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Accurate quantum computational chemistry has evolved dramatically. The size of molecular systems,
which can be studied accurately using molecular theory is increasing very rapidly. Theoretical chemistry
has opened up a world of new possibilities. It can treat real systems with predictable accuracy.
Computational chemistry is becoming an integral part of chemistry research. Theory can now make
very significant contribution to chemistry.

This review will focus on our recent developments in the theoretical and computational methodology
for the study of molecular structure and molecular interactions. We are aiming at developing accurate
molecular theory on systems containing hundreds of atoms. We continue our research in the following
three directions: (i) development of new ab initio theory, particularly multireference-based perturbation
theory, (ii) development of exchange and correlation functionals in density functional theory, and
(iii) development of molecular theory including relativistic effects.

We have enjoyed good progress in each of the above areas. We are very excited about our discoveries
of new theory and new algorithms and would like to share this enthusiasm with readers.

Keywords: Correlation effects; DFT; relativistic effects; MRMP; MC-QDPT; RESC; DK3; OP and
parameter-free functionals.

1. Multirference Based Perturbation

Theory (MRPT)

Single reference many-body perturbation theory and

coupled cluster (CC) theory are very effective in de-

scribing dynamical correlation, but fail badly in deal-

ing with nondynamical correlation. Truncated CI

can handle nondynamical correlation well, but con-

figuration expansion in MRCI is quite lengthy and

does not represent an optimal approach. Multirefer-

ence technique can handle nondynamical correlation

well. Once the state-specific nondynamical correla-

tion is removed, the rest is primarily composed of

dynamical pair correlation and individual pair cor-

relation can be treated independently. So we im-

plemented multireference based Rayleigh–Schrödinger

perturbation approach with Møller–Plesset (MP) par-

titioning. MRPT is based on a concept of “different

prescription for different correlation”.

Multireference Møller–Plesset (MRMP)1–4 and

MC-QDPT (quasi-degenerate perturbation theory

with multiconfiguration self-consistent field reference

functions)5,6 have opened up a whole new area and has

had a profound impact on the potential of theoretical

chemistry. MRMP and MC-QDPT have been success-

fully applied to numerous chemical and spectroscopic

problems and have established as an efficient method

for treating nondynamical and dynamical correlation

effects. MRMP and MC-QDPT can handle any state,

regardless of charge, spin, or symmetry, with surpris-

ingly high and consistent accuracy.

∗Corresponding author.

109



110 T. Nakajima et al.

However, MRMP and MC-QDPT have sharp limit

to the number of configurations of reference complete

active space (CAS) SCF wave function.7–9 To avoid

this problem, we have developed perturbation the-

ory (PT) based on the quasi-complete active space

(QCAS) SCF wave function.10,11 QCAS is defined

as the product space of CAS spanned by the deter-

minants or CSF. Numerical illustration shows that

QCAS works quite well. However, QCAS requires

physically sound judgment and/or intuition in the

choice of subspace. Very recently we have presented a

second-order PT starting with general multiconfigura-

tion (MC) SCF wave functions.12 The general MCSCF

functions are wave functions optimized in an active

space spanned by an arbitrary set of Slater determi-

nants or configuration state functions (CSFs). The

approach can dramatically reduce the dimension of

the reference function.

MRMP with a complete active space configuration

interaction (CASCI) reference function has also been

proposed as an accurate and computationally efficient

method for treating the ground and excited states of

molecules.13 The CASCI wave function is constructed

using the SCF orbitals and used as a reference function

of the MRMP to incorporate the remaining dynami-

cal correlation. The advantage in using the CASCI

is that it does not require iterations, nor does it en-

counter convergence difficulties that may be found in

CASSCF calculations.

These recent advances will be reviewed in this sec-

tion. First we will give a brief review of MRMP and

MC-QDPT. Then PT with general MCSCF reference

function and CASCI–MRMP will be discussed.

1.1. The MRMP method Multireference

Møller Plesset perturbation method1–4

Our basic problem is to find approximations to some

low-lying solutions of the exact Schrödinger equation,

HΨ = EΨ . (1)

H is the Hamiltonian and it is decomposed into two

parts, a zeroth-order Hamiltonian H0 and a perturba-

tion V ,

H = H0 + V . (2)

We assume that a complete set of orthonormal eigen-

functions {Ψ(0)
i } and corresponding eigenvalues are

available,

H0Ψ
(0)
i = E

(0)
i Ψ

(0)
i . (3)

Then the state wavefunction ΨI is expanded in terms

of basis functions Ψ
(0)
k as

ΨI =
∑
k

CIkΨ
(0)
k . (4)

Some of the basis functions define an active space P

and the remaining part of Hilbert space is called the

orthogonal space Q = 1 − P . The active space is

spanned by the basis functions that have a filled core

and the remaining active electrons distributed over a

set of active orbitals. The orthogonal complete space

incorporates all other possible basis functions that are

characterized by having at least one vacancy in a core

orbital. The state wave function in an active space is

written as

Ψ
(0)
I =

∑
k

CkΦk (5)

where the sum runs over active space basis functions

{Φi} and Ck are the coefficients of only active space

basis functions. It is convenient to use intermediate

normalization, i.e.

〈Ψ(0)
I |Ψ

(0)
I 〉 = 〈Ψ

(0)
I |ΨI〉 = 1 . (6)

We also assume that Ψ
(0)
I is diagonal in P space,

〈Ψ(0)
I |H|Ψ

(0)
J 〉 = δIJ(E

(0)
I +E

(1)
I ) (7)

with

E
(0)
I = 〈Ψ(0)

I |H0|Ψ(0)
I 〉 (8)

E
(1)
I = 〈Ψ(0)

I |V |Ψ
(0)
I 〉 . (9)

The state-specific Rayleigh–Schrödinger PT based on

the unperturbed eigenvalue equation

H0Ψ
(0)
I = E

(0)
I Ψ

(0)
I (10)

leads to the first E
(k)
I as

E
(2)
I = 〈Ψ(0)

I |V RV |Ψ
(0)
I 〉 (11)

E
(3)
I = 〈Ψ(0)

I |V R(V −E(1)
I )RV |Ψ(0)

I 〉 (12)

E
(4)
I = 〈Ψ(0)

I |V R(V −E(1)
I )R(V −E(1)

I )RV |Ψ(0)
I 〉

−E(2)
I b〈Ψ

(0)
I |V R2V |Ψ(0)

I 〉

+ 〈Ψ(0)
I |V RH0SH0RV |Ψ(0)

I 〉c etc. (13)
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The R and S are the resolvent operators

R = Q/(E
(0)
I −H0) (14)

S = P ′/(E
(0)
I −H0) (15)

where P ′ = P − |Ψ(0)
I 〉〈Ψ

(0)
I |.

The E
(0)
I is given in terms of orbital energies as

E
(0)
I =

∑
k

Dkkεk (16)

and the orbital energies are defined as

εi = 〈ϕi|F |ϕi〉 (17)

with

Fij = hij +
∑
kl

Dkl

[
(ij|kl)− 1

2
(il|kj)

]
(18)

where Dij is the one-electron density matrix. The

MCSCF orbitals are resolved to make Fij matrix as

diagonal as possible. This zeroth-order Hamiltonian

is closely analogous to the closed-shell Fock operator.

The definition of an active space, the choices of ac-

tive orbitals and the specification of the zeroth-order

Hamiltonian completely determine the perturbation

approximation.

When CASSCF wave function is used as the refer-

ence, the zeroth plus first order energy E
(0)
I + E

(1)
I is

equal to the CASSCF energy. The lowest non-trivial

order is therefore the second order. Let the reference

function |Ψ(0)
α 〉 be a CASSCF wave function,

|α〉 =
∑
A

CA|A〉 . (19)

The energy up to the second order in MRMP is given

by

E(0−2)
α = ECAS

α +
∑
I

〈α|V |I〉〈I|V |α〉
E

(0)
α − E(0)

I

(20)

where {|I〉} is the set of all singly and doubly ex-

cited configurations from the reference configurations

in CAS. The first term of the RHS is the CASCI

energy.

1.2. MC-QDPT Multistate multireference

perturbation method5,6

We have also proposed a multistate multireference

perturbation theory, the quasidegenerate perturbation

theory with MCSCF reference functions (MC-QDPT).

In this PT, state-averaged CASSCF is first performed

to set reference functions, and then an effective Hamil-

tonian is constructed, which is finally diagonalized to

obtain the energies of interest. This theory includes

MRMP PT (the case that the set of reference func-

tions reduces to a single function).

The effective Hamiltonian to second order is

given by

(H
(0−2)
eff )αβ = 〈α|H|β〉 + 1

2

∑
I

{
〈α|V |I〉〈I|V |β〉
E

(0)
β −E

(0)
I

+
〈β|V |I〉〈I|V |α〉
E

(0)
α −E(0)

I

}
. (21)

Substituting the second-quantized operator into V , we

obtain an explicit formula using molecular integrals

and orbital energies instead of matrix elements,

(H
(0−2)
eff )αβ = ECAS

α δαβ −
∑
pq,B

〈α|Epq |B〉CB(β)

×
∑
e

upeueq

εe − εq + ∆EBα

−
∑
pqrs,B

〈α|Epq,rs|B〉CB(β)

×
[∑

e

upegeqrs

εe − εq + εr − εs + ∆EBα

+
∑
e

gpersueq

εe − εq + ∆Ebα
+

1

2

×
∑
(a,b)

gparbgaqbs

εa − εq + εb − εs + ∆EBα

]

−
∑

qprstu,B

〈α|Eqp,rs,tu|B〉CB(β)

×
∑
e

gpersgeqtu

εe − εq + εt − εu + ∆EBα

+ (α↔ β) (22)

with

gpqrs = (pq|rs) (23)

upq = (p|h− δpqεp|q)−
doc∑
i

(2gpqii − gpiiq) (24)



112 T. Nakajima et al.

and

∆EBα = E
(0)
B −E(0)

α (25)

the difference between the energies of the zeroth-order

state and configuration. The orbital labels {i, j}, {a},
and {e} are for doubly occupied, active, and external

orbitals, respectively, and {a′, b′} run over both active

and external orbitals, and the suffix of the generator

{p, q, r, s, t, u} run over only active orbitals. The terms

including doubly occupied orbitals are omitted in this

equation. See Ref. 5 for the full formula.

The formula including doubly occupied orbitals

might look tedious. However, the energy can be cal-

culated as just a sum of simple terms, hence rather

simple. Neither diagonalization nor solution of linear

equation for large-scale matrices is necessary.

The computation is done with the coupling co-

efficient driven method. These coupling coefficients

are sparse and can be prescreened according to the

condition,

(νpq···rsB )αβ = 〈α|Epq,...,rs|B〉CB(β) > δ (26)

where δ = 1 × 10−8 is usually sufficient to keep the

energy accuracy better than 10−5 hartree.

Thus the multiple summation for active orbitals

in Eqs. (10)–(12), and other terms, which seemingly

scales as the power of the number of active orbitals,

is actually diminished considerably. Note that the

MRMP energy can also be calculated with the for-

mula Eq. (22) by setting the number of the states to

one.

1.3. The perturbation theory based on the

general MCSCF wave function12

Although CASSCF-based PT is efficient, the dimen-

sion of the CAS active space grows very rapidly with

the number of active electrons and orbitals. Even to-

day, the maximum number of active orbitals that can

be handled routinely in commonly used program pack-

ages is 14–16. This considerably restricts the possibil-

ity of MRPT.

To reduce the CAS dimension, we have pro-

posed the quasi-complete active space (QCAS) SCF

method.10,11 QCAS is the product space of several

CASs. The dimension of QCAS constructed from a set

of active electrons and orbitals may be much smaller

than that of CAS constructed from the same set of

the electrons and orbitals. Using QCAS as reference

in the perturbation theory, we may therefore extend

active electrons and orbitals beyond the limit of CAS.

However, it is not always possible to select an appro-

priate QCAS, depending on the molecular systems of

interest.

We have presented a second-order QDPT using

general multiconfiguration (MC) SCF wave functions

as reference (hereafter, GMC-QDPT).12 The general

MCSCF functions are wave functions optimized in an

active space spanned by an arbitrary set of Slater de-

terminants or configuration state functions (CSFs).

We use general MCSCF to distinguish it from that

of specific forms like CAS-, QCAS-, and restricted ac-

tive space (RAS) SCF.14 No restriction on the form

of variational space is imposed.

For MRPT at the second-order level, the com-

putational algorithms are roughly classified into two.

One is the sum-over-states method based on the CI

Hamiltonian matrix elements, where the intermedi-

ate (or first-order interacting) configuration functions

ΦI are constructed by single and double excitations

from the reference configurations, and then the ma-

trix elements between the reference state(s) Ψref and

ΦI , 〈Ψref |H|ΦI〉, are computed. Finally the energy

is computed as the sum over the intermediate states

according to the second-order formula. The other is

a diagrammatic method, where the product of the

perturbation operators is computed diagrammatically

without using the first-order wave functions.

An important feature of the diagrammatic method

is its compactness. The second-order energy (or effec-

tive Hamiltonian) is computed simply as sums of the

product of molecular integrals, coupling-coefficient, CI

coefficients, and inverse of zeroth-order-energy differ-

ence. It can be performed with relatively large ba-

sis sets and reference spaces. The construction of a

first-order interacting space, which grows very rapidly

with the number of active electrons and orbitals, is

not necessary. However, the diagrammatic method

can be applied only to a complete or quasi-complete

reference function. On the other hand, the sum-over-

states method has flexibility and can be applied to

any reference function. The selection of the reference

configuration is quite feasible in contrast to the dia-

grammatic method.

The computational method for GMC-QDPT

adopted here is a composite method that combines
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both sum-over-states and diagrammatic computa-

tional methods: the sum-over-states method is used

for the excitations among active orbitals (internal

excitations), while the diagrammatic method is used

for the excitations including virtual or/and core or-

bitals (external excitations). Thus, the GMC-QDPT

has both features, i.e., the compactness and flexibility.

There have been several PTs using general

multiconfigurational functions: the configuration in-

teraction by perturbation with multiconfigurational

zeroth-order wave functions selected by iterative pro-

cess (CIPSI) approach by Huron et al.,15 MROPTn

with a reduced model space method by Staroverov

and Davidson,16 MRPT for (RAS and) selected ac-

tive space reference functions by Celani and Werner,17

general MRPT (based on the generalized Møller–

Plesset PT of Murphy and Messmer18) by Grimme

and Waletzke,19 and CIPSI by Cimiraglia.20 These

methods differ formally from the present GMC-

QDPT. Computationally, most of these PTs employ

the sum-over-states method, while only Cimiraglia.s

method is diagram-based.

The general configuration space (GCS) is defined

by a space that is spanned by an arbitrary set of

Slater determinants or CSFs. The orbitals are parti-

tioned into three categories as in the ordinary MCSCF

method: the core orbitals are doubly occupied and

the virtual orbitals are unoccupied in all the determi-

nants/CSFs in GCS, while the active orbitals may be

occupied or unoccupied. The reference wave functions

used in the perturbation calculations are determined

by MCSCF (or MC-CI) using GCS as a variational

space:

|α〉 =
∑

A∈GCS

CA(α)|A〉 . (27)

The effective Hamiltonian up to the second order

H
(0−2)
eff of Van Vleck perturbation theory with unitary

normalization is given by

(H
(0−2)
eff )AB = HAB +

1

2
[〈Φ(0)

A |HRBH|Φ
(0)
B 〉

+ 〈Φ(0)
A |HRAH|Φ

(0)
B 〉] (28)

with

RA =
∑
I /∈ref

|Φ(0)
I 〉(E

(0)
A −E

(0)
I )−1〈Φ(0)

I | (29)

where Φ
(0)
A (Φ

(0)
B ) and Φ

(0)
I are reference wave functions

and a function in the complement space (Q) of the

reference space (P ), respectively, and E
(0)
B and E

(0)
I

are zeroth-order energies of functions Φ
(0)
B and Φ

(0)
I .

Adopting (state-averaged) MCSCF (or MC-CI)

wave functions α(β) as reference functions Φ
(0)
A (Φ

(0)
B ),

which define the P space, Eq. (28) becomes

(H
(0−2)
eff )αβ = EMC−SCF

α δαβ +
1

2

∑
I /∈GCS

×
{
〈α|H|I〉〈I|H|β〉
E

(0)
β −E

(0)
I

+ (α↔ β)

}
(30)

where I is now a determinant/CSF outside the GCS.

The notation (α ↔ β) means interchange α with β

from the first term in curly brackets. The complemen-

tary eigenfunctions of the MC-CI Hamiltonian and

the determinants/CSFs generated by exciting elec-

trons out of the determinants/CSFs in GCS are or-

thogonal to the reference functions and define the Q

space. The functions in the space complementary

to the P space in GCS, however, do not appear in

Eq. (30) since the interaction between the complemen-

tary functions and the reference functions is zero. The

GMC-QDPT computation scheme is similar to that

of QCAS-QDPT.11 We define here the corresponding

CAS (CCAS) as a CAS constructed from the same ac-

tive electrons and orbitals, that is, the minimal CAS

that includes the reference GCS. The summation over

I in Eq. (30) may be divided into the summations over

determinants/CSFs outside CCAS and over the deter-

minants/CSFs outside the GCS but inside CCAS:∑
I /∈GCS

=
∑

I /∈CCAS

+
∑

I∈CCAS∧/∈GCS

(31)

then the former second order term in Eq. (30) may be

written as

(H
(2)
eff )αβ =

∑
I /∈CCAS

〈α|H|I〉〈I|H|β〉
E

(0)
β −E

(0)
I

+
∑

I∈CCAS∧I /∈GCS

〈α|H|I〉〈|H|β〉
E

(0)
β −E

(0)
I

. (32)

The first term in Eq. (32) represents external ex-

citations, while the latter term represents internal

excitations.11

The external term may be further written as

(H
(2)
ext)αβ =

∑
A,B∈GCS

CA(α)CB(β)(H
(2)
ext)AB (33)
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with

(H
(2)
ext)AB =

∑
I /∈CCAS

〈A|H|I〉〈|H|B〉
E

(0)
B −E

(0)
I + (E

(0)
β −E

(0)
B )

(34)

where (H
(2)
ext)AB is the effective Hamiltonian in the

determinant/CSFs basis in the conventional QDPT

except for the energy shift, E, in the denominator.

Since the second-order diagrams do not depend on

the denominator, the second-order effective Hamilto-

nian Eq. (34) [hence, also Eq. (33)] is expressed by the

same diagrams as the conventional QDPT.

For internal terms, the diagrammatic approach

may not be applied. Instead, matrix operations for

the Hamiltonian matrix are used:

(H
(2)
int )αβ = vT (α) ·w(β) (35)

with

vI(α) =
∑

A∈GCS

〈I|H|A〉CA(α) (36)

wI(β) =
∑

B∈GCS

〈I|H|B〉CB(β)/(E
(0)
β −E

(0)
B ) . (37)

The intermediate determinants/CSFs I are con-

structed by exciting one or two electron(s) from the

reference determinants/CSFs within the active orbital

space. In general, the number of I is not large, and

thus they may be managed in computer memory.

In the present implementation, we used Slater de-

terminants rather than CSFs, differing from the orig-

inal MC-QDPT.5 Let {Iα} and {Iβ} be sets of alpha

and beta strings appearing in the reference configu-

rations, respectively. The reference space is defined

by the beta string sets for each alpha string, {Iβ[Iα]},
and equivalently the alpha string sets for each beta

string, Iα[Iβ ].

In the diagrammatic computation of the external

terms, one-, two-, and three-body coupling coefficients

(CCs) are necessary. The one-body CCs are classified

into two types,

〈Iα|Eαpq |Jα〉〈Iβ |Jβ〉 and 〈Iα|Jα〉〈Iβ |Eβpq|Jβ〉

the two-body CCs into three types,

〈Iα|Eαpq,rs|Jα〉〈Iβ |Jβ〉, 〈Iα|Jα〉〈Iβ |Eβpq,rs|Jβ〉, and

〈Iα|Eαpq|Jα〉〈Iβ |Eβrs|Jβ〉

and the three-body CCs into four types,

〈Iα|Eαpq,rs,tu|Jα〉〈Iβ |Jβ〉, 〈Iα|Jα〉〈Iβ |Eβpq,rs,tu|Jβ〉

〈Iα|Eαpq,rs|Jα〉〈IB |Eβtu|Jβ〉, and

〈Iα|Eαpq|Jα〉〈Iβ |E
β
rs,tu|Jβ〉

with Jα ∈ {Iα}, Jβ ∈ {Iβ} and

Eαpq,rs,... = a+
pαa

+
rα · · · asαaqα (38)

Eβpq,rs,... = a+
pβa

+
rβ · · · asβaqβ . (39)

Since string Jα(Jβ) is determined by string Iα(Iβ) and

active orbital labels p and q, the one-body CCs for

strings, 〈Iα|Eαpq |Jα〉(〈Iβ |Eβpq|Jβ〉), can be stored in the

computer memory in the form Jα[Iα; p, q]Jβ [Iβ ; p, q].

The perturbation calculation for three-body CCs,

〈Iα|Eαpq,rs|Jα〉〈Iβ |Eβtu|Jβ〉, for example, is done as

follows:

Loop over Iα
Make all non-zero 〈Iα|Eαpq,rs|Jα〉 for Iα

Loop over Iβ [Iα]

Loop over t and u

If Jβ[Iα; t, u] 6= 0 and Jβ [Iα; t, u]

∈ {Iβ [Jα]}, then

do 3-body PT calculations for

〈Iα|Eαpq,rs|Jα〉〈Iβ |Eβtu|Jβ〉
end loop t and u

end loop Iβ [Iα]

end loop Iα

The other terms can be computed similarly.

The one- and two-body CCs computed in the same

manner are used for the CI based calculation for the

internal terms. The vectors vI in Eq. (35) are com-

puted as σ-vectors using strings.

We applied GMC-QDPT to the calculation of the

PECs of the two lowest 1Σ+ states of the LiF molecule.

In the diabatic picture, one of the 1Σ+ states is ionic

and the other is covalent. In the equilibrium struc-

ture region, the ionic state is lower in energy (the

ground state), while at the dissociation limit the co-

valent state becomes lower. The two potential curves

therefore show avoided-crossing in the middle of the

adiabatic picture.

The basis set used was 6-311++G(3df, 3pd).21

The reference spaces were made by exciting one and
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Fig. 1. The MCSCF (•,�) and CASSCF (◦,�) potential
energy curves of the two lowest 1Σ+ state of LiF.
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Fig. 2. The GMC-QDPT (•,�) and CAS-QDPT (◦,�)
potential energy curves of the two lowest 1Σ+ states of
LiF.

two electrons from two parent configurations: the

Hartree Fock and 4σ → 5σ∗ excitation configura-

tions. The CAS and QCAS used for comparison were

CAS(6, 9), and QCAS[(2, 3)3], respectively, where in

QCAS the division of the nine orbitals were {4σ−6σ},
{1π − 3π}, and {1π′ − 3π′}. The dimension of GCS

was 241, and those of CAS and QCAS were 1812 and

729 (in Slater determinant basis; with symmetry), re-

spectively. The 1σ orbital corresponding to F(1s) was

frozen in the perturbation calculations.

Results are shown in Figs. 1 and 2. Figure 1

shows PECs at the MCSCF and CASSCF levels and

Fig. 2 shows PECs at the GMC-QDPT and CAS-

QDPT levels. The MCSCF curves have systematic

errors from the CAS-SCF results depending on the

nature of the states: about 4 kcal mol−1 for the ionic

state (in the diabatic picture; lower near the equilib-

rium structure, higher at the dissociation limit) and

about 2.5 kcal mol−1 for the covalent state. These are

recovered well by GMC-QDPT. At this level, the er-

rors from CAS-QDPT are less than 1 kcal mol−1 for

both states.

The next example is the calculation of valence ex-

citation energies for formaldehyde molecule. Calcula-

tions on formaldehyde were carried out at the ground

state experimental geometry22 (i.e. r(CO) = 1.203 Å,

r(CH) = 1.099 Å, and θ(HCH) = 116.5 degrees). The

basis set used was Dunning’s cc-pVTZ.23

Five reference spaces were constructed from 8 elec-

trons, 16[(a1, a2, b1, b2) = (7, 1, 3, 5)], 18[= (7, 1, 4, 6)],

20[= (8, 1, 5, 6)], 22[= (8, 2, 5, 7)], and 24 orbitals [=

(9, 2, 6, 7)], by exciting one and two electrons from the

following parent configurations:

1A1 states : . . . n2(HF); π → π∗; n→ σ∗

3A1 states : π → π∗; n→ σ∗

1,3A2 states : n→ π∗; 1b2(σ)→ π∗

1,3B1 states : 5a1(σ)→ π∗

1,3B2 states : n→ 6a1(σ
∗).

The dimensions of the reference spaces, for

example, in singlet A1 were 3045, 4121, 5349, 6833,

and 8413 for 16, 18, 20, 22, and 24 active orbitals,

respectively: the dimensions increase like an arith-

metic progression. The corresponding dimensions

of symmetry-adapted CASs were 828,720 (nact = 16),

2,342,000 (= 18), 5,871,601 (= 20), 13,380,441 (= 22),

and 28,234,186 (= 24). This increases much more

rapidly than the GCS cases. All the calculations were

done in each symmetry.

The results are summarized in Table 1. The re-

sults are compared in Table 2 to the available ex-

periment and previous theoretical results, i.e., MRCI

results by Hachey et al.,24 the second-order complete

active space perturbation theory (CASPT2) calcula-

tions by Merchán and Roos,25 and the equation of

motion coupled cluster (EOM-CC) calculations by

Gwaltney et al.26
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Table 1. Valence excitation energies of H2CO (eV)

MC-SCF GMC-QDPT
Orbital Exptl.

State Picture (8,16) (8,18) (8,20) (8,22) (8,24) (8,16) (8,18) (8,20) (8,22) (8,24)

1A1 π → π∗;n→ σ∗ 10.07 10.03 10.03 10.02 10.02 9.66 9.67 9.72 9.72 9.72

n→ σ∗;π → π∗ 11.01 11.01 11.00 11.03 11.01 10.65 10.63 10.65 10.63 10.64 10.70
1A2 n→ π∗ 4.32 4.43 4.27 4.25 4.22 4.04 4.02 4.01 4.02 4.08 4.07

1b2(σ)→ π∗ 10.96 11.16 10.97 10.98 10.94 10.30 10.34 10.33 10.37 10.43
1B1 5a1(σ)→ π∗ 9.63 9.89 9.82 9.81 9.80 9.31 9.24 9.26 9.20 9.28 9.00
1B2 n→ 6a1(σ

∗) 7.73 8.16 8.22 8.32 8.31 8.31 8.23 8.41 8.45 8.45
3A1 π → π∗;n→ σ∗ 6.18 6.28 6.19 6.13 6.11 6.13 6.13 6.18 6.17 6.18 6.00

n→ σ∗;π → π∗ 9.66 9.64 9.70 9.74 9.75 9.60 9.61 9.62 9.62 9.62
3A2 n→ π∗ 3.84 3.95 3.78 3.75 3.71 3.63 3.58 3.58 3.61 3.63 3.50

1b2(σ)→ π∗ 10.52 10.68 10.52 10.52 10.47 10.04 10.03 10.02 10.07 10.10
3B1 5a1(σ)→ π∗ 8.78 9.02 8.92 8.91 8.90 8.45 8.41 8.39 9.27 8.50 8.50
3B2 n→ 6a1(σ

∗) 7.36 7.79 7.85 7.95 7.94 7.89 7.80 7.99 8.02 8.07

Table 2. Valence excitation energies of H2CO (eV)

Orbital MC-SCF GMC-QDPT

State picture (8,24) (8.24) Exptl. MRCIa CASPT2b EOM-CCc CCSDd CIS-MP2e SAC-CIf

1A1 ı→ π∗, n→ σ∗ 10.02 9.72 9.60 9.77 9.47 9.27 9.19 —

n→ σ∗, π → π∗ 11.01 10.64 10.70 10.83
1A2 n→ π∗ 4.22 4.08 4.07 4.05 3.91 3.98 3.95 4.58 4.16

1b2(σ)→ π∗ 10.94 10.43 10.38 10.08 11.19
1B1 5a1(σ)→ π∗ 9.80 9.28 9.00 9.35 9.09 9.33 9.26 9.97 9.49
1B2 n→ 6a1(σ

∗) 8.31 8.45
3A1 π → π∗;π → σ∗ 6.11 6.18 6.00 5.99 6.72 6.10

n→ σ∗;π → π∗ 9.75 9.62
3A2 n→ π∗ 3.71 3.63 3.50 3.48 4.15 3.70

1b2(σ)→ π∗ 10.47 10.10 10.52 10.80
3B1 5a1(σ)→ π∗ 8.90 8.50 8.50 9.18 8.52
3B2 n→ 6a1(σ

∗) 7.94 8.07

aM.R.J. Hachey, P.J. Bruna and F.J. Grein, Phys. Chem. 99, 8050 (1995).
bM. Merchán and B.O. Roos, Theor. Chim. Acta. 92, 227 (1995).
cS.R. Gwaltney and R.J. Bartlett, Chem. Phys. Lett. 241, 26 (1995).
dC.M. Hadad, J.B. Foresman and K.B. Wiberg, J. Phys. Chem. 97, 4293 (1993).
eM. Head-Gordon, R.J. Rico, M. Oumi and T.J. Lee, Chem. Phys. Lett. 219, 21 (1994).
fH. Nakatsuji, K. Ohta and K. Hirao, J. Chem. Phys. 75, 2952 (1981).

The maximum energy differences for the largest

three (two) numbers of active orbitals is 0.09

(0.05) eV. We can therefore consider that the excita-

tion energies at the MCSCF level are almost converged

values for the change of the active orbital numbers.

However, the agreement with the experimental values

is not so good: the error is 0.32 eV on average and

0.80 eV at maximum.

At the GMC-QDPT level, the excitation energies

are also almost converged. Compared to the reference

MCSCF level, the results are somewhat improved.

The error from the experimental value was reduced

to 0.11 eV on average and 0.28 eV at maximum.

Theoretical results by multireference methods

(MRCI and CASPT2) and EOM-CC are also avail-

able for several low-lying states. Harchey et al.24
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presented the MRCI results for four singlet states

[11A2 (4.05 eV), 11B1 (9.35 eV), and 21A1 (9.60 eV)

states], Merchén et al.25 reported the CASPT2 results

for three singlet and two triplet states [11A2 (3.91 eV),

11B1 (9.09 eV), 21A1 (9.77 eV), 13A2 (3.48 eV), and

23A1 (5.99 eV) states], and Gwaltney et al.26 gave

the EOM-CC results for four singlet states [11A2

(3.98 eV), 11B1 (9.33 eV), 21A1 (9.47 eV), and 21A2

(10.38 eV) states]. These values are all close to the

GMC-QDPT values, supporting the present results.

To conclude, the second-order QDPT with CAS

reference functions was extended to the general

MCSCF reference functions case, i.e. GMC-QDPT.

There is no longer any restriction on the form of the

reference space. It can treat more active orbitals and

electrons than a CAS reference PT and thus is ap-

plicable to larger systems, and it can avoid unphys-

ical multiple excited configurations, which are often

responsible for the intruder state problem.

A computational scheme utilizes both diagram-

matic and CI matrix-based sum-over-states ap-

proaches. The second-order GMC-QDPT effective

Hamiltonian is computed for the external (outside

CAS) and internal (inside CAS) intermediate config-

urations separately. For external intermediate con-

figuration, the diagrammatic approach is used, which

has been used for CAS- and QCAS-QDPT. The dia-

grams are identical to those of the original MC-QDPT

and QCAS-QDPT; only the computational scheme of

coupling constants is different. For the internal in-

termediate configurations, a CI matrix based method

is used. The vectors used belong to MRSDCI space

within active orbitals and therefore small enough to

be easily treatable.

1.4. The CASCI MRMP method13,27

Usually, CASSCF wave function is chosen as a

reference function of MRMP. However, CASSCF of-

ten generates far too many configurations, and suf-

fers from the convergence difficulties, particularly with

an increasing size of the active space. CASSCF in-

volves an iterative scheme, and a two-electron MO

integral transformation and a matrix diagonalization

are repeated in each iteration. This makes the MRMP

method less efficient when dealing with large systems.

A single reference second-order MP method works

fairly well when the Hartree–Fock wave function is

a good approximation. It breaks down only when

the nondynamical correlation is significant. As known

well, the convergence of the dynamical correlation is

rather slow, and the accurate representation of the

dynamical correlation requires high levels of excita-

tions in the many-electron wave function and high

levels of polarization functions in a basis set. How-

ever, the situation is quite different for nondynamical

correlation. The nondynamical, near-degeneracy ef-

fect converges fairly smoothly with respect to both

the one-electron basis function and the many-electron

wave function. This implies that the near-degeneracy

problem can be handled quite well even in a moderate

function space. This suggests the use of SCF orbitals

instead of optimized CASSCF orbitals in MRMP

calculations.

A CASCI wave function retains the attractive fea-

ture of the CASSCF wave function. The CASCI is a

full CI (FCI) in a given active space. It is well defined,

and has an upper bounds nature to the energies of the

states. The CASCI can handle the near-degeneracy

problem in a balanced way, and can be applied to the

calculations of potential energy surfaces and excited

states. It is size-consistent and the wave function is in-

variant to transformations among active orbitals. The

principal advantages of using the CASCI are that it

does not require iterations, and does not encounter

convergence difficulties, as it is often found in excited

state or state-averaged CASSCF calculations.

A reference CASCI wave function is obtained by

partitioning the SCF occupied and virtual orbitals

into doubly occupied core and active orbitals, and op-

timizing only the expansion coefficients of all config-

urations generated by all the possible arrangement of

the active electrons among the active orbitals. In the

case of CASSCF, the active orbitals in addition to the

expansion coefficients of all configurations are also op-

timized through the SCF scheme.

The CASCI–MRMP scheme is applied to the po-

tential curves of ground and low-lying excited states

of N2 and compared to the FCI results of Larsen

et al.28 We used the same cc-pVDZ basis set of Dun-

ning et al.29 as FCI calculations and the N 1s core

orbital was frozen. The active orbitals of (10, 10)

consisted of 2σg − 3σg, 2σu − 3σu, 1πg − 3πg and

1πu − 3πu orbitals. All the excited states considered

here are singly excited states around equilibrium, and

the dominant single excitations are 3σg → 1πg, 1πu →
1πg, and 1πu → 1πg for 1Πg,

1Σ−u , and 1∆u states,
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Fig. 3. Potential energy curve of the ground state of N2

as computed by the CASCI (�), CASSCF (•), CASCI–
MRMP (�), CASSCF-MRMP (◦), and FCI (�) methods.

respectively. The main features of the potential curves

are common for all three excited states. In all three

cases, one electron is excited from a bonding to an

antibonding orbital. Thus, the bond lengths become

larger than for the ground state.

Figure 3 shows the ground state potential curves

calculated by CASCI, CASSCF, CASSCF-MRMP,

CASCI–MRMP, and FCI methods. The CASCI and

CASSCF curves contain no substantial qualitative de-

fects, indicating that both methods can handle non-

dynamical correlation quite well. Starting with these

functions as a reference, we applied a perturbation

treatment to include the remaining dynamical correla-

tion, and obtained the CASCI–MRMP and CASSCF-

MRMP curves. It is surprising that the difference

between the two curves at the MRMP level is too

small to be visible on the scale shown in Fig. 3, and

both curves are quite close to the FCI curve. The

CASCI method is apparently quite poor when com-

pared with the CASSCF, but the deficiency is recov-

ered well at the level of MRMP. The maximum en-

ergy difference between the CASCI and FCI methods

Fig. 4. Potential energy curve of the 1Πg state of
N2 as computed by the CASCI (�), CASSCF (•),
CASCI–MRMP (�), CASSCF-MRMP (◦), and FCI (�)
methods.

is about 47 kcal mol−1 near to equilibrium, and is

reduced to 2.4 kcal mol−1 at the MRMP level.

The CASCI–MRMP gives Re = 1.1187 Å, ωe =

2311 cm−1, and De = 8.39 eV for the ground state.

The corresponding values of the CASSCF-MRMP cal-

culations are Re = 1.1194 Å, ωe = 2309 cm−1, and

De = 8.61 eV. The agreement with the FCI values

(Re = 1.201 Å, ωe = 2323 cm−1, and De = 8.74 eV)

is excellent. The MRMP with the CASCI is compa-

rable in accuracy with the MRMP with the CASSCF.

The potential energy curves for the exited 1Πg,
1Σ−u , and 1∆u states are shown in Figs. 4–6, respec-

tively. These figures demonstrate that the same accu-

racy is obtained for the excited states. The CASCI–

MRMP and CASSCF-MRMP methods give very close

potential curves and are parallel to the corresponding

FCI curves. Spectroscopic constants also show excel-

lent agreement with those from the FCI method.

We also calculated the valence π → π∗ excited

states of benzene using the CASCI–MRMP method

and compared the results with previous CASSCF-

MRMP calculations.30 Both singlet and triple
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Fig. 5. Potential energy curve of the 1Σu state of
N2 as computed by the CASCI (�), CASSCF (•),
CASCI–MRMP (�), CASSCF-MRMP (◦), and FCI (�)
methods.

excitation energies were calculated. The molecule was

placed in the xy plane. We used the same molecular

structure as in the previous study with C–C and C–H

bond lengths of 1.395 and 1.085 Å, respectively. We

used the same basis set as the previous study: Dun-

ning’s cc-pVTZ basis set for carbon and cc-pVDZ23

for hydrogen atoms were used, augmented with Ryd-

berg functions (8s8p8d/1s1p1d) placed at the center

of the molecule. The 6π electrons were distributed

among the 12π orbitals, (6, 12) active space, in the

CASCI calculation.

Table 3 summarizes the computed CASCI and

CASCI–MRMP excitation energies. The CASSCF

and CASSCF-MRMP results are also listed for com-

parison. The agreement between the CASCI–MRMP

and CASSCF-MRMP results is excellent. The over-

all accuracy of the CASCI–MRMP method is surpris-

ingly high. The excitation energies calculated by the

CASCI–MRMP method are predicted with an accu-

racy of 0.09 eV for valence π → π∗ singlet states,

and 0.15 eV for valence triplet states. This accuracy

is comparable to that of the MRMP method starting

with averaged CASSCF wave functions.

The CASCI method tends to overestimate the ex-

citation energies for the experimental values as the

CASSCF method also does. The largest deviation,

which is more than 1 eV, is found in the ionic plus

states for both singlet and triplet states. The CASCI–

MRMP method corrects the deficiency, and is a great

improvement over the CASCI results. The MRMP

excitation energies are quite close to the experimental

values for both ionic plus and covalent minus states.

For the ionic plus excited states, the dynamic σ–π

polarization effect is much more significant than that

of covalent minus states. Incorporation of the dy-

namical correlation by perturbation theory lowers the

excitation energies by more than 1 eV. The CASCI–

MRMP results slightly underestimate the excitation

energies for the ionic plus states compared with those

of the CASSCF-MRMP method. Although the fourth

excited state, 11E−2g, has a character of doubly excited

nature, the CASCI–MRMP method has no difficulty

in describing the doubly excited state.

The present calculations clearly demonstrate that

the excited states are well represented by the MRMP

method with a CASCI reference function constructed

over SCF orbitals.

Fig. 6. Potential energy curve of the 1∆u state of N2 as
computed by CASCI (�), CASSCF (•), CASCI–MRMP
(�), CASSCF-MRMP (◦), and FCI (�) methods.
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Table 3. Vertical π − π∗ excitation energies (eV) of benzene.

State CASCI CASSCFa CASCI–MRMP CASSCF-MRMPa Exptl.b

1B−2u 5.01 4.94 4.72 4.70 4.90
1B+

1u 7.58 7.55 6.14 6.21 6.20
1E+

1u 8.87 8.77 6.85 6.93 6.94
1E−2g 8.17 8.05 7.81 7.82 7.80
3B−1u 3.98 3.89 3.92 3.89 3.95
3E−1u 4.92 4.85 4.52 4.53 4.76
3B+

2u 6.83 6.77 5.46 5.54 5.60
3E−2g 7.27 7.16 7.06 7.02 6.83

aRef. 30.
bRef. 31 for 1B−2u,

1B+
1u, and 1E+

1u states; Ref. 32 for 1E−2g state; Ref. 33 or
3B−1u,

3E−1u, and 3B+
2u states; Ref. 34 for 3E−2g state.

2. Density Functional Theory

In the field of computational chemistry, density func-

tional theory (DFT) usually indicates the Kohn–

Sham method that solves electron configurations of

molecules by using the nonlinear Kohn–Sham equa-

tion with an exchange-correlation functional.35–37

Compared to high-level ab initio molecular orbital

theories, DFT is much simpler and requires much

less computational timings to give equivalent chemical

properties. DFT, therefore, becomes widely used to

support experimental results from a theoretical point

of view. However, it is not so far proved why DFT

estimates highly accurate chemical properties. The

most persuasive account may be that DFT incorpo-

rates well-balanced dynamical and nondynamical elec-

tron correlations. Compared Kohn–Sham potentials

of the ab initio multireference configuration interac-

tion method38 with those of DFT, it was found that

dynamical and nondynamical correlations are given by

correlation and exchange functionals, respectively.39

We should notice that chemical situations essentially

stem from the changes of electron configurations due

to transfers, increases and decreases of electrons. It

is, therefore, necessary for accurate chemical calcula-

tions to keep the balance of parallel-spin (dynamical)

and opposite-spin (nondynamical) electron-pair corre-

lations in exchange-correlation functionals.

Most conventional exchange-correlation function-

als are derived from a parametrized form that sat-

isfies fundamental conditions of the exact functional

with supplementary functions. The parameters are

then determined by a semi-empirical fit to experimen-

tal chemical properties.40–43 However, we should no-

tice that this is the second best policy on the ground

of the fixed idea that a semi-empirical fit is neces-

sary to construct a sophisticated functional. A func-

tional, essentially, should give either fundamental con-

ditions or accurate chemical properties without a fit

to these values. Recently, Tsuneda and Hirao de-

veloped parameter-free (Pfree) exchange44 and one-

parameter progressive (OP) correlation45,46 function-

als on the basis of the density matrix expansion and

the Colle–Salvetti correlation wavefunction. Pfree and

OP functionals contain updatable kinetic energy den-

sity and exchange functional terms, respectively. By

applying the exact limit conditions to these terms, it

is, surprisingly, proved that these functionals satisfy

all significant conditions except for the long-range ex-

change asymptotic behavior.44,45 It should be noted

that these conditions are not taken into account in

these functionals. This may indicate that funda-

mental conditions of kinetic, exchange, and correla-

tion functionals are transversely connected through

Pfree and OP functionals.47 It was also confirmed that

Pfree and OP functionals give equivalent-or-more ac-

curate chemical properties compared to conventional

functionals, despite that these functionals contain a

minimum of parameters; no parameter for Pfree and

one parameter for OP. Pfree and OP functionals and

the transversing connection are briefly summarized in

Sec. 2.1.

The self-interaction error (SIE) in exchange func-

tionals may be one of the most serious problems
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in DFT.36,48 SIE originates from exchange self-

interactions that are not cancelled out with Coulomb

self-interactions due to one-electron potential approx-

imations of conventional exchange functionals.48–50

Pfree exchange functional also contains SIE resulted

from the density matrix expansion. Although some

conventional self-interaction correction (SIC) schemes

have been suggested, most of these schemes intend

to remove SIE on the basis of electron orbital from

functionals of electron density. The discord of or-

bital and density may cause poor reproducibilities

and time-consuming procedures. Recently, Tsuneda,

Kamiya and Hirao proposed a regional self-interaction

correction (RSIC) scheme that substitutes exchange

self-interaction energies only for exchange functionals

in self-interaction regions.51 Since the RSIC scheme

contains neither orbital-localizations nor transforma-

tions to an orbital-dependent form, we can obtain self-

interaction corrected results based on the usual Kohn–

Sham scheme. By applying RSIC to the calculations

of chemical reaction barriers, it was found that un-

derestimated barriers are obviously improved by this

scheme. This RSIC scheme is outlined in Sec. 2.2.1.

Exchange-correlation functionals have problems

that may not be interpreted by SIE. The most re-

markable example may be the difficulties of Van der

Waal’s (VdW) calculations.36 DFT studies show that

it may be hard to obtain accurate Vdw bonds by

using conventional functionals even if VdW corre-

lation effects are taken into account in correlation

functionals.52 It was supposed that this maybe due

to the lack of two-electron long-range interactions

in exchange functionals. Despite the long-range in-

teraction which maybe significant in the description

of VdW bonds, it is essentially hard to incorporate

this interaction by employing one-electron potentials

such as conventional functionals. A long-range ex-

change correction (LRXC) scheme that was supposed

by Iikura, Tsuneda and Hirao,53 was recently applied

to the calculations of VdW bond systems.52 It has

been confirmed that this LRXC scheme drastically im-

proves overestimated polarizabilities for π-conjugated

polyenes.53 Dissociation potentials of rare-gas dimers

were calculated by combining the LRXC scheme with

conventional VdW functionals. Calculated results

showed that it gives much more accurate potential

energies than usual VdW techniques in DFT, as men-

tioned in Sec. 2.2.2.

2.1. Exchange-correlation functional

2.1.1. Criteria for the development of functionals

Most DFT functionals have been developed in accor-

dance with a process that a functional form is as-

sumed on the basis of specific physical conditions, and

then is fitted to particular chemical properties with

semi-empirical parameters. However, it is inherently

preferable that fundamental conditions and accurate

properties are given by a functional that is derived

from a reasonable physical model with a minimum of

adjustable parameters. The customary process may

lead to the discharges of functionals that are superior

only in a special case. Besides two typical criteria, a

functional

(i) obeys the conditions of the exact functional,

(ii) is applicable to a wide class of problems and a

wide variety of systems, with the following three

criteria to therefore be supplemented,

(iii) is simple with a minimum number of parameters

(including fundamental constants),

(iv) contains no additional part for obtaining specific

properties, and

(v) has a progressive form that can be updated.45

Generalized-gradient-approximation (GGA) corre-

lation functionals, e.g. Perdew–Wang 1991 (PW91)40

and etc. may conflict with criterion (iii), because

some semi-empirical parameters are contained in

component LDA correlations; i.e. six parameters in

Perdew–Wang functional54 and four in Vosko–Wilk–

Nusair functional.55 Parameters give rise to spurious

wiggles in potentials and lead to an over-complicated

functional form.41 Criterion (iv) is not satisfied by

many exchange-correlation functionals that are de-

rived to obey fundamental conditions,40,41,43 because

these conditions also correspond to the specific prop-

erties. There may be divergences of opinions to this

criterion. It should, however, be noted that additional

terms may lead to any functional that satisfies even

inconsistent fundamental conditions. The ignorance

of criteria (iii) and (iv) seems to lower the reliability

of DFT. Finally, criterion (v) is also very important,

because it is obvious that a functional will be aban-

doned in the near future unless it does not satisfy

this criterion. It seems reasonable to suppose that

we can always develop a functional that is superior to
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an inflexible functional. It may also be harmful for

the development of DFT that an inflexible functional

is used as a de facto standard over a long period of

time. Based on these five criteria, Pfree exchange and

OP correlation functionals are developed.

2.1.2. Parameter-free exchange functional

Tsuneda and Hirao developed the analytical para-

meter-free (Pfree) exchange functional that has nei-

ther adjusted parameters nor additional parts.44 The

Pfree exchange functional is given by

EPfree
x = −1

2

∑
σ

∫
27π

5τσ
ρ3
σ

[
1 +

7x2
σρ

5/3
σ

108τσ

]
d3R (40)

where ρσ and ∇ρσ are the density and the gradient

of the density for σ-spin electrons, and xσ indicates

a dimensionless parameter, xσ = |∇ρσ|/ρ4/3
σ . Kinetic

energy density τσ is defined in the noninteracting ki-

netic energy,

Ts =
1

2

∑
σ

∫ occ∑
i

|∇ψiσ |2d3R =
1

2

∑
σ

∫
τσd

3R .

(41)

Equation (40) is derived from the expansion of the

spin-polarized Hartree–Fock density matrix up to the

second-order,56–58

Pσ

(
R+

r

2
, R− r

2

)
=

3j1(kσr)

kσr
ρσ(R) +

35j3(kσr)

2k3
σr

×
(
∇2ρσ(R)

4
− τσ +

3

5
k2
σρσ(R)

)
(42)

where r = |ri− rj |, R = (ri + rj)/2 and jn is the nth-

order spherical Bessel function. In Eq. (42), kσ is the

averaged relative momentum at each center-of-mass

coordinate R, and is reasonably approximated by44

kσ =

√
5τσ
3ρσ

. (43)

This kσ gives the Fermi momentum, kσ = (6π2ρσ)
1/3,

for the Thomas–Fermi kinetic energy density, τσ =

(3/5)(6π2)2/3ρ
5/3
σ .

The Pfree exchange functional depends on kinetic

energy density τσ in Eq. (40) that is adjustable within

the applicability of Eq. (42), i.e. for a slowly-varying

density. Surprisingly, Pfree exchange functional was

proved to give the exact exchange energy in the slowly-

varying density limit for the exact τσ in this limit.44

It was also found that Pfree functional estimates

atomic exchange energies within an averaged error of

about 3% for this τσ, despite of the parameter-free

form. By adapting various fundamental conditions to

the τσ, it was confirmed that Pfree functional satis-

fies all fundamental conditions of exchange functional

except for the long-range asymptotic behavior.59,60

Since Eq. (42) inevitably contains a self-interaction

error, it is natural that Pfree exchange does not give

the long-range behavior that is dominated by the self-

interaction.61

2.1.3. One-parameter progressive correlation

functional

Tsuneda et al. also proposed the one-parameter

progressive (OP) correlation functional that contains

only one parameter and no additional parts,45,46

EOP
c = −

∫
ραρβ

1.5214βαβ + 0.5764

β4
αβ + 1.1284β3

αβ + 0.3183β2
αβ

(44)

where βαβ is given as

βαβ = qαβ
ρ
1/3
α ρ

1/3
β KαKβ

ρ
1/3
α Kα + ρ

1/3
β Kβ

. (45)

In Eq. (45), qαβ is only one parameter and Kσ is de-

fined in a form of exchange functionals,

Ex ≡ −
1

2

∑
σ

∫
ρ4/3
σ Kσd

3R . (46)

Equation (44) is derived from the spin-polarized

Colle–Salvetti-type correlation wave function for

opposite-spin electron pairs,46,62

Ψαβ = Ψ0
αβ

∏
i>j

[1− φαβ(ri, rj)] (47)

where ri is the spatial coordinate of the ith elec-

tron and Ψ0
αβ is a spin-polarized uncorrelated wave

function that is multiplied by itself to obtain a spin-

polarized uncorrelated second-order reduced density

matrix for spin αβ pairs. The function φαβ satisfies

the spin-polarized correlation cusp conditions63,64 by

φαβ(ri, rj) = exp(−β2
αβr

2)
[
1−

(
1 +

r

2

)
Φαβ(R)

]
(48)
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The function φαβ(R) can be described approximately

by

Φαβ ≈
√
πβαβ√

πβαβ + 1
. (49)

The parameter βαβ was derived by using Becke’s

definition of correlation length.46,65 The only semi-

empirical parameter qαβ is determined for each

exchange functional. By applying fundamental con-

ditions of the exact exchange functional to Kσ in

Eq. (45), OP correlation functional was surprisingly

proved to be the first that satisfies all conditions of

the exact correlation functional.45 Since OP functional

has also been numerically backed up by calculations

of G2 benchmark set,45 transition metal dimers,66,67

and etc. it is now implemented in sophisticated pack-

ages of computational chemistry; DMol3,68 ADF,69

GAMESS,70 and so forth.

2.1.4. Physical connections in molecules

As mentioned above, Pfree exchange and OP cor-

relation functionals satisfy most fundamental condi-

tions of the exact functionals by adapting conditions

of the exact kinetic and exchange functionals to τσ in

Eq. (40) and Kσ in Eq. (45), respectively.44,45 Table 4

shows the fundamental conditions and the comparison

of exchange-correlation functionals. From the table, it

is evident that Pfree + OP (POP) functional satisfies

much more conditions than conventional functionals

do.61 We should notice that both Pfree and OP func-

tionals are not derived to obey these conditions. It

may indicate that kinetic, exchange, and correlation

functionals are transversely connected through Pfree

exchange and OP correlation functionals.47 Only the

long-range asymptotic behavior is violated by that

Pfree exchange functional, because this behavior is

based on the self-interaction of electrons that is not

essentially given by GGA functionals.61

Molecules obviously contain two kinds of re-

gions where kinetic, exchange, and correlation ener-

gies are differently connected; i.e. free-electron and

self-interaction regions.61 In the free-electron region,

kinetic, exchange, and correlation energies are well-

approximated by gradient approximations and may

be transversely connected through Pfree and OP

functionals. On the other hand, the self-interaction

region comes from the density matrix behavior for

self-interacted electron pairs,71
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Fig. 7. Physical connections for kinetic, exchange, and
correlation energies in free-electron and self-interaction re-
gions. These energies are transversely connected through
Pfree and OP functionals in free-electron regions, and
are derived from the density matrix behavior in self-
interaction regions.

Pσ

(
R+

r

2
, R− r

2

)
∼=
√
ρσ

(
R+

r

2

)√
ρσ

(
R− r

2

)
.

(50)

Based on this behavior, kinetic energy density τσ
approaches Weizsaecker one,37

τWσ =
|∇ρσ|2
4ρσ

(51)

and exchange energy density εxσ gives the exact form

of hydrogen-like orbitals,72 as mentioned in the next

section. These two physical connections are summa-

rized in Fig. 7.61 In the figure, Tσ, K
P
σ , and HOP

σ are

defined as follows;47 Tσ is defined using a GGA form

of noninteracting kinetic energy,36

Ts =
1

2

∑
σ

∫
ρ5/3
σ Tσd

3R . (52)

Substituting Tσ into Eq. (40) gives Kσ in Eq. (46) for

the Pfree exchange functional:

KP
σ [xσ, Tσ] =

27π

5Tσ

[
1 +

7x2
σ

108Tσ

]
. (53)

ForKP
σ , the fractional part of the OP correlation func-

tional in Eq. (44), HOP
σ , is given by

HOP[βαβP ] =
1.5214βαβ + 0.5764

β4
αβ + 1.1284β3

αβ + 0.3183β2
αβ

(54)

where

βPαβ = qαβ
ρ
1/3
α ρ

1/3
β KP

αK
P
β

ρ
1/3
α KP

α + ρ
1/3
β KP

β

. (55)
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Fig. 8. Contour map of the ratio, τWσ /τ total
σ for formalde-

hyde molecule. This map reveals self-interaction regions
in this molecule.

Where are free-electron and self-interaction re-

gions distributed in molecules? By making use of the

relation that total kinetic energy density τ total
σ ap-

proaches the Weizsaecker one τWσ in self-interaction

regions, the contour map of the ratio, τWσ /τ total
σ can be

illustrated, as seen in Fig. 8.61 The figure shows that

self-interaction regions concentrate on near-nucleus

and low-density areas, and free-electron regions are

conversely distributed around chemical bonds between

atoms. In particular, self-interaction regions also

dominate around hydrogen atoms. We should notice

that DFT tends to underestimate reaction energy bar-

riers especially for reactions where hydrogen atoms

take part.73 It is, therefore, expected that conven-

tional DFT problems may be solved by getting rid

of errors from the self-interaction regions of exchange

functionals.

2.2. Correction schemes for exchange

functionals

2.2.1. Regional self-interaction correction scheme

Previous DFT calculations have shown that many

DFT problems may originate from self-interaction er-

rors. Although various kind of SIC schemes have

been suggested so far,48–50 most conventional SIC

schemes intend to take remaining Coulomb self-

interactions away, and require much computational

timing and considerable efforts for processing orbital-

localizations,49 orbital-dependent transformations,50

and so forth. Recently, a self-interaction correction

(SIC) scheme was proposed to remove self-interaction

errors spatiallly from DFT exchange functionals by

Tsuneda, Kamiya, and Hirao.51 Since this scheme sim-

ply improves functionals with no additional process

mentioned above, it is easily carried out only by solv-

ing the Kohn–Sham equation as usual.

In the new SIC scheme, self-interaction regions are

identified by making use of the property that total

kinetic energy density

τ total
σ =

occ∑
i

|∇ψiσ|2 (56)

where ψiσ is the ith σ-spin molecular orbital, ap-

proaches the Weizsaecker one for self-interacted

electrons.37 That is, it is supposed that self-interaction

regions correspond to the areas where index tσ,

tσ =
τWσ
τ total
σ

(0 < tσ ≤ 1) (57)

approaches 1.

Self-interacted electrons may have hydrogen-like

atomic orbitals,

ψσ =

√
α3

π
exp(−αR) (58)

because τ total
σ is proved to coincide with the

Weizsaecker one for such orbitals. It is easily proved

for such orbitals that the exchange self-interaction

energy density corresponds to the exact one,

εSIC
xσ (R) = −ρσ

R
[1− (1 + αR) exp(−2αR)] (59)

where εxσ is defined by Ex =
∑
σ

∫
εxσd

3R. Based on

Eq. (57), the exponent α is easily obtained by

α =
|∇ρσ|
2ρσ

(60)

because density ρσ is expressed by ρσ = |ψσ|2 in self-

interaction regions.

To make use of Eq. (57), a partition function is

necessary to cut self-interaction regions out from the

molecule. For this purpose, partition function fσ was

employed,

fσ =
1

2

(
1 + erf

[
5(tσ − a)

1− a

])
(0 < a < 1) (61)

where a is a parameter that corresponds to the bound-

ary point. By using fσ, exchange energy densities are
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smoothly divided into the free-electron part (i.e. tσ is

apart from 1) that is correctly approximated by con-

ventional exchange functionals and the self-interaction

part (i.e. tσ is close to 1) that is exactly given by

Eq. (59), such that

εxσ(R) = fσε
SIC
xσ (R) + (1− fσ)εDFT

xσ (R) . (62)

The regional SIC scheme was applied to energy

diagram calculations of the H2CO → H2 + CO

reaction.51 DFT studies have reported that conven-

tional exchange-correlation functionals underestimate

the energy barrier of this reaction by a few kcal mol−1

in comparison with experimental results. Unre-

stricted Kohn–Sham calculations were carried out us-

ing cc-pVQZ basis functions23 with 96 × 12 × 24-

point prune grids. Becke exchange + OP correlation

(BOP) functional45 was employed, and zero-point vi-

brational correction was taken into account. As a

result, it was found that the reaction barrier energy

(Exp. 79 kcal mol−1) was obviously improved from

72 kcal mol−1 to 82 kcal mol−1 before and after SIC.

This value is mostly equivalent to the result of ab ini-

tio CCSD(T) scheme.51 As far as we know, this may be

the first SIC scheme that gets rid of the self-interaction

error as a correction to functionals.

2.2.2. Long-range exchange correction scheme

As mentioned above, most DFT problems have been

reported to originate from self-interaction errors. In

exchange-correlation functionals, there are, however,

some problems that may not be interpreted by SIE.

The most remarkable example may be the difficulty

of Van der Waal’s (VdW) calculations. As far as we

know, accurate VdW bonds of rare-gas dimers are in-

clusively given by neither functionals nor correction

schemes in DFT.52 This failure has been attributed

to the lack of VdW interactions in conventional corre-

lation functionals. It is, however, reported that VdW

bonds are not reproduced by incorporating VdW

interactions in conventional functionals.52 On the hy-

pothesis that this may be due to the lack of the

long-range exchange interaction in exchange func-

tionals, the long-range exchange correction (LRXC)

scheme for exchange functionals53 was applied to

VdW calculations by combining with a VdW

functional.

In the LRXC scheme developed by Iikura, Tsuneda

and Hirao,53 the two-electron operator 1/r12 is sepa-

rated into the short-range and long-range parts nat-

urally by using the standard error function erf such

that74,75

1

r12
=

1− erf(µr12)

r12
+

erf(µr12)

r12
(63)

where µ is a parameter that determines the ratio of

these parts. The long-range exchange interaction is

described by the Hartree–Fock exchange integral,76

Elrx = −1

2

∑
σ

occ∑
i

occ∑
j

∫∫
d3r1d

3r2ψ
∗
iσ(r1)ψ

∗
jσ(r2)

× erf(µr12)

r12
ψjσ(r1)ψiσ(r2) (64)

and an exchange functional is applied to the short-

range part such that74

Esrx ≡ −
1

2

∑
σ

∫
ρ4/3
σ Kσ

(
1− 8

3
aσ

[
√
π erf

(
1

2aσ

)

+ (2aσ − 4a3
σ) exp

(
− 1

4a2
σ

)

− 3aσ + 4a3
σ

])
d3R (65)

where aσ = µ/(2kσ) and Kσ is defined in Eq. (46).

The averaged relative momentum kσ is given by53

kσ =

(
9π

Kσ

)1/2

ρ1/3
σ (66)

that reproduces the Fermi momentum, i.e. kFσ =

(6π2ρσ)
1/3, for Kσ of the local spin density approx-

imation exchange functional, Kσ = 3(3/4/π)1/3. It

is reported that this LRXC scheme improves under-

estimated 4s–3d interconfigurational energies (ICEs)

of the first-row transition metal dimers and over-

estimated longitudinal polarizabilities (LPs) of π-

conjugated polymer chains compared to those of usual

DFTs.

The LRXC scheme was applied to potential energy

calculations of rare-gas dimmers with a VdW func-

tional by Kamiya, Tsuneda and Hirao.52 In this study,

it was postulated that VdW bonds are formed under

the balance of VdW and long-range exchange interac-

tions. As the VdW functional, Andersson–Langreth–

Lundqvist (ALL) VdW functional,77
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Fig. 9. Calculated dissociation potential energies of He2, Ne2, and Ar2 molecules in hartree.
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EVdW
c = − 3

2(4π)3/2

∫
V1

d3r1

∫
V2

d3r2

×
√
ρ1(r1)ρ2(r2)√

ρ1(r1) +
√
ρ2(r2)

1

|r1 − r2|6
(67)

was employed. It is proved that the ALL functional

correctly behaves in either detached harmonic electron

gases or separated atoms. An exponential form,

fdamp = exp

(
− a6

|r1 − r2|6
)

(68)

was employed as the damping factor for short-

range electron–electron interactions,52 The 6-311++

G(3df, 3pd) basis functions78–80 were used with 96-

point Euler–Maclaurin quadrature for radial grids and

36 × 72-point Gauss–Legendre quadrature for angu-

lar grids. BOP functional45 was employed as the

exchange-correlation functional. Basis set superposi-

tion error was corrected by a counterpoise method.81

For comparison, mPWPW91,82 mPW1PW91,82 and

hybrid B3LYP with VdW correction (B3LYP+

VdW)82 schemes were also calculated.

Calculated potential energy curves of He2, Ne2,

Ar2 are shown in Fig. 9.52 Compared with conven-

tional DFTs, it is found that all VdW potentials

are dramatically improved by introducing the LRXC

scheme, while other schemes give poor potentials es-

pecially for He2 and Ar2. We should notice that the

LRXC scheme contains no parameters depending on

calculated atoms. It was, therefore, established that

the long-range exchange interactions must be incor-

porated to give accurate VdW bonds by DFT besides

VdW interactions.

3. Relativistic Effect

Since heavy-element systems are involved in many im-

portant chemical and physical phenomena, many the-

oretical and experimental chemists are interested in

the investigation of so-called “heavy atom” effects.

The relativistic effect underlying in such heavy atoms

had not been regarded as an important effect for chem-

ical properties because most chemists thought that the

relativistic effects appear primarily in the core elec-

trons. Recent studies, however, have revealed the im-

portance of the relativistic effects, which play essential

and vital roles in total natures of molecular electronic

structures for heavy-element systems.

In order to treat the relativistic effect theoreti-

cally, the Dirac equation is solved instead of the non-

relativistic Schrödinger equation. The Dirac equation

has the following one-particle Hamiltonian,

hD = cα · p(β − 1)c2 + V (r) (69)

where the constant c is the speed of light, V (r) is the

external potential, and p(= −i∇) is the momentum

operator. The 4×4 Dirac matrices α and β in Eq. (69)

are given by

αt ≡
(

02 σt

σt 02

)
, t = (x, y, z),

β ≡
(

I2 02

02 −I2

)
(70)

with 2× 2 Pauli spin matrix, σt,

σx ≡
(

0 1

1 0

)
, σy ≡

(
0 −i
i 0

)
,

σz ≡
(

1 0

0 −1

)
. (71)

The Dirac Hamiltonian provides a physical structure

that the eigenvalue spectrum {Ek} consists of two

parts. The higher-energy spectrum, where Ek ≥ mc2,
are called the positive state and comprises states cor-

responding to those found in non-relativistic theory.

The second branch of the eigenvalue spectrum con-

sists of states with energy less than −mc2, and in a

second-quantized theory they can be interpreted as

states of positrons and are called the negative state.

Since the Dirac equation is valid only for the one-

particle system, we have to extend the one-particle

Dirac equation and its Hamiltonian to the many-

particle systems. The straightforward way to ap-

ply the Dirac equation to the many-particle systems

is that the one-particle Dirac operator is augmented

by the Coulomb or Breit (or approximated Gaunt)

operator as the two-particle term, gij , to produce

the Dirac–Coulomb (DC) or Dirac–Coulomb–Breit

(DCB) Hamiltonian derived from quantum electro-

dynamics (QED),

H =
∑
i

hD(ri) +
∑
i>j

gij (72)
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where

gCij =
1

rij
(73)

or

gCB
ij =

1

rij
− 1

2

(
(αi · αj)
rij

+
(αi · rij)(αj · rij)

r3ij

)
.

(74)

In the following sections, we will survey the effi-

cient relativistic electronic structure theories to treat

heavy-atomic molecular systems accurately via the

four-component and the two-component relativistic

approaches. We firstly introduce the four-component

Dirac–Hartree–Fock and Dirac–Kohn–Sham methods

over the kinetically balanced Gaussian-type spinors.

Our two-component quasi-relativistic develop-

ments, RESC and higher-order Douglas–Kroll (DK)

Hamiltonians, are introduced in the sequential section.

As another review for our recent development of the

relativistic electronic structure theories, see Ref. 84.

3.1. Four-component relativistic approach

3.1.1. Dirac–Hartree–Fock and Dirac–Kohn–Sham

approaches

The Dirac–Hartree–Fock (DHF) equation is one of the

starting equations employing the many-particle rela-

tivistic Hamiltonian. By applying the independent

particle approximation to many-particle relativistic

Hamiltonians such as DC or DCB Hamiltonians, like

a procedure for the non-relativistic Hartree–Fock the-

ory, we can obtain the four-component DHF method

with large- and small-component spinors treated

explicitly.

The DHF wave function Ψ is given as the follow-

ing Slater determinant with N elec one-particle spinors

{ψi(rλ), i = 1, . . . , N elec}, where N elec represents the

number of electrons. The one-particle spinor ψi(rλ)

is the four-component vector, whose components are

the scalar wave functions,

ψi =

(
ψ2L

ψ2S
i

)
=


ψL1i

ψL2i

ψS3i

ψS4i

 . (75)

The two-component vectors ψ2L
i and ψ2S

i are called

as the large-component and small-component spinors,

respectively, which are expanded in the basis spinors

ϕL and ϕS .

The matrix DHF equation is given as

Fc = Scε (76)

where c is a matrix of molecular spinor coefficients,

ε is a diagonal spinor energy matrix, S is an overlap

matrix,

Spq =

( 〈ϕLp |ϕLq 〉 0

0 〈ϕSp |ϕSq 〉

)
(77)

and the Fock matrix F is given by

Fpq =(
VLL + JLLpq −KLL

pq cΠLSpq −KLS
pq

cΠSLpq −KSL
pq VSS

pq + JSSpq −KSS
pq − 2c2SSSpq

)
.

(78)

The matrices ΠXX̄pq , VXX
pq , JXXpq , and KXY

pq (X,Y = L

or S, L̄ = S, and S̄ = L) are the kinetic energy in-

tegral, the nuclear attraction integral, the Coulomb

integral, and the exchange integral, respectively,

defined by

ΠXX̄pq = 〈ϕXp |(σ · p)|ϕX̄q 〉 (79)

VXX
pq = 〈ϕXp |V nuc|ϕXq 〉 (80)

JXXpq =
∑

Y=L,S

∑
r,s

PY Y
sr (ϕ2X

p ϕ2X
q |ϕ2Y

r ϕ2Y
s ) (81)

and

KXY
pq =

∑
r,s

PXY
sr (ϕ2X

p ϕ2X
s |ϕ2Y

r ϕ2Y
q ) . (82)

The matrix PXY
sr is the density matrix calculated as

PXY
sr =

Nelec∑
a

cXsac
Y ∗

ra (83)

where negative energy states are ignored. The total

electronic energy is

EDHF =
1

2
{tr(Phcore) + tr{PFDC)} (84)

where hcore is the bare core Hamiltonian matrix.

The calculation with the chemical accuracy in

the heavy-element system requires the incorpora-

tion of both relativistic and electron correlation ef-

fects. A density functional theory (DFT) offers an

attractive alternative for including correlation effects
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in calculations on ground-state molecular properties.

This theory gives reliable accuracy and is gener-

ally computationally less demanding than conven-

tional electron-correlation approaches. While DFT

has been extensively applied to nonrelativistic calcu-

lations, the four-component DFT approaches have re-

cently appeared. Relativistic DFT was formulated

by Rajagopal and Callaway85 as a generalization

of the Hohenberg–Kohn–Sham theory of the inho-

mogeneous electron gas. The corresponding four-

component Dirac–Kohn–Sham (DKS) equation has

been derived from QED by Rajagopal86 and MacDon-

ald and Vosko.87 Within the no-sea approximation to

the relativistic Kohn–Sham equations, Varga et al.88

have performed four-component molecular DFT cal-

culations of the total energy and its gradient with the

RLDA and RGGA functionals by employing a numeri-

cal basis set. Another numerical four-component DFT

program has been developed and successfully applied

by Liu et al.89 They employed a frozen core approx-

imation and four-component basis expansion for the

valence spinors, which were a combination of numeri-

cal atomic spinors and Slater-type functions.

The one-electron effective Hamiltonian for the

DKS derived from QED takes the form,

hDKS = hD + νH + νxc (85)

where hD is the one-electron Dirac operator of

Eq. (69), and the νH is the Hartree potential,

νH =

∫
ρ(r′)

|r− r′|dr
′ (86)

where ρ(r) is the charge density and νxc is the

exchange-correlation potential. νxc is the functional

derivative of the exchange-correlation energy func-

tional with respect to the density ρ,

νxc =
δExc[ρ]

δρ
. (87)

The density ρ(r) is expressed approximately in terms

of a set of auxiliary occupied one-electron spinors as

ρ(r) =
Nelec∑
i

|ψi(r)|2 (88)

where positron states are ignored by employing the

no-sea approximation. The DKS equation is then

the matrix pseudoeigenvalue equation by introducing

basis set expansion as

hDKSc = Scε (89)

where hDKS takes the form of a Fock matrix,

hDKS
pq =(
VLL
pq +JLLpq −vLLxcpq cΠLSpq

cΠSLpq VSS
pq +JSSpq −vSSxcpq−2c2SSSpq

)
(90)

where vXXxcpq is the exchange-correlation potential

defined by

vXXxcpq =

〈
ϕXp

∣∣∣∣δExc

δρ

∣∣∣∣ϕXq 〉 . (91)

The total electronic energy is

EDKS =
1

2
tr(Phcore)

+
1

2
tr{P(hDKS + vxc)}+Exc[ρ] . (92)

3.1.2. Efficient computational scheme for DHF

and DKS methods

The DHF or DKS method with the four-component

spinors is a theoretically simple and straightfor-

ward approach. Although several four-component

ab initio molecular orbital programs for polyatomics,

MOLFDIR,90 DIRAC91 and BERTHA92 and others

have been developed in the last decade, the treatment

of more than one heavy atoms within a molecule is not

yet routine. The main bottleneck in four-component

calculations on heavy-element systems is an evalua-

tion of the two-electron AO integrals. The difficulty in

introducing contracted Gaussian-type spinors (GTSs)

lies in the fact that the kinetic balance condition be-

tween the large- and small-component primitive GTSs

must be incorporated.

Recently, we presented a highly efficient compu-

tational scheme for the four-component method as

a step toward routine fully relativistic calculations

on molecules containing more than one or two heavy

atoms. In this review, we briefly introduce our com-

putational scheme because the details are given in

Refs. 93–95. Our fully relativistic density functional
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method is the first implementation for the Gaussian-

based DKS method.

We adopt the spin-coupled generally contracted

Gaussian-type spinors as the basis. Thus the basis

expansion is expressed as(
ψ2L
i

ψ2S
i

)
=

n∑
µ

(
cLµi ϕ

2L
µ

cSµi ϕ
2S
µ

)
(93)

where the basis spinors ϕ2L
µ and ϕ2S

µ are two-

component basis spinors, and the expansion co-

efficients cLµ and cSµ are scalar variables. In Eq. (93),

two scalar wave functions within a two-component ba-

sis spinor are multiplied by a common expansion co-

efficient, the dimensions of both the large and small

components are n, and the total number of variational

parameters, consequently, is 2n. In contrast to the

pioneering four-component program package MOLF-

DIR, our scheme requires fewer functions in the small

component. This efficiency works to reduce the com-

putational demands effectively for storage, computa-

tion, and transformation of integrals.

The form of the basis spinors is determined by

the linear combination of atomic orbitals (LCAO)

approach. While the spinors of the analytical solu-

tion include Slater-type functions, they are replaced

by Gaussian-type functions for the sake of compu-

tational efficiency. First, assume the two-component

basis spinors to be generally contracted spherical har-

monic Gaussian-type spinors (GTSs),

ϕ2L
µ =

K∑
k

dLkµφ
2L
K (94)

ϕ2S
µ =

K∑
k

dSkµφ
2S
k (95)

where φ2L
k and φ2S

k are primitive spherical harmonic

GTSs containing a common orbital exponent, dLkµ and

dSkµ are the contraction coefficients, and K is the

degree of contraction. The contraction coefficients

dLkµ and dSkµ should be treated separately for large

and small components, because separate atomic or-

bital (AO) coefficients for the large and small com-

ponents are obtained from a four-component atomic

calculation.

The form of the large-component primitive GTS

φ2L
k is chosen from the large-component spinors ob-

tained by analytical solution of the one-electron Dirac

equation. The small-component primitive GTS φ2S
k

is given analytically in order that it may satisfy the

kinetic balance condition96 versus the corresponding

large-component primitive GTS φ2L
k ,

φ2S
k = i(σ · p)φ2L

k . (96)

This condition avoids the condition known as ‘varia-

tional collapse’.

In our contraction scheme, the contracted GTSs

no longer obey Eq. (96), but rather the more accurate

relation,

φ2S
k = i(V −E − 2c2)−1(σ · p)φ2L

k . (97)

We note that a contraction scheme such as that used

in MOLFDIR cannot satisfy Eq. (97) exactly.

Most of the previous DHF programs90–92 employ

extant non-relativistic quantum chemistry algorithms

to evaluate the elements of the DHF matrix in a

scalar Gaussian basis. In their implementations, the

structure of four-component Dirac spinors is ignored.

Molecular four-component spinors are expanded in de-

coupled scalar spin-orbitals, making the implemen-

tation of molecular double group symmetry in one-

and two-electron integrals difficult. Our algorithms

retain the structure of atomic spinors to exploit molec-

ular double group symmetry in generating integrals.

Four-component molecular spinors are expanded in

basis sets of generally contracted spherical harmonic

Gaussian-type two-component spinors.

In our scheme, relativistic AO integrals are esti-

mated via the fast non-relativistic electron repulsion

integral (ERI) routine SPHERICA, which is a highly

efficient algorithm for calculating ERIs that we have

developed and implemented.97 The algorithm is based

on the ACE-b3k3 formula98 with the general contrac-

tion. Because the bulk of relativistic effects is the

kinematic effects coming from the core region, it is

important to employ a large number of basis func-

tions especially in the core and to contract them for

computational efficiency. Our strategy for generating

integrals efficiently is to express the integrals in gener-

ally contracted spherical harmonic GTSs, which are in

turn expressed in generally contracted spherical har-

monic Gaussian-type orbitals (GTOs) so as to exploit

highly efficient SPHERICA algorithm.

The several numerical results show the efficiency

in our algorithm. The details are given in original

Refs. 93–95.
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3.2. Two-component quasi-relativistic

approach

Despite our implementation of the efficient algo-

rithm for the four-component relativistic approach,

the Dirac–Coulomb(–Breit) equation with the four-

component spinors composed of the large (upper) and

small (lower) components demands severe computa-

tional efforts to solve now still, and its applications

to molecules are limited to small- and medium-size

systems currently. Thus, several two-component

quasi-relativistic approximations are applied to the

chemically interesting systems including heavy ele-

ments instead of explicitly solving the four-component

relativistic Dirac equation.

The Breit–Pauli (BP) approximation99 is ob-

tained truncating the Taylor expansion of the Foldy–

Wouthuysen (FW) transformed Dirac Hamiltonian100

up to the (p/mc)2 term. The BP equation has the

well-known mass-velocity, Darwin, and spin-orbit op-

erators. Although the BP equation gives reasonable

results in the first-order perturbation calculation, it

cannot be used in the variational treatment.

One of the shortcomings of the BP approach is

that the expansion in (p/mc)2 is not justified in the

case where the electronic momentum is too large, e.g.

for a Coulomb-like potential. The zeroth-order regu-

lar approximation (ZORA) 101 can avoid this disad-

vantage by expanding in E/(2mc2−V ) up to the first

order. The ZORA Hamiltonian is variationally stable.

However, the Hamiltonian obtained by a higher-order

expansion has to be treated perturbatively, similarly

to the BP Hamiltonian.

Recently, we have developed two quasi-relativistic

approaches; one is the RESC method102 and another

is the higher-order Douglas–Kroll method.103 In this

section, we will review these theories briefly.

3.2.1. RESC method

The Dirac equation has the four-component spinors,

Ψ =

(
ΦL

ΦS

)
(98)

where ΨL and ΦS are the large (upper) and small

(lower) components, respectively. The Dirac spinor Ψ

is normalized as

〈Ψ|Ψ〉 = 〈ΨL|ΨL〉+ 〈ΨS |ΨS〉 = 1 (99)

while neither ΨL nor ΨS is normalized. The Dirac

equation, Eq. (69), can be written as coupled

equations,

VΨL + c(σ · p)ΨS = EΨL (100a)

c(σ · p)ΨL + (V −E − 2mc2)ΨS = 0 (100b)

where σ stands for the 2×2 Pauli spin matrix vector.

From Eq. (100b), the small component is expressed

as

ΨS = [2mc2 − (V −E)]−1c(σ · p)ΨL ≡ XΨL . (101)

By substitution of this equation into Eq. (100a), the

Schrödinger–Pauli type equation composed of only the

large component is obtained as[
V + (σ · p)

c2

2mc2 − (V − E)
(σ · p)

]
ΨL = EΨL ,

(102a)

and the normalization condition, Eq. (99) becomes

〈ΨL|1 +X+X|ΨL〉 = 1 . (102b)

Note that no approximation has been made so far. If

we can solve Eq. (102a) with Eq. (102b), the Dirac

solution can be obtained exactly.

However, it is difficult to solve this equation since

Eq. (102) has the energy and the potential in the de-

nominator. An appropriate approximation has to be

introduced. In our strategy, E−V in the denominator

is replaced by the classical relativistic kinetic energy

(relativistic substitutive correction),

T = (m2c4 + p2c2)1/2 −mc2 . (103)

The idea is simple and straightforward. This approach

is referred to as the relativistic scheme by eliminat-

ing small components (RESC). The derivation of this

approach is given in Ref. 102. The resulting RESC

Hamiltonian HRESC can be separated into the spin-

free (sf) and spin-dependent (sd) parts as

HRESC = Hsf
RESC +Hsd

RESC (104)

where

Hsf
RESC = T +OQq ·V pQO−1 +2mcOQ1/2V Q1/2O−1

(105)
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and

Hsd
RESC = iOQσ · (pV )× pQO−1 . (106)

Here, O and Q operators are defined by

O =
1

Ep +mc2

(
1 +

p2c2

(Ep +mc2)

)1/2

(107)

and

Q =
c

Ep +mc2
(108)

where

Ep = (p2c2 +m2c4)1/2 . (109)

Although we have so far treated one-electron equa-

tion, the resulting equation can be easily extended to

the many-electron case. For a practical calculation,

the Hamiltonian matrix elements are evaluated in the

space spanned by the eigenfunctions of the square mo-

mentum p2 following Buenker and Hess,104 as well as

the Douglas–Kroll–Hess (DKH) approach.105 HRESC

is symmetrized to be Hermitian for mathematical con-

venience, instead of the physical significance.

The RESC approach has several advantages. It

is variationally stable. This method can easily be

implemented in various non-relativistic ab initio pro-

grams, and the relativistic effect is considered on the

same footing with the electron correlation effect. The

RESC approach has been applied to various systems

in ground and excited states.106–113 RESC has been

known to work well for a number of systems, and re-

cent studies show that RESC gives similar results for

the chemical properties as the DKH method, although

very large exponents in the basis set can lead to vari-

ational collapse in a current RESC approximation,

partly because the current implementation includes

only the lowest truncation of the O operator. Since

the energy gradient of the RESC method is also avail-

able currently,114 we can study the chemical reaction

in the heavy element systems.

3.2.2. Higher-order Douglas–Kroll method

The Douglas–Kroll (DK) transformation115 can de-

couple the large and small components of the Dirac

spinors in the presence of an external potential by

repeating several unitary transformations. The DK

transformation is a variant of the Foldy–Wouthuysen

(FW) transformation,100 with an alternative natural

expansion parameter, the external potential Vext (or

the coupling strength Ze2), and avoids the high sin-

gularity in the FW transformation.

The first step in the DK transformation consists

of a free-particle FW transformation in momentum

space. Using the free-particle eigensolutions of the

Dirac Hamiltonian associated with the positive energy

eigenvalues, the unitary operator in the free-particle

FW transformation is given as

U0 = A(1 + βR) (110)

where A and R are operators defined by

A =

(
Ep + c2

2Ep

)1/2

(111)

R =
cα · p
Ep + c2

. (112)

Application of this unitary operator to the Dirac

Hamiltonian in the external field, Hext
D , gives

H1 = U0H
ext
D U−1

0

= βEp +E1 +O1 (113)

where E1 and O1 are the even and odd operators of

first order in the external potential, respectively,

E1 = A(Vext +RVextR)A (114)

O1 = βA(RVext − VextR)A . (115)

Douglas and Kroll suggested that it is possible to re-

move odd terms of arbitrary orders in the external

potential through successive unitary transformations

Un = (1 +W 2
n)1/2 +Wn (116)

where Wn is an anti-Hermitian operator of order V next.

Alternatively, we introduce an exponential-type uni-

tary operator of the form,103

Un = exp(Wn) . (117)

The essence of the DK transformation is to remove

odd terms by repeating arbitrary unitary transforma-

tions. Expanding Eqs. (116) and (117) in a power

series of Wn, we note that both expansions are

common up to second order. One should note that

an exponential-type unitary operator, instead of a

conventional form, is used in order to derive the
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higher-order DK Hamiltonians easily, since the

exponential-type operator can take full advantage of

the Baker–Cambell–Hausdorff expansion.

The 2n+ 1 rule also simplifies the formulations of

the high-order DK Hamiltonians significantly.103 The

2n+1 rule reads that generally the anti-HermitianWn

of order V next determines the DK Hamiltonian (or its

energy) to order 2n+ 1.

The resulting nth-order DK (DKn) Hamilto-

nians103 are given as

HDK2 = βEp +E1 −
1

2
[W1[W1, βEp]] (118)

HDK3 = HDK2 +
1

2
[W1, [W1, E1]] (119)

HDK4 = HDK3 −
1

8
[W1, [W1, [W1, [W1, βEp]]]

+ [W2, [W1, E1]] (120)

HDK5 = HDK4 +
1

24
[W1, [W1, [W1, [W1, E1]]]]

− 1

3
[W2, [W1, [W1, [W1, βEp]]]] (121)

where

W1(p, p
′) = β

O1(p, p
′)

Ep′ +Ep
(122)

W2(p, p
′) = β

[W1, E1]

Ep′ +Ep
. (123)

Note that W2 is not included in the expression of

the DK3 Hamiltonian as well as the DK2 Hamilto-

nian. This can simplify the practical calculation since

the evaluation of the terms including the higher or-

der Wn becomes complicated. The third-order DK

term in Eq. (119) is the correction to Veff(i), which

includes the operator, p · Vextp. The p · Vextp opera-

tor may be reduced to the operator including the delta

function when Vext is a Coulomb potential. Thus, the

third-order DK term affects the s orbitals, since the s

orbitals have no node at the nucleus.116

The DK transformation correct to second order

in the external potential (DK2) has been extensively

studied by Hess and co-workers,105 and has become

one of the most familiar quasi-relativistic approaches.

A numerical analysis by Molzberger and Schwarz117

shows that the DK2 method recovers energy up to the

order of Z6α4 to a large extent and includes also a sig-

nificant part of the higher-order terms. However, the

DK2 approach does not completely recover the sta-

bilizing higher-order energy contributions, as shown

previously.103 The DK3 approach improves this defi-

ciency to a large extent.

While the DK formulas for the one-electron system

are represented so far, the resulting formulas can be

easily extended to the many-electron systems with the

no-pair theory.118 The explicit expression for the DK3

Hamiltonian is given in Ref. 116. The DK approach

has several advantages. It is variationally stable and

can avoid the Coulomb singularity. The DK method

can be easily incorporated into any kind of ab initio

and DFT theory, as well as the RESC method. Thus,

one can handle the relativistic effect on the same foot-

ing with the electron correlation effect. We stress that

modification of the one-electron integrals for the third-

order relativistic correction with the DK3 Hamilto-

nian is not expensive in comparison with the DK2

Hamiltonian.

We have applied the DK3 approach to several

atomic and molecular systems and confirm that the

DK3 method gives excellent results.103,116,119–124 The

DK and RESC methods are currently implemented

in several ab initio MO programs. The second-order

DK (DK2) method can be used in the MOLCAS

and Dalton programs. The NWChem and GAMESS

programs will be able to treat the DK3 method, as

well as the DK2 and RESC methods, in their forth-

coming versions. The relativistic basis sets for the

DK3 method121,122 and the model potentials with the

DK3 method123,124 are prepared. Thus, we expect

that the relativistic effect becomes closer to various

chemists.

3.3. Benchmark calculation

The benchmark calculations of the spectroscopic val-

ues of Au2 molecule in the ground state84 were per-

formed to demonstrate the performance of the DK3

relativistic correction in comparison with the four-

component DHF and DKS calculations of REL4D.

The same quality of basis sets [29s25p15d11f]/

(11s8p5d3f) was used for the direct comparisons be-

tween DK3 and four-component calculations. The

DFT calculations employed the BLYP exchange-

correlation functional. The spin-free part of the DK3

Hamiltonian was used, and the spin-dependent term

was not considered. Table 4 shows the bond lengths,
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Table 4. Equilibrium internuclear distances, harmonic vi-
brational frequencies, and dissociation energies of Au2 in its
ground state.

re (Å) ωe (cm−1) De (eV)

DK3-HF 2.603 164 0.850

4-component DHF 2.594 164 0.890

DK3-KS (BLYP) 2.552 173 2.051

4-component DKS 2.549 173 2.230

(BLYP)

Exptl.a 2.472 191 2.36
aRefs. 125 and 126.

vibrational frequencies, and dissociation energies of

Au2. The DK3 calculations give good performances

in comparison with the corresponding four-component

calculations. The bonds are stretched by about

0.009 Å (HF) and 0.003 Å (DFT). The harmonics

vibrational frequencies are exactly similar. The dis-

sociation energies are decreased by about 0.04 eV

(HF) and 0.18 eV (DFT). The discrepancies between

spin-free DK3 and the four-component calculations

values seemed to be caused mainly from the treat-

ment of the spin-orbit coupling. The discrepancies

between the relativistic DFT calculations and ex-

perimental values seem to be affected by the prob-

lem of the exchange-correlation functional obtained

in the non-relativistic formalism. Thus, we may have

to develop the relativistic exchange-correlation func-

tional for an accurate description of the heavy-element

systems.

Theory and algorithms discussed in this review

have been incorporated into “UTChem”. UTChem

is a program package for molecular simulations and

dynamics developed in our group at the University of

Tokyo. It is based on the very efficient integral pack-

age “Spherica”97 and composed of various programs

of ab initio MO methods, DFT, relativistic molecular

theory, ab initio dynamics, hybrid QM/MM, etc. The

program will be released in the near future.
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