
Quasidegenerate perturbation theory with multiconfigurational 
self-consistent-field reference functions 

Haruyuki Nakanoa) 
Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan 

(Received 22 December 1992; accepted 13 August 1993) 

A quasidegenerate perturbation theory based on multiconfigurational self-consistent-field 
(MCSCF) reference functions is derived. The perturbation theory derived here is for multistate, 
where several MCSCF functions obtained by the state-averaged MCSCF method are used as the 
reference and an effective Hamiltonian is constructed by perturbation calculation. The energies 
of states interested in are obtained simultaneously by diagonalization of the effective 
Hamiltonian. An explicit formula of the effective Hamiltonian through second order is derived 
as well as general formalism, and is applied to calculate potential curves of the system Hz, 
Be-HZ, CO, NO, BN, and LiF. The results agree well with those of full configuration interaction 
or multireference single and double excitation configuration interaction methods for both the 
ground and the excited states. 

I. INTRODUCTION 

Many-body perturbation theory (MBPT) has been uti- 
lized as a convenient way of taking account of electron 
correlation beyond Hatree-Fock approximation. In partic- 
ular, its single-reference version’ seems to be fully estab- 
lished. Mdller-Plesset perturbation method,2 up to the 
fourth order, is equipped as a standard tool in program 
systems such as GAUSSIAN (Ref. 3) or HONDO (Ref. 4). 
However, the application of the single-reference many- 
body perturbation theories (SR-MBPT) is limited only to 
the system where the Hartree-Fock approximation is a 
good starting point. It cannot describe open-shell mole- 
cules, dissociation to open-shell fragment, and transition 
state of chemical reaction. 

Quasidegenerate perturbation theory5-’ (QDPT) has 
been developed to be applied to open-shell systems and 
excited states. Although much effort has been made to 
develop the quasidegenerate perturbation theory, it is not 
widely used among chemists. The major reason is that the 
QDPT often provides incorrect potential curves, since the 
perturbation series frequently diverges owing to the exist- 
ence of intruder states.” 

From the mid 1980’s, multiconfigurational self- 
consistent-field (MC-SCF) reference perturbation theo- 
I&“-‘~ have been proposed to overcome the defects of the 
single-reference PT and the quasidegenerate PT, and some 
of them seem very promising. In fact, they have many 
advantages; ( 1) it is size consistent, (2) it yields fairly 
accurate results compared with traditional highly corre- 
lated methods, (3) it can be applied to the open shell and 
excited states, (4) it is stable on the wide region of poten- 
tial surfaces, and (5) it is more efficient than other multi- 
reference based methods. 

In the present paper, we propose a multistate pertur- 
bation theory based on several MCSCF wave functions, 
where several functions obtained by the state-averaged 
MCSCF method are used as the reference and an effective 

‘)Present address: Department of Industrial Chemistry, Faculty of Engi- 
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Hamiltonian is constructed by perturbation calculation. 
The states of interest are obtained by diagonalizing the 
effective Hamiltonian. 

The MCSCF reference quasidegenerate perturbation 
theory retains all the advantages ( l)-( 5) of the previous 
MCSCF perturbation theories. Furthermore, it has the fol- 
lowing advantages over the MCSCF perturbation theories: 
( 1) the solutions interested can be obtained simulta- 
neously, (2) it can be applied to degenerate or quasidegen- 
erate systems, and states where the root flipping occurs, 
and (3) the interstate matrix elements, such as transition 
dipole moment, can be calculated in the same manner to 
obtain the effective Hamiltonian matrix in the energy cal- 
culation. 

The organization of the present paper is as follows. In 
Sec. II, general formalism of MCSCF reference quaside- 
generate perturbation theory and an explicit formula of the 
effective Hamiltonian through the second order of the per- 
turbation are derived. In Sec. III, the present theory is 
applied to several systems HZ, Be-H2, CO, NO, BN, and 
LiF, and the results- are compared with those of full CI 
or multireference CI methods. Conclusions are made in 
Sec. IV. 

II. THEORY 

A. Formalism of MCSCF reference quasldegenerate 
perturbation theory 

The total Hamiltonian is first split into 

H=p+ V, (1) 

where Hc is an unperturbed Hamiltonian and V is a per- 
turbation. We assume that the Schriidinger equation for 
the unperturbed system, 

HOIr)=E;“)Ir) (2) 

provides a complete set of eigenfunctions { 1 r)) with cor- 
responding eigenvalues (Et”). The exact eigenfunctions 
{ 1 WJ) can be expanded by the basis set { I r)) as 

IYi)= CCrIr). - 
. _ _ 

(3) 
r 
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The zeroth-order wave functions (reference functions) 
in the present theory, which define P space, are state- 
averaged complete active space self-consistent-field 
(CASSCF) wave functions for target states (i). The com- 
plementary eigenfunctions of the CAS CI Hamiltonian (ii) 
and the CSF’s generated by exciting electrons out of the 
CSF’s in the active space (iii) are orthogonal to the refer- 
ence functions and define Q space. These functions are used 
as the basis set to expand the exact wave functions for 
target states. For convenience, we further denote the MC- 
SCF space spanned by functions (i) and (ii), and its or- 
thogonal complementary space spanned by functions (iii), 
R space and S space, respectively. Hereafter, Greek letters, 
capital letters, and lower case letters, are used to denote 
multiconfigurational states, single CSF’s, and general 
states, respectively. 

Since the Hamiltonian with the aforementioned basis is 
diagonal in the active space (R space), the following rela- 
tions are satisfied: 

(VRR)&?= ( Va$4=E:1)64c, 

( VPP>,= ( V)a&zB=E:)Sd, (4) 
vQP= VSP 9 v,,= v,, : (5) 
In a quasidegenerate perturbation theory, the Hamil- 

tonian is block diagonalized by a similar transformation,’ 
SF= U-‘HU (6) 

or 
HU= US??, (7) 

with 
x=xD, ~~ (8) 
%x=0, (9) 

where the suffix D and X denote a block-diagonal part and 
a block-off-diagonal part of an operator A, 

A,=A,+A,, &=A~Q+AQ~. (10) 

I 

I 

1 (n=O), 

@ I= 13 
- fz; ( l-3 I?&,,) ( U$$t+Uj$-” + U$~+U$“) 

Equation ( 16) can be rewritten in explicit Hermite forms9 as 

Rewriting Rq. (7) as 

(2 2) (2 2) 

=(z 2) (7 :QQ)’ 
(11) 

and splitting H into Bc and V, we get the formulas, 

[ uQp,H”l = VQQuQP+ VSPUPP- uQP<~&-@pp>, ( 12) 

~eIT=@puPP+ v,,u,,+ VPPUPP- (U,,- 1 )X&F, (13) 
where Eq. (5) was used. These are basic equations in the 
present quasidegenerate perturbation theory and are equiv- 
alent to Schrodinger equation. However, the transforma- 
tion operator cannot be fully determined only from these 
equations, since there is no equation for Upp. This freedom 
allow us to define some different versions of quasidegener- 
ate perturbation theory. The most familiar condition for 
Upp is the intermediate normalization,5 namely, Upp= 1 
through any order. However, the disadvantage of using 
intermediate normalization is yielding nonsymmetric tran- 
sition dipole moment matrices since the wave functions are 
not orthonormal. Therefore, in the present study, we 
choose Upp so that U is unitary through any order,7P8 

vtU=l. (14) 
Expanding Eqs. (12), (13), and ( 14) as a perturbation 

series, we obtain 
[ Uj-$ 9 Ho] = VQQU&F”+ VspU~pM1) 

n-1 

--7 z1 
ugwyy 

’ (15) 

2rg =-Hoppuj$ + vp&;- l) + vppug- l) 

and 

(16) 

(17) 
(n>O> 

A?gq( u~p-“+vppu~~ + u,, (‘-“‘Vp$Q + U&m”t VspUgi + lJ&--“+VQQlJ~>) 

fl IfI _ z c (1-fso,j-fs2j,i) (U&-j)tU&-i+i)+ Ub;;“+U~~-‘+“)~~~+(H.c.), i=l j=O 

x ( U~p-j)tU~p-'+i+')+u~Q-j)tu(Qai+i+'))~~+H.c. , 
) 

(18) 

(19) 
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where (H.c.) stands for Hermite conjugate terms. Explicit 
formulas at the lowest few orders are 

(aI~~~-1)IP)=E~~c=s48, (20) 

(al~:;+V=i(al V(RsV) IP)+(H.c.L (21) 

<~I~~~w=fbl wtsw--pww) IP) 

+ WC.), (22) 

(al~~)IP>=f(aI(VRts>(V-E~‘))(R,(V-Ed’) 

x (RP) 1 IP) --:<a I ( v& ( RsV) 

x[3ww)+w~9~lIP) 

+ WC.), (23) 

etc., where RS and RQ denote resolvent operators for the S 
space and the Q space, respectively, and are defined for an 
arbitrary operator A as 

<iI (&A) IA 

=UlS(R,AV’lj) 

I 
! = Ey)-EI~) GlA1.f) (if i~S,j~P), 

(24) 
10 (else), 

(il (AR&) Ii> 

=(ilP(A~%)~lj) 

I 1 
= Ei~)-Ey) GlAlj> (if i~P,jeS), 

(25) 
10 (else). 

Equation (4) was used to obtain the third- and the fourth- 
order effective Hamiltonian. 

It is noteworthy that, up to the third order, the effec- 
tive Hamiltonian is expressed by only the states in P and S 
space. Thus full diagonalization of the MCSCF Hamil- 
tonian is not necessary to obtain the second- and third- 
order energy. 

To formulate the perturbation theory uniquely, we 
must defme the zeroth-order Hamiltonian. It is useful if the 
zeroth-order Hamiltonian is a sum of one-particle opera- 
tors, since the zeroth-order energies are immediately ob- 
mined as sums of the eigenvalues. However, the MCSCF 
orbital is not an eigenvector of a one-particle operator, so 
that diagonal part of an operator, which is analogous to the 
Fock operator, is used: 

Ho= C f at a 3 - C ~pa$pc, pq~ P4 PO 4 P4- W-3 
PU 

where ep is defined as the orbital energy. The label (T de- 
notes the spin label. As the matrix fpq, we adopt 

(27) 

where PrI denotes state-averaged one-particle density ma- 
trix. 

There still remains an arbitrariness in choosing the 
MCSCF orbitals because the CASSCF energies are invari- 
ant under the rotation in doubly occupied, active, and ex- 
ternal orbital spaces. The canonical Fock orbital set”-13 
which leads the partially diagonal form in each space of fpq 
and natural orbital set14-16 which leads the diagonal form 
of the one-particle density matrix have been used so far. In 
the present paper we used both the orbital sets. 

Finally, we mention the size consistency of the present 
theory. From diagrammatic treatment, it was proved that 
the perturbation theory with the unitary normalization is 
size consistent through fourth order of the effective Hamil- 
tonian, and is not from the fifth order.8 However, this fact 
is not so disappointing, since rapid convergence is expected 
in the MCSCF perturbation theory, and thus such higher- 
order terms are not required in many practical calcula- 
tions. 

B. Explicit expression for the effective Hamlltonian 
through second order 

It is easy to show that the effective Hamiltonian up to 
first order Z$” is equivalent to the CAS CI in the ref- 
erence space { 1 a)3 and is given by 

Id= ; G,lA), (28) 

(aI~~~-‘)IP)=SnSE~csCF, (29) 
where 1 A) and EycscF denote the CSF belonging to the 
active space and the MCSCF energy, respectively. 

From Eq. (21) the second-order effective Hamiltonian 
is written as the sum-over-states form, 

(al~glP)=f~ bl VI0 E’o’~E’o’ UI Jw) B I 
+ WC.), (30) 

where ) 1) denotes the CSF belonging to S space. Equation 
(30) is further reducible to the sum-over-orbitals form, if 
we use Eq. (28) and substitute the second quantized form 
of perturbation V in Eq. (30), 

v= c (~,,--EpSpq)Epp+; c (ml 4Epq,rs 
P4 P4rs 

= 2 vpqEpq+i c (ml rS)Epq,rs, (31) 
P4 PQ’S 

where E,, and Epq,rs are one- and two-particle generators 
of the unitary group, respectively, and are defined by 

(32) 

E Pq,rS=EPqErS-SqrEPS= c a$&,aso~aqo. (33) 
m7 ’ 

Substituting Eqs. (28) and (3 1) into Eq. (30), we obtain 

Haruyuki Nakano: Quasidegenerate perturbation theory with MCSCF 7985 

J. Chem. Phys., Vol. 99, No. 10, 15 November 1993 



7986 Haruyuki Nakano: Quasidegenerate perturbation theory with MCSCF 

( I( A c vpqEpq+; c (PqI -pq,m) ( p;, Ep,-EP,~&‘-Ef~ Ep’q’ 
P4 Pqrs B  

+1 lx 
(p’q’ I r’s’) 

2 ptqlr’sr (0 (0) Ep’qt,rw 
)I ) 

B  +W.c.), E p,-~q,+~,r-eE,r+EB’-EB (34) 

where Eg) and Eb”) are the zeroth-order energies of the CSF I B) and the state Ifi), respectively; that is, 

E&?‘= cppep (pp=O, 1, or 2), 
P 

(35) 

Ep’= c, (PI EppIPkp, 
P 

(36) 

where pp is the occupation number and (p I E;td I B)- the averaged occupation number. The set of suffix in the summation 
{p’, q’) and { p’, q’, r’, s’) are restricted so that the intermediate states belong to the S space. Hence, the following types 
of generators Eptqt and Ep,q’,r~s, appear as 

E P’4’ * *Ee, , Eei, Eai, 

)E ea, ii 9 Eei, jj 7 Eai, jj 3 Eii, ea 7 E, ej 3 E, aj 

E ei, ia 9 Eei,ijt Eai,ij 3 Eia,ei 7 Eij,ei, E, oi 

E p’q’,r’s’ : <E ea, fb 3 E ea, fi 3 Eei, fa 3 Eei, fj 7 
E ea,bc 9 E ea,bi? Eei,ob, Ee,ajt Eab,ec, Eab,ei, Eai,eb, Eai,ej’ 

.Eab,ci, Eai,bc, Ea,bj 

where {i, j), (a, b), and {e,f) denote doubly occupied, active, and external orbital labels, respectively. 
Before deriving the fkal form of the second-order effective Hamiltonian, we redefine the one-particle perturbation 

operator by 

upq=upq+ c r2(Pqlw---(P~l~q)l, 
i 

(37) 

where the s&ix i runs over doubly occupied orbitals, and define the difference between Eg’ and Eg’ by 

AEBB-- -@‘-Ej,@. 

Ordering the generators in Eq. (34) to normal products with only active orbital labels, we obtain 
(38) 

+ c (Al EPql  ‘) 
uiq”pi UpeUeq 

PI 
F Ep-Ei+AEBg- ; Ee-+AEBB- ’ ‘i;a~:;~:;;q~:;B;‘l 

ia’ 

_ c [2(ia’IPg)-(iqlPa’)lu,,i+ c (ja’Iiq>[2(a’jIPi)-(a’ilpj)l 
ia’ E,t--Ei+ AE, ija’ E,r - Ej+Ei-Ei+AEBp 

_ I: (ia’Ipb’)[2(a’ilb’q)-(a’qlb’i)] 

ia’b’ Ea,-6i+Ebt -eq+ AEBB + c U I-‘Jpq,rsI B) 
Pqrs 

7 ; -,“ie’“r!?;,E, 
P r s 

- T  E _,‘~~‘“~;,E~~+ 7 ,pF;i;f;BB- 7 e;$r;B 
e q r s 

‘c ~~ (iqljs)(pflrj) lc (pa’ I re) (a’ql es> lc (pe I ra) (eql as) 
-Z ij Cp-ei+er-ej+AEBpaZ ate ~~t-~q+~~-~~+hE~~-Z ae ~e-~q+~~-c~+AEB~ .. 

+ 3 
(pa’liq)(a’ilrs) 

+ = 
(pa’/ is)(a’ql ri) - .-_- 

E r--E.+E --E +AE a I i- s BB iat E,P--~+E,--~+AEBB 
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TABLE I. (a) Diierence of total energy from full CI for H,(‘I:) in a.u. (b) Difference of total energy 
from full CI for H2(32i) in au. The symbol re denotes the bond length of the ground state, 1.4 a.u. 

Geometry f-e 1.5r, 2.0r, 100 a.u. 

Fit state 
CASSCF 

Present (canonical) 
Present (natural) 

Full CI 
Second state 

CASSCF 
Present (canonical) 

Present (natural) 
Full CI 

(b) Fit state 
CASSCP 

Present (canonical) 
Present (natural) 

Full CI 
Second state 

CASSCF 
Present (canonical) 

Present (natural) 
Full CI 

0.014 659 0.007 784 0.001619 
0.001620 0.000 670 0.000 276 
0.001447 0.000 613 O.CMXl283 

-1.167438 -1.121311 - 1.063 509 

0.006 455 
o.ooo 773 
0.000 85 1 

-0.533 483 

0.001400 
o.oao 179 
o.rMo 079 

-0.777 953 

0.001975 0.001960 0.000 878 
0.000 245 0.000 423 0.000 086 
0.000 247 0.000 506 o.cmo 145 

-0.381 853 -0.471 847 -0.477 448 

0.002 438 0.004 408 0.005 144 
0.000 278 0.000 448 o.oca 191 
0.000 296 o.ooo 444 OX’3 185 

-0.533 899 -0.589 810 -0.496 940 

0.002 478 
o.ooo 294 

-0.ooo 007 
-0.906 507 

0.001311 
o.ooo 122 
o.wo 003 

-0.961301 

O.OW 058 
o.cxlo 007 
o.ooo 007 

-0.999 619 

o.oMl ooo 
o.cooom 
o.ooa ooo 

-0.999 619 

o.ooo ooo 
o.ooo ooo 
o.ooo ooo 

-0.478 555 

_ c (ia’Ipq)[2(a’ilr$-((ai’s( 

ia’ E~~--E~+E,-~E,+ AEBs + c (AIE 
pqrstu 

pq,‘% tuI B)( 7 Ep!$+~;l~;EBp ;~ 
I 

(pelrs)(eq104)‘w 
- T  ee-cq+et-eY+AE~)] +(H’c’)’ (39) 

The Epq, rs, tu is the three-particle generator defined by (a’, b’) run ‘over both active and external orbitals, and the 
sufhx of the generator ( p, q, r, s, t, u) run over only active 

E pq,rs,tu= E ai at izi 
cm’d’ pu rd to”aud~aso~aqa. (4.0) 

The orbital labels {i, j), (a), and {e) are for doubly oc- 
cupied, active, and external orbitals, respectively, and 

orbitals. 
The present method has some computational merits as 

compared with the MR-CI method. First, neither diago- 
nalization of large matrix nor solving large scale linear 

TABLE II. Spectroscopic constants for H,. 

re 6) D, (ev) w, (cm-‘) 

x ‘2f z 

E ‘X+ I 

F IX+ B 

e ‘2+ cl 

CASSCF 0.7571 4.174 4329 
Present (canonical) 0.7426 4.523 4522 

Present (natural) 0.7423 4.527 4525 
* Full CI 0.7401 4.567 4551 
CASSCF 0.9023 1.282 3116 

Present (canonical) 0.8893 1.268 3272 
Present (natural) 0.8895 1.267 3270 

Full CI 0.8875 1.278 3290 
CASSCF 2.3413 4.864 1371 

Present (canonical) 2.3367 4.870 1381 
Present (natural) 2.3367 4.870 1381 

Full CI 2.3363 4.870 1381 
CASSCF 1.3486 1688 

Present (canonical) 1.3396 1727 
Present (natural) 1.3398 1717 

Full CI 1.3356 1723 
..: .-~.:.- . .^ _~ .- _. ., : 
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TABLE III. The difference of total energy from full CI on the C,, insertion pathway for Be-H,( ‘A,) in a.u. 

Geometry a b C d e f g h i 

First state 
CASSCF 0.006 11 0.006 88 0.006 36 0.004 79 6.005 25 0.008 13 0.009 60 0.008 11 0.007 44 
CCMC= o.ooo 30 0.m 54 0.00150 0.002 63 OX02 33 0.001 83 0.001 18 o.ooo 16 o.ooo 29 
QD-MBPTb -0.007 96 -0.010 01 -0.008 51 -0.003 05 -0.00190 -0.001 14 -0.003 15 - 0.002 59 
Present (canonical) 0.001 35 0.00151 0.00142 0.00109 0.00106 0.001 33 0.001 13 0.00173 0.00150 
Present (natural) 0.00134 0.00144 0.00142 0.001 11 O.Wl 14 0.00143 0.001 12 0.00170 0.00149 
Full CIc - 15.778 84 - 15.736 92 - 15.674 51 - 15.622 58 - 15.602 63 - 15.624 79 - 15.692 97 - 15.736 47 - 15.762 63 
Second state 
CASSCF 0.004 69 0.0063 1 0.009 49 0.010 19 0.009 75 0.007 58 0.010 81 0.009 84 0.005 83 
CCMC= 0.001 50 0.00180 0.00100 0.002 00 do02 50 0.002 50 0.00150 0.00120 0.00130 
QD-MBPTb -0.010 27 -0.co4 80 0.001 10 o.ooo 09 -0.00179 -0.003 01 -0.00132 -0.020 89 
Present (canonical) 0.00130 0.00168 0.00174 0.002 06 0.00193 0.00128 0.00164 0.002 82 o.ooo 59 
Present (natural) 0.00131 0.00174 0.002 07 0.002 24 0.002 00 0.001 33 0.00177 0.002 92 o.ooo 59 
Full CI” - 15.407 44 - 15.414 03 - 15.442 74 - 15.524 50 - 15.553 95 - 15.535 21 - 15.46174 -15.453 22 -15.475 36 

“Reference 19. 
bReference 21. 
‘Reference 20. 

equation is necessary. Second, the larger block-diagonal 
part of the Hamiltonian, Hee, is not necessary. Thirdly, 
the integral transformation for the two-electron integrals 
with three and four external orbital labels is not necessary. 

Since the codes of the present method and of the 
MR-CI method were not fully optimized, the comparison 
of the computational time is not so meaningful. However, 
the CPU time to compute Eq, (39) is less than or almost 
equal to the time of one iteration in the MR-CI method, 
which suggests the efficiency of the present method. 

Ill. APPLICATIONS 

The present method was applied to several molecular 
systems for illustrating its performance. The results will be 
compared with those of full CI or multireference CI 
method using the same basis set and the same reference 
space. The target states were the lowest two states in the 
same spin and symmetry. 

A. Hydrogen molecule (‘Xi states and 3XEu+ states) 

38,f 
Calculations of potential curves for ‘ZZ’g+ states and 
states of the hydrogen molecule have been performed 

using triple-zeta plus polarization (orbital exponent 1.0) 
basis set.i7 The orbitals, lo*, la,, 2as, and 2a, were cho- 
sen to be active, which are necessary for proper dissocia- 
tion of the lowest two states of ‘Zg’ and “2:. 

TABLE IV. Vertical excitation energies for Be-H,( ‘A, ) in a.u. 

The total energies at some selected internuclear dis- 
tances are shown in Tables I(a) and I(b). These tables 
show that the present method provide very close energies 
to those of full CI method for both the ground and excited 
states. For 1 ‘2: state, the CASSCF description was poor 
near the equilibrium structure; the deviation at r= 1.4 bohr 
was 14.7 mhartree. The present method reduced it to 1.6 
mhartree (for the canonical Fock orbital). For 38z states, 
compared to the largest deviation of the CASSCF, 2.5 
mhartree, that of the present method was only 0.5 mhar- 
tree. About 85%-90% of the dynamic correlation has been 
recovered by the present method. 

Table II shows the spectroscopic constants for the 
bound states, i.e., X ‘Xi, E ‘Xz, F ‘Ez, and e32$. The 
present method provided very close values to the full CI 
results. The deviations for X ‘2: state, for example, were 
only 0.0025 A, 0.044 eV, and 29 cm-‘, in the bond length, 
the dissociation energy, and the vibrational frequency, re- 
spectively. 

6. C,, Insertion pathway for BeHP 

The potential curves of the perpendicular (C’s,) inser- 
tion of Be into HZ were calculated. Many works18-20 have 
been done for this system for some reasons. First, several 

Geometry 

CASSCF 
CCMC 
QD-MBPP 
Present (canonical) 
Present (natural) 
Full CI’ 

a b c d e 

0.369 98 0.322 32 0.234 90 0.103 48 0.053 18 
0.09745 -^- 0.372 60 0.324 15 0.231 27 0.048 85 

0.369 09 0.328 10 0.241 38 0.101 22 0.048 79 
0.371 35 0.323 06 0.232 09 0.099 05 0.049 55 
0.371 37 0.323 19 0.232 42 0.099 21 0.049 54 
0.371 40 0.322 89 0.231 77 0.098 08 0.048 68 

f 
p.089 03 
0.090 25 
0.087 71 
0.089 53 
0.089 48 
0.089 58 

g h 

0.232 44 0.284 98 
0.231 55 0.284 61 
0.233 06 0.264 95 
0.231 74 0.284 34 
0.231 88 0.284 47 
0.23 1 23 0.283 25 

i 

0.285 66 
0.288 28 

0.286 36 
0.286 37 
0.287 27 

%&mated from Refs. 19 and 20. 
bReference 2 1. 
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IS ’ ” I a  ” 8  I ” 

-129.0 \ 

5T 
i% 
!z 
s-15.6- 
6 
& 
5 

’ CASSCF 

’ MR-QDPT 

-15.8’o;o ’ ’ m  ’ p ’ ’ I ’ 2.0 4.0 
Be-H2 Distance (bohrs) 

FIG. 1. CASSCF, full CI, and MCSCF reference QDPT potential curves FIG. 3. CASSCF, MR-SCDI, and MCSCF reference QDPT potential 
on C,, insertion path way for Be-H,(‘AJ. curves of two lowest states of NO (211). 

contigurations are necessary to describe the reaction, and 
thus it is suited to test the reliability of multireference 
based methods. Second, the system is small enough to al- 
low us to carry out the full CI calculation. 

The geometries and the basis set were identical to those 
in Refs. 20 and 21. The orbitals 2al, 3a1, lbl, l&, 2b2, 
and 4al were active, and lal, which corresponds to the 1s 
orbital of Be, was optimized in the CASSCF calculation, 
but frozen in the perturbation calculation. The results are 
shown in Table III(a) with those of multiconfigurational 
coupled cluster method’g’20 (CCMC), quasidegenerate 
many-body perturbation theory (QD-MBPT) ,21 and full 
CI method.‘g120 The potential curves are illustrated in Fig. 
1. From Table III it is estimated that the present method 
yielded 77%-88% and 72%-90% of dynamical correla- 
tion energy for the ground and the excited states, respec- 
tively; and the percentage averaged over the geometries 
and the states is 80%. In the CCMC method, 45%-98% 
and 67%-88% of dynamical correlation were reproduced 
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FIG. 2. CASSCF, MR-SDCI, and MCSCF reference QDPT potential FIG. 4. CASSCF, MR-SDCI, and MCSCF reference QDPT potential 
curves of two lowest states of CO(‘E+). curves of two lowest statea of BN(‘II). 
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for the ground and the excited states, respectively; and the 
average is 79%. We can say that the present method is 
comparable to the CCMC method as for energy. However, 
the present method is more efficient, since in the CCMC 
method, the reference MCSCF ( 18 CSF’s) wave function 
was optimized for each state and coupled cluster equation 
was also solved separately; on the other hand, in the 
present method, state-averaged CASSCF (37 CSFs) was 
performed to construct the reference states once, and the 
two states were obtained simultaneously in perturbation 
calculation. We note that the state-specific 18-CSF MC- 
SCF energieS used in the CCMC calculations were lower 
than those of the present state-averaged 37-CSF CASSCF 
for the excited state. The 18-CSF MCSCF ground state 
energies were not given in Ref. 20. 

The quasidegenerate perturbation method21 overesti- 
mated the correlation energies. At geometries d, e, f, and g, 
this method gave good results; however at geometries a, b, 
and c, the errors were greater than those of CASSCF. 
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FIG. 5. Single-reference-state MCSCF PT, full CI, and MCSCF reference 
QDPT potential curves in avoided crossing region for LiF, where 
“CASSCF PT(ave.)” and “CASSCF PT(opt.)” denote single-reference- 
state MCSCF PT using state-averaged CASSCF orbital and that using 
state-specilic CASSCF orbital optimixed for the ground state, reqec- 
tively. 

In Table IV, the vertical excitation energies are shown. 
The present method improved the CASSCF excitation en- 
ergies at all geometries, while the other methods did not at 
some geometries. This indicates that the present method 
provides reliable estimates for, not only the absolute value 
of energy, but also the relative value. 

C. CO (X ‘8+ and B ‘8+), NO (X *II and B *II), 
and BN (X 311 and A “Ii) 

The potential curves of CO, NO, and BN were calcu- 
lated using double-zeta basis set,22 which is ‘the [4s2p] 
Dunning contraction of the Huzinaga (9s5p) primitive set. 
Although the basis set is small, it is sufficient to check the 
performance of the present method. Since the full CI cal- 
culation is difficult to be performed, the multireference sin- 
gle and double excited CI (MR-SDCI) method using the 
same orbital and reference space was employed for com- 
parison. 

In the CASSCF calculations, six orbitals (3a, 40, In; 
and 2~) were used to construct the active space for CO 
and NO, and seven orbitals (2a, 3a, 4a, In, and 27r) for 
BN. The la core orbitals and its corresponding virtual 
orbitals were not correlated in the present and the MR- 
SDCI method in order to reduce the number of CSF in the 
CI method. 

11 I* I I I * 8 I1 ( 
8.0 10.0 12.0 
U-F Distance (bohrs) 

57 
02 8 

!a 
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2 
“E 0’ a, 
a, 
2 

3 
007 

8 

FIG. 6. Difference between the two diagonal elements of the effective 
Hamiltonian which are equivalent to the ground and excited states energy 
splitting by the single-reference-state MCSCF PT, and off-diagonal ele- 
ment. 

The potential curves in the region r,-2.07, are illus- 
trated in Figs. 2, 3, and 4. In this region, the deviations of 
the CASSCF energy from the MR-SDCI results were 0. lO- 
0.11 hartree for CO and NO, and 0.05-0.08 hartree for 
BN. These were reduced by the present method to 14, 8, 
and 12 mhartree for CO, NO, and BN, respectively. The 
81%-99 %  of the error from the MR-SDCI results has 
been recovered by the present method. 

In many cases, the relative energies between merent 
geometries or different electronic states other than the total 
energy itself are important to characterize the potential 
curves. In Table V, vertical excitation energies are shown. 
The results of the present method agreed well with the 
MR-SDCI data. The difference was less than 3 mhartree. 
To estimate the shapes of the potential curves, which is 
crucial for dynamics, we further examined the change of 
the error along the bond distance, and found that the 
present method gave the improved potential curves where 
the changes were smaller than those of CASSCF. In the 
present method, the changes of the error were 7, 6, and 7 
mhartree for CO, NO, and BN, respectively; on the other 
hand, they were 19, 23, and 30 mhartree in the CASSCF 
method. 

D. Ionic-neutral curve crossing in ‘9 states of LiF 

Finally, we investigated ionic-neutral curve crossing 
between the two lowest *Zf states of LiF as an example of 

TABLE V. Vertical excitation energies for CO, NO, and BN in au. 

CO(x’Z++B’2+) NO(XZII+B211) BN(X”II-+A 311) 
r 2.1504 bohr 2.20 bohr 2.4931 bohr 

CASSCF 0.39043 0.27480 0.13921 
Present (canonical) 0.37887 0.27303 0.12922 
Present (natural) 0.37870 0.27271 0.12956 
MB-SDCI 0.37630 0.27442 0.12922 
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TABLE VI. Total energies for Lii in a.u. 

r (a.u.) 

First state 
CASSCF (av.)” 
CASSCF (opt.)b 
MCSCF PT (av.) 
MCSCF PT (opt.) 
Present’ 
Full CId 
Second state 
CASSCF (av.) 
MCSCF PT (av.) 
Present 

6.5 7.5 8.5 9.5 10.5 11.5 12.5 

- 106.885 92 - 106.865 72 - 106.853 10 - 106.848 36 - 106.847 23 - 106.846 95 - 106.846 90 
- 106.938 77 - 106.899 36 - 106.886 09 - 106.875 48 - 106.866 83 - 106.862 30 - 106.862 30 
- 106.985 83 - 106.960 45 - 106.936 50 - 106.922 16 - 106.918 67 - 106.917 92 - 106.917 73 
- 106.99148 - 106.969 10 - 106.952 10 - 106.938 82 - 106.928 20 - 106.919 54 - 106.916 84 
- 106.990 75 - 106.970 03 - 106.953 97 - 106.938 46 - 106.926 80 - 106.919 53 - 106.917 89 
- 106.994 85 - 106.970 82 - 106.953 23 - 106.939 Sl, - 106.929 28 - 106.92199 - 106.920 46 

- 106.832 10 - 106.834 21 - 106.832 30 -106.825 13 - 106.816 41 - 106.808 45 - 106.80160 
- 106.913 91 - 106.920 73 - 106.929 52 - 106.930 49 - 106.923 54 - 106.915 88 - 106.909 05 
- 106.908 99 -106.911 15 - 106.912 06 - 106.914 19 - 106.915 41 - 106.914 27 - 106.908 88 

‘State-averaged CASSCF. 
&ate-specific CASSCF optimized for the ground state. 
‘Only canonical Fock orbital was used. 
dReference 23. 

a system which complicated by root flipping due to strong 
interaction. Bauschlicher et al.23 studied this system with 
full CI and MR-CI methods. We also calculated potential 
curves of the two lowest states in the ionic-neutral curve 
crossing region using the present theory and the single- 
reference-state MCSCF perturbation theory for compari- 
son. The basis set used was the same as that used by 
Bauschlicher et aL23 Active orbitals were 40; 5a, lrr, and 
27r orbit&, which corresponds to F(2pa), Li(2s), 
F( 2~77)) and Li( 2prr), respectively, in the dissociation 
lim it. The orbitals la, 2u, and 30 were frozen in the per- 
turbation calculation. Only the canonical Fock orbital was 
used. 

Results are shown in Table VI and Fig. 5. The single- 
reference-state MCSCF perturbation theory using the 
state-averaged CASSCF orbital did not yield correct po- 
tential curves, since the two curves are crossing. The two 
energies at 9.5 bohr and 10.5 bohr are in the reverse order 
to those of CASSCF. On the contrary, the present method 
gave correct potential curves, and the maximum error from 
full CI energy was 4.1 mhartree for the ground state. (For 
the excited state, results by the full CI method have not 
been reported.) 

The difference between the two diagonal elements and 
the off-diagonal element of the effective Hamiltonian are 
shown in Fig. 6. From Fig. 6 it can be seen that the off- 
diagonal element is very large ( - 2 X 10v2 hartree) . If we 
apply the single-reference-state MCSCF perturbation the- 
ory with state-averaged MCSCF orbitals, which is equiva- 
lent to the diagonal elements of the effective Hamiltonian, 
such strong interaction cannot be taken into account. On 
the contrary, in the present theory the interaction can be 
included as the off-diagonal element of the effective Hamil- 
tonian naturally. 

The single-reference-state MCSCF perturbation theory 
using the CASSCF’ orbital optimized for the ground state 
yielded good results. The maximum error was 3.6 mhar- 
tree, which is nearly equal to that of the present method. 
However, for the excited state at all geometries shown in 
Table V, CASSCF itself did not converge. Both the single- 
reference-state MCSCF perturbation theory based on state- 

averaged CASSCF and that based on state-specific 
CASSCF failed to describe the excited state. It is noted 
that the present method could obtain both of them. 

IV. CONCLUDING REMARKS 

A quasidegenerate perturbation theory based on MC 
SCF reference functions has been derived. The theory re- 
tains all of the attractive features of single-reference-state 
MCSCF perturbation theory and, moreover, has the ad- 
vantages of traditional quasidegenerate perturbation the- 
ory as ( 1) several states interested in can be obtained si- 
multaneously, (2) it can be applied to the degenerate or 
quasidegenerate systems, and (3) the interstate matrix el- 
ements, such as transition dipole moment, can be calcu- 
lated in the same manner to obtain the effective Hamil- 
tonian. 

The formalism of MCSCF reference quasidegenerate 
perturbation theory has been presented and the working 
expression for the second order effective Hamiltonian, 
which has been reduced to molecular integrals and orbital 
energies, has been derived. It was applied to several sys- 
tems as Hz, Be-H2, CO, NO, BN, and LiF; and it was 
shown that the present method yields good results which 
agrees well with those of full CI or MR-CL In particular, 
in the case of LiF, the single-reference-state MCSCF per- 
turbation method could not provide both the ground and 
the excited states, while the present method could give 
both. 

The present perturbation theory can provide several 
solutions even if they interact strongly, and the results are 
fairly good. Moreover, computational costs of the present 
method are much smaller than that of MR-CI. We expect 
the MCSCF reference quasidegenerate perturbation theory 
is useful in the wide region of the calculations for electronic 
state. 

In forthcoming papers, the CSF based calculation of 
the MCSCF reference QDPT with Epstein-Nesbet parti- 
tion24 and dipole and transition dipole moments calcula- 
tions will be presented. 
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