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A computational approach to the evaluation of helical twisting powers (HTP) of chiral metal complexes of
[Ru(blade)2(backbone)] type is presented. The dopant contains helically attached ‘‘blade’’ ligands and an elongated
‘‘backbone’’ ligand, and some remarkably powerful examples have been reported. In this work, the observed HTP is
interpreted in terms of a microscopic interaction of a dopant and host molecules with atomistic details. For this purpose, the
stable structure of a triad system comprising a dopant and two host molecules was obtained by geometry optimization using
Gaussian03. As a result, the host molecules interacted attractively with the dopant, being twisted in the same direction as
observed experimentally. Interaction energy was assessed as a function of the dihedral angle between the two host molecules,
leading to a quadratic dependence with a minimum at the equilibrium twisting angle of �32�. Based on this, the expression
was derived, in which helical twisting power was given in terms of the equilibrium twisting angle of a pair of strongly
interacting host molecules. [DOI: 10.1143/JJAP.44.4067]
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1. Introduction

Chirality is an important factor in liquid crystal technol-
ogy.1) It is well-known that a nematic phase (host) transits to
a chiral nematic phase, when a small amount of chiral
molecules (dopant) are dissolved. Capability of such a
dopant effect is expressed in terms of helical twisting power
(HTP; denoted as �) as defined below:2)

� ¼
@P�1

@X

� �
x!0

ð1Þ

where P�1 is the inverse of a pitch and x the molar fraction
of a dopant. In order to develop a dopant with high �, it will
be of vital importance to reveal the relation of � with its
molecular structure. As far as we know, there have been
reported several works predicting a helical twisting power
by studying the molecular surface of a dopant.3–12) Accord-
ing to refs. 3 and 4 the alignment of a dopant molecule is
determined by the interaction of its chiral surface with a
locally nematic medium. No specific interaction, however,
between a dopant and host molecules is taken into account.

Recently we have been interested in the ��-isomerism of
transition metal complexes as a source of chirality in liquid
crystals.13,14) It is reported that �-[Ru(acac)2L], in which L
and acac denote a mesogenic derivative of 4,40-bipyridine
(or 5,50-(4-octyphenyl-oxycarbonyl)-2,20-bipyridyl), and
acetylacetonate ligands, respectively, gives an extremely
high � (�180 mm�1) when it is doped in N-(4-methoxy-
benzylidene)-4-n-butylaniline (MBBA). The high value of �
for these molecules may be related to the presence of the
host molecules which interact strongly with a dopant
molecule. The large twisting of such host molecules may
exert a torque, inducing the sequential twist of other host
molecules. In order to examine such a possibility, we have
performed the theoretical simulation on the microscopic
structure in the vicinity of a dopant molecule. It was
attempted to elucidate a simple model for helical twisting

power on the basis of the strongly attractive interaction
between the host and dopant molecules.

2. Calculation Method

The interaction of a dopant with host molecules was
studied by calculating the configuration of a triad system
consisting of �-[Ru(acac)2L] and two MBBA molecules.
For simulation, it was assumed that the potential energy of a
dopant molecule was determined by the intermolecular
interaction of a dopant and two host molecules.

Several typical cases were selected as an initial config-
uration of hosts around the dopant by placing two host
molecules. The rod-like ligand L in �-[Ru(acac)2L] was
expected to assist the dopant’s orientational ordering.
Therefore, while one of the two host molecules (denoted
by molecule A) was laid along the long axis of L in the
calculations, the other (denoted by molecule B) was posi-
tioned at the chiral void space between the two acac ligands.

At first, a dopant molecule was assumed to be �-
[Mg(acac)2L] with no d-electron instead of �-[Ru(acac)2L]
with six d-electrons. This was because the contribution of
d-electrons to interaction energy was expected to be
negligible. The interaction of ligands of a dopant with
MBBA was thought to be a main factor in stabilizing the
system. The geometry optimization of the system was
performed at the HF/3-21G�� level for [Mg(acac)2L] with
the Gaussian03 program.15) The association energy (�E)
was calculated with reference to the energy of a system
consisting of dummy atoms corresponding to either a dopant
or hosts. Calculation was made by using ‘‘Counterpoise’’
command. �E was obtained using HF/6-31G�� by the
following equation:

�E ¼ E ðhosts and a dopantÞ
� E ðhosts and a dummy dopantÞ
� E ðdummy hosts and a dopantÞ

ð2Þ

After such an optimization procedure, the energy of the
triad system was calculated by varying the twisting angle or
the dihedral angle of O–N–O–N of two host molecules. This�Corresponding author. E-mail: h-sato@eps.s.u-tokyo.ac.jp
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time, more precise energy was calculated for [Ru(acac)2L]
in which HF/LANL2DZ was used for Ru(II) atom and HF/
6-31G�� for other atoms. Here molecule B rotated around an
axis connecting its molecular center and an Ru atom of the
dopant with molecule A fixed. The energy as a function of
the dihedral angle thus obtained was regarded as a potential
energy curve for the twisting of two host molecules at the
vicinity of a dopant.

3. Results

The geometrical optimization was performed for the
triad system of one dopant and two host molecules. Here
the dopant molecule (�-[Ru(acac)2L]) was assumed to take
the orientation in which the long axis of L oriented in
the direction of the nematic director of host medium.
Figure 1 shows the optimized structure of the dopant (�-
[Ru(acac)2L]). Figure 2 shows an example of the stable
configuration for the triad system under such orientation.
The dihedral angle of two hosts (O–N–O–N) was estimated
to be �32�, being taken to be less than 90�. The twisting
direction of these two host molecules was coincident with
the left-handed helicity as observed for the chiral nematic
phase induced by�-[Ru(acac)2L]. The association energy of
MBBA molecules with the dopant was obtained to be
�18 kJmol�1 according to eq. (2). Figure 3 shows the

Fig. 1. The optimized molecular structure of �-[Ru(acac)2L].

Fig. 2. The optimized structure of the triad system consisting of �-[Ru(acac)2L] and two MBBA molecules.
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Fig. 3. The dependence of potential energy on the dihedral angle of two

MBBA molecules. The potential curve was plotted as a function of a

twisting angle of molecule B around the dopant when the distances

between the host molecules and the dopant were fixed. The value of nl
was taken to be 2 ( ), 3 ( ) and 4 ( ). The solid curve corresponded to

the quadratic fitting.
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calculated potential curve as a function of the dihedral angle
of two MBBA molecules. The distances between hosts
molecules (A or B) and a dopant were fixed at the value
corresponding to the optimized structures. As shown in the
figure, the potential curve takes a minimum value in the
range of �30 to �37�.

The computational results revealed that two MBBA
molecules associated with �-[Ru(acac)2L] twisted in the
same direction as observed in the experiments.14) The most
stable twisting (2�e) was, however, far greater in size than
the average twisting angle (�̂�) of a host in a bulk medium.
For example, the value of �̂� is only �0:04� per a molecular
dimension (0.4 nm) for a typical case of p ¼ �3:3 mm at
x ¼ 0:6% for our dopant.14) In order to obtain the helical
twisting power from the present simulation results, it is
necessary to relate the large twist in the vicinity of a dopant
to the thermally averaged twist in a bulk medium.

We approximate the host molecules as cylinders, and a
chiral nematic phase consisting of stacked slices of nematic
layers of thickness d. Let those which are distant from a
dopant molecule (denoted by host 0) twist by the averaged
angle, �̂�, and those which are in contact with the dopant
(denoted by host 1) twist by an arbitrary angle of � (Fig. 4).
It should be noted here that � differs from �e, because host 1
molecules may be partially unwound by their neighboring
host 0 molecules. A set of parameters on the molecular scale
are defined for convenience as each of the twist angles
divided by the molecular thickness (d):

q̂q ¼ �̂�=d

qe ¼ �e=d ð3Þ
q ¼ �=d

The free energy of the system is then given by the following
equation:

Fðq; q̂qÞ ¼ Nd f ðqÞ þ
1

2
nlNdK̂K

0
22ðq� q̂qÞ2 þ

1

2
NhK̂K

0
22q̂q

2 ð4Þ

Here, the first term is the stabilization energy of a dopant
molecule interacting with host 1 molecules in which Nd

denotes the number of dopants. The third term gives the
twist deformation energy of host 0 molecules (K̂K 0

22 ¼
K̂K22=d

2). The second term is introduced to account for the
excess torsional energy accumulated at the boundary
between host 0 and host 1 molecules, the number of which
is designated by nl. For the potential curve of f ðqÞ, the
simulation results as shown by Fig. 3 are applied, in which
the curve is approximated by the following quadratic form:

f ðqÞ ¼
�

2
ðq� qeÞ2 �

�

2
qe

2 ð5Þ

Here a parameter, � corresponds to the curvature of the
calculated potential curve in the vicinity of q ¼ qe.

The equilibrium helical state is determined by minimizing
the free energy in eq. (4) with respect to the variation of both
q̂q and q. It is necessary to know the relation between q̂q and q.
Such a relation should be sought by solving how a large
twist generated near a dopant exerts a torque over distances
through a bulk chiral nematic medium.16) The calculation
seems to be beyond the present work. Instead, the relation
between q̂q and q was simply derived on the assumption of
the local winding and unwinding equilibrium to take the
minimum of the first and second terms in eq. (4) for the
variation of q at a fixed value of q̂q:

@

@q
Nd f ðqÞ þ

1

2
nlNdK̂K

0
22ðq� q̂qÞ2

� �
¼ 0 ð6Þ

Equation (6) leads to the following relation:

q ¼
�qe þ nlK̂K

0
22q̂q

�þ nlK̂K
0
22

¼
qe þ �q̂q

1þ �
ð7Þ

In other words, q is a weighed average of qe and q̂q. The
weighting factors may be handled more easily by introduc-
ing their ratio � as below.

� ¼
nlK̂K

0
22

�
ð8Þ

We consider two extreme cases depending on the magnitude
of �.
Case 1: � � 1. This is a situation where host 1 molecules
are trapped deeply in the dopant’s potential. Under this
condition, we obtain

q ¼ ð1� �Þqe þ �q̂q ð9Þ

The total free energy in eq. (4) was minimized with respect
to the variation of q̂q, leading to the following result:

@F

@q̂q
¼ ���2ðqe � q̂qÞNd � nlNdK̂K

0
22ð1� �Þ2ðqe � q̂qÞ

þ NhK̂K
0
22q̂q ¼ 0

ð10Þ

Or

NhK̂K
0
22q̂q ¼ ��2ðqe � q̂qÞNd þ nlNdð1� �Þ2ðqe � q̂qÞK̂K 0

22

¼ �ðqe � q̂qÞNdð�2 þ �ð1� �Þ2Þ
¼� ��ðqe � q̂qÞNdð1� �Þ

ð11Þ

θ

θ

Fig. 4. The schematic drawing for the association of host molecules with

a dopant. The molecules (host 1) in the vicinity of the dopant twist by the

large angle of �, while the molecules (host 0) apart from the dopant twist

by the small angle of �̂�.
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Neglecting the terms of the first order of �, the following
equation is derived for �:

� ¼
ð1� �Þ
2�

nl�e

d
�

nl

2�d
�e: ð12Þ

Case 2: � � 1. This extreme corresponds to a shallow
potential, and hence only a weak rewinding.

q ¼
1

�
qe þ q̂q ð13Þ

Under this relation, the second term in eq. (4) is constant as

1

2
nlNdK̂K

0
22

1

�

� �2

q2e :

Thus minimization was performed by neglecting the second
term for the variation of q̂q. This leads to the final equation
for � as below:

� ¼
�e

2�K̂K 0
22d

� ð14Þ

Equation (14) is coincident with the usual mean field
formulations based on the continuum model.3)

� ¼
1

2�K̂K 0
22

@ f ðqÞ
@q̂q

� �
q̂q¼0

; ð15Þ

since

@ f ðqÞ
@q̂q

� �
q̂q¼0

¼
��e

d
: ð16Þ

The magnitude of parameter � was estimated for the
present system as below. According to our molecular
modeling, at least two host molecules bind strongly as
shown in Fig. 2. Thus nl is taken to be 2 as the minimum
value, and K̂K 0

22 ¼ 7:9� 10�21 Nm (for MBBA from ref. 3)
and � ¼ 2:6� 10�18 Nm (from Fig. 3). Inserting these
values to eq. (8), � is calculated to be 0.006. This value is
much less than unity, leading to the conclusion that the
present case should be described as Case 1 (� � 1).
Inserting d ¼ 0:45 nm (typical breadth of aliphatic chains
in liquid crystals) and 2�e ¼ �32� into eq. (12), � is
calculated to be �200 mm�1.

In estimating the probable value of nl, we took nl ¼ 2 as a
first choice. This value was chosen on the assumption that
the upper and lower host molecules around a dopant would
be most strongly influenced by the helical nature of the
dopant. We also made further simulation for the case of
nl ¼ 3, in which three MBBA molecules were placed in
contact with a host as nearest neighbors [Fig. 5(a)]. All host
molecules were found to twist largely. The dihedral angle
was obtained to be �29� or �26� for pairs of A=B or A=C,
respectively. Taking into account the variation of the
dihedral angle and nl (2–3) as the error range, � was
estimated to take a value of �200 to �275 mm�1.

In order to see the possibility of nl > 3, we made
simulation for the system in which two MBBA molecules
(denoted by A and B) and one MBBA molecule (denoted by
C) were placed in direct contact with a dopant and one
additional MBBA molecule (denoted by D) was placed in
the vicinity of one of the alkyl chains. The optimization was
performed for various initial distances of a dopant and a
MBBA molecule (D), while the positions of other three

MBBA molecules (A, B, C) were fixed at the optimized
structures as were already determined for the case of nl ¼ 3.
As a result, it was found that a MBBA molecule (D) was
little effected by the interaction with a dopant as shown in
Fig. 5(b). The twisting angle (2�e) between a MBBA
molecule (D) and its nearest neighbors [a MBBA molecule
(A and D)] was obtained to be less than �3:0�, respectively.
Thus we concluded that only the host molecules that were in
direct contact with a dopant molecule were twisted by a
large amount, contributing to the stability of the system
according to eq. (4). In order others, the probable value of nl
would be 2–3.

In order to see the bulk effect on the potential curve of a
dopant, we performed simulation containing the system
involving one dopant and four MBBA molecules. It was
aimed to see the effect of additional MBBA molecules on
the potential curve of a dopant. Two MBBA molecules (C)
and (D) were placed under a MBBA molecule (B). A MBBA
molecule (A) was placed above the dopant. The positions of
MBBA molecules (C) and (D) were optimized while those of
MBBA molecules (A) and (B) and the dopant were fixed.
The potential curve was calculated by twisting a MBBA
molecule (B) around the dopant when MBBA molecules
(A), (C) and (D) were fixed. As shown in Fig. 3, the value of
� was little affected by the presence of the additional MBBA
molecules. Thus we concluded that other remote molecules
(MBBA molecules C and D) influenced little on the potential
curve of a dopant. We regarded the results as evidence
supporting the small effect of a bulk medium on the potential
curve of a dopant.

Based on these results, we concluded that the probable
value of nl would be 2–3. � was calculated as �200 to
�275 mm�1. The estimated � was larger than the exper-
imentally observed � (�180 mm�1).14) Considering that the
orientational fluctuation was not considered so far, the
calculated � was regarded as an upper limit of the
experimental behavior.

4. Discussion

The present model based on the local structure around a
dopant reproduces well the upper limit of � for the present
system. For a comparison, � for the same system is
estimated on the basis of the continuum medium theory
(or the Ferrarini model).3,4) In this model, the orienting
potential for chiral solutes is treated as the interaction with
the solvent as below;

Uð�Þ ¼ "an

Z
dS½3ðd 	 sÞ2 � 1
=2 ð17Þ

in which the proportionality constant, "an, is the orienting
strength, d the nematic director vector and s the unit vector
orthogonal to a surface element dS, and � the parameter
describing the orientation of a dopant, respectively. An
appropriate averaging of Uð�Þ leads to a so-called ‘‘chirality
order parameter’’ Q in their formulation of �:

� ¼
"an

2�K̂K22

Q ð18Þ

The principal axis system of the ordering tensor has been
shown in Fig. 6. The anisotropic content of Q is expressed
by eq. (19), into which also the orientational information can
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be input.

Q ¼ �
ffiffiffi
2

3

r
ðQxxSxx þ QyySyy þ QzzSzzÞ ð19Þ

The terms of Qii’s are the corresponding components of the
surface chirality tensor.

Qii ¼ 2�
ffiffiffi
3

8

r Z
siðŝs� rÞi dr; ð20Þ

in which r is a vector giving the position of a point on
the molecular surface and ŝs the unit vector pointing normal
to the surface. Three components of Qii for �-and �-
[Ru(acac)2L] can be estimated by:

Qxx ¼ �
ffiffiffi
3

p

2
� V ; Qyy ¼ 0; Qzz ¼ �

ffiffiffi
3

p

2
� V ; ð21Þ

where the upper and lower signs correspond to the �- and
�-enantiomers, respectively. V represents the area of an
acac ligand (approximated as flat) multiplied by the distance

(a)

(b)

Fig. 5. The optimized structure of (a) three hosts (denoted by A, B and C) and a dopant in case of nl ¼ 3 and (b) four hosts (denoted by

A, B, C and D) and a dopant in case of nl ¼ 4.
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between a central Ru(II) atom and the center of acac ligand.
When V is estimated to be about 0.45 nm (Ru(II)–acac
distance) � 0.62 nm (long axis of acac) � 0.26 nm (short
axis of acac) = 0.072 nm3 from Fig. 1, the elements of the
surface chirality tensor are obtained to be Qxx ¼ �0:062 nm3

and Qzz ¼ �0:062 nm3. Assuming that the complex orients
uniaxially with Szz ¼ 0:7, for instance, the HTP is calculated
to be �110 mm�1 for the �- and �-enantiomers, respec-
tively, using values of "an=kBT ¼ 5 nm�2 and K̂K22 ¼ 1:6�
10�39 Nm3 (K22 ¼ 3:2� 10�12 N and the molar volume of
MBBA = 3:0� 10�4 m3) as suggested in ref. 3. Thus the
Ferrarini model leads to the reasonable value for the HTP of
the present type of dopant, although the estimated value is
40% smaller than the experimental one.

When the above two models on the derivation of helical
twisting power are compared, the following aspects are to
be noted:
(1) In the Ferrarini model, the host is assumed to be

continuum medium and the twisting of a local director
is very small. In fact, expression (18) is obtained as a
limit of �̂� to zero.3) In contrast, the present computa-
tional results on the microscopic structure around a
dopant analogue have revealed far greater twist (of the
same parity as experimental results) in the locus of the
metal center. More notably, the potential energy curve
(Fig. 3) shows that the state in which two MBBA
molecules are parallel with each other (or �̂� ¼ 0) is
over 100 kJmol�1 less stable than the state in which
they twist at the potential minimum (2�e). Thus it is of
urgent need to have information as to the orientation of
host molecules in the vicinity of a dopant to judge
which of the above models reflects more precisely the
real circumstances.

(2) According to eq. (12), � is expressed in terms of three

parameters, nl, d and �e. All these parameters are
related to the microstructure of the local system
involving a dopant and strongly interacting host
molecules (host 1). The torsional effect between the
largely twisted host molecules (host 1) and the slightly
twisted host molecules (host 0) is an essential factor in
determining �.

Our approach sheds light on the local molecular effect
around the dopant. Although the shape model accounts for
the dopant performance generally very well and also in the
present case, it is not always feasible to numerate elements
of the surface chirality tensor, particularly for flexible
molecules. While existing theories for the chiral phase
inductions seem to furnish fair conclusions on the equili-
brium states, most of the molecular interactions of chemical
interests are often far too coarsened. Our approach given
above may find applicability to a wide range of molecular
systems, as it may suffice to compute the potential energy
curve for a cluster of liquid crystal molecules twisted around
a dopant. The criterion for its utility would be that the
curvature must dominate over bulk elastic constant.
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