form of spherical harmonic functions. The exponents and
expansion coefficients are listed in Table I.

The 12 MOs composed mainly of the 4s and 3d AOs are
chosen to construct the CAS. All computation was done us-
ing the GAMESS program.33

B. Spin multiplicity and spatial symmetry

The molecular symmetry of the Mn dimer is D�h, but
because the GAMESS program supports only Abelian point
groups, we performed the calculations under D2h symmetry.
We investigate three states �1�g

+ , 11�u
+ , 11�u� which have

been considered as the most promising candidates for the
ground state from the ab initio MO �Refs. 11 and 23� and
DFT �Refs. 19 and 20� studies so far.

We solve the 1�g
+ state as the 1Ag state of D2h, where 1�g

+

and 1�g coexist. In fact, the 1Ag excited state arose as a �
state mainly from �4s��→ �3d�x2−y2� and �4sd

*�→ �3d�x2−y2
* �

excitations. The 11�u
+ state is solved as the 11B1u state. The

11�u state is solved as an average of the 11B3u and 11B2u
states. The purpose of averaging the two states of different
irreps is to make the MOs symmetry adapted with respect to
x and y. The z coordinate runs along the Mn–Mn axis. To
perform CASSCF calculations averaged between two states
of different irreps, we used the Ames Laboratory determinant
full-CI code, written by Ivanic and Ruedenberg, which is
implemented in the GAMESS program. All other calculations
were done in configuration state function �CSF� basis.

C. The problem of multiple solutions

In the region of long nuclear distance, the electronic con-
figuration can be represented by �4s�2�3d�5 for each atom,
and in the short distance region by �4s�1�3d�6. If one per-
forms standard CASSCF calculations for the 1�g

+ state in the
middle bond length region, one may obtain two sets of solu-
tions having characteristics of ��4s�2�3d�5+ �4s�2�3d�5� and
of ��4s�1�3d�6+ �4s�1�3d�6�, which are, respectively, obtained
from the outer and inner regions. These two sets have differ-
ent spatial extents. If one performs perturbation �or MRCI�
calculations using these CASSCF MOs, the potential energy
curve may be disconnected in the middle region. In fact, in
the present study, we had three kinds of CASSCF solutions,
namely, three MO sets. This made the potential energy
curves by MCQDPT2 calculations disconnected or discon-
tinuous.

Shepard34 issued a warning by calling this the “multiple

solution problem.” In response, he proposed to adopt a state-
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averaged CASSCF approach as one of its remedies. Thus one
should obtain CASSCF MOs by solving several roots in

TABLE I. Gaussian-type basis set. L and “No.,” respectively, denote the
angular quantum number and contraction set number.

L No. Exponent Coefficient

s
1-1 268 427.932 964 8 0.000 251 7
1-2 40 239.416 910 5 0.001 951 1
1-3 9 157.940 760 3 0.010 140 5
1-4 2 592.257 513 0 0.041 148 7
1-5 844.033 658 3 0.133 267 1
1-6 302.585 392 4 0.313 567 7
1-7 117.347 252 7 0.433 354 6
1-8 46.429 408 4 0.213 394 2
2-1 312.633 565 5 −0.023 331 9
2-2 95.867 137 3 −0.115 224 5
2-3 14.373 267 9 0.591 572 4
2-4 5.828 185 3 0.496 959 8
3-1 9.489 050 1 −0.224 689 9
3-2 1.553 220 3 0.717 493 4
4-1 0.627 208 3 1.000 000 0
5-1 0.744 637 2 1.000 000 0
6-1 0.100 948 4 1.000 000 0
7-1 0.037 326 7 1.000 000 0

p
1-1 4210.392 029 2 0.000 435 6
1-2 997.821 969 5 0.003 766 8
1-3 323.156 125 1 0.020 202 3
1-4 122.485 362 2 0.077 429 1
1-5 51.150 856 3 0.211 149 5
1-6 22.542 385 6 0.376 022 3
1-7 10.368 623 9 0.370 218 8
1-8 4.634 073 9 0.130 970 0
2-1 25.644 649 4 −0.016 432 8
2-2 3.459 806 3 0.317 978 6
2-3 1.377 474 6 0.555 334 5
3-1 0.518 293 3 1.000 000 0
4-1 0.179 363 1 1.000 000 0
5-1 0.070 805 6 1.000 000 0
6-1 0.028 264 0 1.000 000 0

d
1-1 133.544 512 2 0.002 090 2
1-2 39.792 431 1 0.016 294 6
1-3 14.816 057 9 0.066 537 2
1-4 6.092 877 0 0.180 904 9
1-5 2.630 651 1 0.315 981 5
2-1 1.125 646 8 1.000 000 0
3-1 0.462 924 5 1.000 000 0
4-1 0.173 438 6 1.000 000 0

f
1-1 12.389 659 0 1.000 000 0
2-1 3.779 429 0 1.000 000 0
3-1 1.359 704 0 1.000 000 0
4-1 0.462 121 0 1.000 000 0

g
1-1 2.656 997 0 1.000 000 0
2-1 0.695 741 0 1.000 000 0
CAS-CI and averaging the density matrices produced from
the respective roots. In the present study we found that it was
necessary to average three roots for the 1�g

+ and 11�u
+ states.

D. Quasidegenerate perturbation theory with intruder
state avoidance

The 1�g
+ CASSCF wave function is composed of 21 588

CSFs. The MCQDPT2 method can treat all these configura-
tions as the reference and can calculate their contributions to
electronic correlation effects. Since the dissociation energy
of the Mn dimer is expected to be small �0.1 eV�, a calcula-
tion is required to this accuracy.

We use the state-averaged CASSCF method, followed
by the MCQDPT2 method which was developed by
Nakano.26 The MCQDPT2 method provides an effective
Hamiltonian �Heff� through a perturbation expansion. When
the dimension of the effective Hamiltonian is one, this is
equivalent to the MRMP2 method proposed by Hirao.35 It is
known that most multireference perturbation theories are
vulnerable to intruder states. In the worst case the perturba-
tion expansion diverges. To overcome this problem, we
adopt the intruder state avoidance �ISA� method proposed by
Witek et al.36 This ISA method has been applied to the AgH
molecule37 and gave a smooth potential energy curve.
Throughout the MCQDPT2 calculations, MOs composed of
1s, 2s, and 2p AOs were kept frozen.

We obtain the vibrational states by solving the one-
dimensional Schrödinger equation numerically using the Nu-
merov method.38 Potential energy values at many internu-
clear distances �c.a. 1500� are required for this method; we
obtain them by cubic natural spline39 �CNS� fitted to the
MCQDPT2 potential energy curves.

III. RESULTS AND DISCUSSION

A. Potential energy curve

Figure 1 shows the potential energy curves of the 1�g
+,

11�u
+, and 11�u states calculated by MCQDPT2. Figure 2

shows an enlargement of these curves between 6.0 and
6.8 a.u. It is seen that the 1�g

+ state takes the lowest energy
and can be considered as the ground state of the Mn dimer.
Although a figure is not given, at the CASSCF level the 1�g

+

and 11�u
+ states are not bound.

For the 1�g
+ state, we used three-state-averaged CASSCF

MOs. For the 11�u state, CASSCF MOs averaged between
different irreps �11B3u+ 11B2u� were used. Use of the three-
state-averaged CASSCF MOs is inferior for the lowest root
than CASSCF MOs optimized purely for the lowest root.
Even then the 1�g

+ state is lower than the 11�u state, so that
this energy ordering should not be altered even if more
elaborate calculations were performed.

Figure 1 has a shoulder near R=3.2 a.u. on the 1�g
+

curve. This shoulder reflects the transition of the electronic
configuration from �6S+ 6S� to �6D+ 6D� as the nuclear dis-
tance shortens.

The 11�u
+ curve lies slightly above the 1�g

+ curve, as
shown in Fig. 2. This small energy gap is promising in pre-
dicting the experimental Heisenberg exchange coupling con-

stant J �see Sec. III D�.
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The 11�u curve differs from the other two states. The
total energy decreases sharply around the minimum of R
=4.8 a.u. Since the CASSCF active orbitals are composed of
the 4s and 3d AOs, the electronic configuration for 11�u, due
to the symmetric restriction, must approach the excited elec-

FIG. 1. Potential energy curves of the Mn dimer calculated at the MCQDPT2
line marked by white diamonds denotes the 11�u

+ state. The solid line marke
FIG. 2. Potential energy curves of the Mn dimer between 6.0 and 6.8
tronic configuration of �6S+ 6D� as the nuclear distance in-
creases indefinitely. It is therefore possible to test the appro-
priateness of the calculations by checking whether the 11�u
potential energy curve at long nuclear distances lies ad-
equately above the ground state curve.

l. The solid line marked by closed squares denotes the 1�g
+ state. The broken

white triangles denotes the 11�u state.

leve
a.u. calculated at the MCQDPT2 level. See the caption of Fig. 1.
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We found that the 11�g
+ state has higher MCQDPT2 total

energy than the 11�u state from our preliminary calculations
and excluded the 11�g

+ state from the discussion here.

B. Configuration mixing

We now discuss the details of the 1�g
+ wave function at

R=6.2 a.u. Since the off-diagonal terms of the MCQDPT2
effective Hamiltonian are rather small, here we analyze the
wave functions at the CASSCF level. We have performed a
full-valence CI �FVCI� calculation using the three-state-
averaged CASSCF natural orbitals �NOs�. The characters of
the NOs and their occupation numbers are listed in Table II.
The 4s� and 4s�

* NOs are occupied by two electrons. The
remaining ten NOs composed of the 3d AOs are occupied by
almost a single electron. The Mulliken AO populations are
1.93 and 5.00 for the 4s and 3d AOs, indicating �4s�2�3d�5 6S
for the respective atoms; �6S+ 6S� is the result. This indicates
that there is no strong covalent interaction between the two
Mn atoms. We treat this status as van der Waals bonding in
this paper. This picture is quite reasonable in view of the
high 4s→3d promotion energy �2.14 eV� �Ref. 27� of the
Mn atom. However, the configuration mixing in this state has
a complicated feature. We cannot find any leading configu-
rations; the maximum CI coefficient is small at 0.092 and
there exist 132 configurations of which magnitude is be-
tween 0.092 and 0.05. The configuration with a coefficient
0.092 is �4s��2 �4s�

*�2 �3d�z2�2 �3d�y�2 �3d�x�2 �3d�x2−y2�1

�3d�xy�1 �3d�xy
* �1 �3d�x2−y2

* �0 �3d�x
* �0 �3d�y

* �0 �3d�z2
* �1, where

we have three vacant �3d� NOs. The FVCI occupation num-
bers for all the 3d AOs in Table II are, however, close to 1,
giving the symbolic 1�g

+ configuration as

�4s��2.0000�4s�
*�2.0000�3d�z2�1.0321�3d�y�1.0144�3d�x�1.0144

	�3d�x2−y2�1.0029�3d�xy�1.0020�3d�xy
* �0.9980�3d�x2−y2

* �0.9971

	�3d�x
* �0.9858�3d�y

* �0.9858�3d�z2
* �0.9679. �1�

We next look at the 11�u
+ wave function at R=6.4 a.u.

The symbolic 11�u
+ configuration of the FVCI calculation

TABLE II. Occupation numbers in 1�g
+ full-valence CI with three-state-

averages CASSCF natural orbitals at R=6.2 a.u.

Notation
in this paper Irrep in D2h

Occupation
number

4s� 1ag 2.0000
4s�

* 1b1u 2.0000
3d�z2 2ag 1.0321
3d�y 1b2u 1.0144
3d�x 1b3u 1.0144

3d�x2−y2 3ag 1.0029
3d�xy 1b1g 1.0020
3d�xy

* 1au 0.9980
3d�x2−y2

* 2b1u 0.9971
3d�x

* 1b2g 0.9858
3d�y

* 1b3g 0.9858
3d�z2

* 3b1u 0.9679
with the three-state-averaged CASSCF NOs is
�4s��2.0000�4s�
*�2.0000�3d�z2�1.0000�3d�y�1.0000�3d�x�1.0000

	�3d�x2−y2�1.0000�3d�xy�1.0000�3d�xy
* �1.0000�3d�x2−y2

* �1.0000

	�3d�x
* �1.0000�3d�y

* �1.0000�3d�z2
* �1.0000. �2�

Unlike the 1�g
+ state, there is a single dominant configura-

tion, with coefficient 0.9999. The �4s�� and �4s�
*� NOs are

doubly occupied, and the remaining ten NOs composed of 3d
AOs are singly occupied. The AO populations are 1.93 and
5.00 for the 4s and 3d AOs, giving the molecular configura-
tion of ��4s�2�3d�56S+ �4s�2�3d�56S�. From the configurations
�1� and �2� we see that the 1�g

+ and 11�u
+ states by accident

have almost the same the electronic configurations, although
they are composed of quite different CSFs.

We now give details of the 11�u CASSCF wave function
at R=4.8 a.u. We have performed CSF-based FVCI calcula-
tions under the 11B3u and 11B2u symmetries, respectively, by
using the canonical orbitals of the determinant-based
CASSCF calculation averaged between the �11B3u+ 11B2u�
states. The averaged occupation numbers of the 11B3u and
11B2u states are as follows:

�4s��1.8943�4s�
*�1.1056�3d�z2�1.000�3d�y�1.4472�3d�x�1.4472

	�3d�x2−y2�1.000�3d�xy�1.000�3d�xy
* �1.000�3d�x2−y2

* �1.000

	�3d�x
* �1.0528�3d�y

* �1.0528�3d�z2
* �1.000. �3�

This configuration corresponds to one-electron transfer from
�4s�

*� to �3d�� if viewed from the 1�g
+ configuration. The AO

populations are 1.37 for the 4s AO and 5.48 for the 3d AO,
giving approximately �4s�1.5�3d�5.5. This corresponds to the
molecular configuration of �6S+ 6D�.

We now summarize the above results. At large nuclear
distance the Mn dimer is an aggregation of two Mn atoms of
the 6S ground state, and can therefore be represented by
�6S+ 6S�. The 11�u

+ state at the minimum of R=6.4 a.u. and
the 1�g

+ ground state at the minimum of R=6.2 a.u. have
close correspondence with the �6S+ 6S� configuration. The
11�u state at the minimum of R=4.8 a.u. correlates with
�6S+ 6D�. At distances less than 3.2 a.u., the 1�g

+ ground state
changes to �6D+ 6D�, where each Mn atom has configuration
�4s�1�3d�6. Thus, as the nuclear distance decreases, the elec-
tronic configuration changes from �6S+ 6S�, �6S+ 6D�, to
�6D+ 6D�. Electron transfer from �4s�2�3d�n−2 to �4s�1�3d�n−1

dictates the bonding. This picture has also been recognized in
studies28,29 of Sc2 and Ti2. The model used here can therefore
be generalized to a guiding principle for analyzing the bond-
ing mechanism of transition metal dimers.

C. Vibrational analysis

Table III lists values of 
e and 
exe derived from the 

values given by the Numerov method. For the 1�g

+ state, the
details of the vibrational levels are shown in Table IV. These
were obtained from the vibrational levels G��� given by

G��� = 
e�� + 1/2� − 
exe�� + 1/2�2. �4�

The 
e and 
exe values were calculated from the G�2� and
G�3� vibrational levels. To check these values, we reversed

the calculation to determine G��� values from the calculated
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e and 
exe. As shown in the columns named “Recomputed”
of Table IV, the values of G��� emerged correctly.

We now discuss the vibrational states of the ground
state. Kirkwood et al.8 observed the resonance Raman spec-
trum of the Mn dimer in the xenon matrix and reported that
the ground state is 1�g

+ with 
e=68.1 cm−1 and 
exe

=1.05 cm−1. The Numerov method for the MCQDPT2 po-
tential energy curve gives 53.5 cm−1 for 
e and 0.87 cm−1

for 
exe. Agreement between the calculated and experimen-
tal values is fairly good. The small discrepancy between the
two is probably because �1� we disregard the relativistic ef-
fects which slightly shorten the bond length and �2� the Mn
dimer in the matrix is compressed compared to the gaseous
Mn dimer. We will discuss the relativistic effects later in Sec.
III F. The calculated and experimental vibrational levels
given in the third and fourth columns of Table IV show
somewhat large differences because the energy in the respec-
tive levels ��� is roughly equal to ��+1/2�
e. Differences
between the calculated and experimental values of G��+1�
−G��� are around 13–15 cm−1, almost equal to the differ-
ence between the two 
e’s, suggesting that the Mn dimer
potential in the matrix has a larger curvature.

The vibrational wave function of the �=0 level is com-
pact, not diffuse, in contradiction to the flat potential given in
Fig. 1; it has on amplitude greater than 0.01 in the range of
5.38–7.22 a.u.

TABLE III. Bond length �Re�, dissociation energy
calculated at the MCQDPT2 level. The experimental

State No. of CSF
No. of state

averaged
Dimensi

of Heff

1�g
+ 21 588 3 3

11�u
+ 12 3 3

11�u 8 2 1

1�g
+

�Expt.�
aRelative to ��4s�2�3d�5 6S+ �4s�2�3d�5 6S�.
bRelative to ��4s�2�3d�5 6S+ �4s�1�3d�6 6D�.

TABLE IV. Experimental and calculated vibrational l
G��+1�−G���. The experimental values are taken fr

�

Vibrational levels G���
�cm−1�

Numerov

Recomputed

Using

e and 
exe

from
Numerov

Using

e and 


from
Expt.

0 26.5 26.5 33.8
1 78.3 78.2 99.8
2 128.2 128.2 163.7
3 176.4 176.4 225.5
4 222.8 222.9 285.2
5 267.6 267.6 342.8
Finally, we summarize the spectroscopic constants. As
shown in Table III, the calculated Re of 3.29 Å is close to the
experimental value �3.4 Å� and is near the value �3.64 Å�
calculated by Wang and Chen.24 All these values of Re, in-
cluding the experimental result, are quite large compared to
the values for other transition metal dimers. We calculate the
dissociation energy as the total energy difference between
the minimum point and the nuclear distance 100 a.u. The
calculated �0.14 eV� and experimental �0.1 eV� dissociation
energies are rather small. The spacing of the vibrational lev-
els is also small. All of these results suggest that the Mn
dimer is a van der Waals molecule.

D. Magnetic coupling

Yamanaka et al.40 proposed the following formula �6� for
evaluating the Heisenberg exchange coupling constant Jab

from theoretical calculations.

H = − 2�
ab

JabSa · Sb �5�

Jab =
ELS − EHS

�S2�HS − �S2�LS
, �6�

where, LS and HS, respectively, designate low spin and high
spin. We take ELS as −2300.800 541 a.u. corresponding to

, and vibrational frequency �
e� of the Mn dimer
es are taken from Ref. 8.

Irrep
in D2h

Re

�Å�
�a.u.�

De

�eV�

e

�cm−1�

exe

�cm−1�

Ag 3.29
�6.22�

0.14a 53.46 0.87

B1u 3.42
�6.46�

0.13a 62.64 1.36

B3u+B2u 2.53
�4.79�

1.21b 240.47 1.30

3.4
�6.43�

0.1 68.1 1.05

for 1�g
+. Vibrational levels of G��� and its spacing of

ef. 8.

Level spacing of G��+1�−G���
�cm−1�

Numerov

Recomputed

Using

e and 
exe

from
Numerov

Using

e and 
exe

from
Expt.

51.8 51.7 66.0
49.9 50.0 63.9
48.2 48.2 61.8
46.4 46.5 59.7
44.7 44.7 57.6
�De�
valu

on
evels
om R

exe
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the 1�g
+ state at R=6.2 bohrs, and EHS as −2300.800 139 a.u.

corresponding to the 11�u
+ state at the same distance. We

thereby obtain −2.935 cm−1 for Jab. However, the ESR
experimentalists6 prefer the following definition of J:

H = − JSa · Sb. �7�

Thus we must double the Jab value derived from the formula
�5�. Our calculated J value �−5.87 cm−1� and the experimen-
tal J value �−9±3 cm−1� together indicate that the Mn dimer
is antiferromagnetic, so that the calculation is reasonably
correct. The present result is similar to that of Wang and
Chen.24

E. Symmetry adaptation

Previous studies based on DFT calculations gave the re-
sults in contradiction to experiment. We believe that this fail-
ure of DFT could be attributed to the following reasons. The
primary reason is that the DFT method cannot evaluate van
der Waals attractive force accurately. Secondly we infer that
the broken-symmetry DFT approach tends to overestimate
electron correlation effects, especially in the bonding region.

For the first reason, DFT would not be a good choice for
studying molecular systems governed by van der Waals in-
teractions. In such cases a new functional which accounts for
dispersion forces has recently been proposed by Iikura et
al.41 and therefore the situation will be improved.

We now discuss limitations of the broken-symmetry ap-
proach which is now widely used in DFT calculations. In
fact, a broken-symmetry spin-unrestricted DFT approach is
used in Refs. 19 and 20. The broken-symmetry approach
aims to account for effects arising from mixing of nearly-
degenerate configurations, known as static correlation effects
or multiconfigurational effects. The same approach is used
also in ab initio MO methods such as unrestricted Hartree-
Fock �UHF� and Møller-Plesset perturbation theories with
UHF MOs �UMP�. In the present work, for the 11�u state,
CASSCF calculations were performed by averaging the den-
sity matrices between the 11B3u and 11B2u irreps, so that the
CASSCF canonical orbitals should be symmetry adapted. If
the CASSCF calculations are performed under the 11B3u
symmetry without averaging, the total energy decreases sig-
nificantly, especially in the bonding region, and the resulting
potential curve descends beneath the 1�g

+ curve. The broken-
symmetry CASSCF gives a fatally flawed result.

We further performed the CASSCF calculations by low-
ering the symmetry to C2h from D2h. In the case of C2h, Bu,
and Ag, respectively, correspond to �u and �g

+. Both x and y
components belong to Bu. At the CASSCF level, the 11Bu
state has higher energy than the 1Ag state. However, at the
MCQDPT2 level, the 1Ag state has higher energy. Contradic-
tion with experiment thereby arises. We found that the
CASSCF electron distribution at R=4.8 a.u. was not sym-
metric with respect to x and y. Moreover, even at R
=10.0 a.u., the total energy difference between 11Bu and 1Ag
is 4.69 eV at the CASSCF level, but is −0.092 eV at the
MCQDPT2 level. Thus the broken-symmetry calculations

again give physically incorrect results.
The above discussion suggests that symmetry adaptation
is critical for the CASSCF and MCQDPT2 calculations to
give correct results. The broken-symmetry approach overes-
timates the electron correlation effects, especially in the
bonding region. A similar situation may arise also in the DFT
calculations.

F. Relativistic effects

In this section we consider relativistic effects on the
bonding of the Mn dimer. It is known that for the first-row
transition metals relativistic effects are not so large. Espe-
cially the spin-orbit interaction is expected to be small. In
fact, the spin-orbit coupling is estimated to be around
200 cm−1 for the Mn dimer. Since the MCQDPT2 energy
gap between the 1�g

+ and 11�u states is larger than
2000 cm−1, this energy ordering should not be altered by the
spin-orbit coupling. In addition, the ordering between the
1�g

+ and 11�u
+ states should be kept because the spin-orbit

coupling is zero for � states. Thus we consider the remaining
relativistic effects �corresponding to the mass-velocity term
and the Darwin term� by applying the second-order Douglas-
Kroll transformation42,43 �DK2� to the one-electron Hamil-
tonian within the one-component space. We treated the Mn
nucleus as a point charge and used the same basis set.

The energy ordering of the four states
�1�g

+ , 11�u
+ , 11�u , 11�g

+� was not altered by DK2. The 1�g
+

state keeps the ground state. However, the equilibrium
nuclear distance is shortened to 6.005 a.u. �3.18 Å� from
6.22 a.u. The potential energy curvature is slightly larger
than the nonrelativistic one, giving De, 
e, and 
exe of
0.159 eV, 59.22 cm−1, and 0.95 cm−1, respectively. The cal-
culated 
e value becomes closer to the experimental value.
The remaining difference can be ascribed to the matrix effect
as stated before. The shoulder recognized near R=3.2 a.u. in
the nonrelativistic 1�g

+ potential energy curve is enlarged to a
hump. The J value calculated at R=6.0 a.u. is −10.9 cm−1.
On the whole the bonding characteristics were not altered.

IV. CONCLUDING REMARKS

We have performed MCQDPT2 calculations for the
three states �1�g

+ , 11�u
+ , 11�u� of the Mn dimer, using state-

averaged CASSCF MOs to obtain accurate potential energy
curves. Of these three states, the 1�g

+ state has the lowest
energy, so we conclude that the 1�g

+ state is the ground state
of the Mn dimer. It follows that the Mn dimer is antiferro-
magnetic. The calculated bond length �3.29 Å�, dissociation
energy �0.14 eV�, and vibrational frequency 
e �53.46 cm−1�
agree well with the experimental values of 3.4 Å, 0.1 eV,
and 66.8 cm−1. The long bond length and low vibrational
frequency show that the Mn dimer is a van der Waals mol-
ecule.
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