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An analytic energy gradient method for second-order quasidegenerate perturbation theory with
multiconf igurational self-consistent f ield reference functions (MC-QDPT) is presented.  An ex-
pression for the energy gradients is derived using the Lagrange multiplier method.  The gradients
are calculated without solving coupled perturbed equations.  Instead, it is necessary to solve eight
sets of  linear equations for the multipliers.  Six of  the eight equations reduces to simple partial dif -
ferential forms which directly give the multipliers, and only the remaining two are large scale lin-
ear equations that need iterative procedure.  The gradients are given as the product of  the f irst
derivative integrals and the effective densities that depends on the obtained multipliers and the pa-
rameters.  The expression for the conventional quasidegenerate perturbation theory and numeri-
cal results for the methylene molecule are also presented.

1  Introduction

1.1  Multireference perturbation theory

The development of multireference methods represents important progress in electronic
structure theory in the last two decades.  The Hartree-Fock (HF) method has played a very
important role and various single reference based methods starting with the HF wavefunc-
tion have been successful.  However, for the states in the bond-breaking region or for
excited states, the wavefunctions are basically of a multiconfigurational nature.  Mul-
tireference methods are indispensable for such states.

The complete active space self-consistent field method (CASSCF)1,2 is an attempt to
generalize the HF model to a situation where the multiconfigurational nature is important,
while keeping the conceptual simplicity of the HF model as much as possible, and is often
used to study potential energy surfaces of chemical reactions.  In fact, the CASSCF
method has many advantages: (1) it can be applied to excited state as well as the ground state
in a single framework; (2) it is size-consistent, and (3) it is well defined on the whole
potential energy surface of a chemical reaction if an appropriate active space is chosen.
However, CASSCF takes into account only non-dynamic electron correlation and not
dynamic correlation.  Accuracy in the energy calculation such as excitation energy and
dissociation energy does not reach chemical accuracy, that is, within several kcal/mol.  A
method is required that takes into account both the non-dynamic and dynamic correlations.

There are three approaches in including dynamic correlation based on the CASSCF
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method, similar to the single reference methods based on the HF method: multireference
configuration interaction (CI), coupled cluster (CC) methods, and perturbation theory (PT).

The most popular is probably the multireference configuration interaction (MRCI)
method.  Much effort has been devoted to developing the method to make it applicable to
larger systems and to increase its efficiency.  Calculations can now be performed involv-
ing a bil l ion configurations.  The accuracy of potential energy surfaces reaches a few
kcal/mol for very small molecule.  This is very useful in constructing a potential surface
of small molecules.  However, for realistically sized molecules, even today the MRCI is
still not practical due to the huge dimension of the CI expansion.

The multireference coupled cluster (MRCC) method has also been studied for many
years.  Although the cluster expansion method has attractive features such as size-
consistency, it has not yet been fully established and there are no program packages readily
available.

The multireference perturbation theory (MRPT) is a third technique for including
dynamic correlation.  At present, MRPT has three forms.  The first form is the conven-
tional quasidegenerate perturbation theory (QDPT)3, where an effective Hamiltonian is
constructed on a pure configuration state function (CSF) basis and then is diagonalize to
obtain the energies of the states of interest.  The effective Hamiltonian to second order (if
unitary normalization is applied) is given by
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where H and V denote Hamiltonian and perturbation operators, and A  and B  indicate the

CSFs in the active space, I  the CSFs in the outer space, and EA
( )0  are zeroth order energies

of the CSFs.  This method has also often been called “multiconfigurational perturbation
theory”.  However, each element of the effective Hamiltonian is calculated with a CSF
basis; in other words, all reference functions in the perturbation calculation are single-
configurational, and they are mixed after the diagonalization of the effective Hamiltonian.
Thus, the conventional QDPT should be classified as a single-configuration basis
multi-state PT, to distinguish it from under-mentioned PTs.  The history of the conven-
tional QDPT is long and dates back to 1950s. In spite of its long history it is not often
used by chemists, most probably because QDPT has convergence difficulty because of the
intruder states and thus it is not always stable.

The second form is Rayleigh-Schrödinger perturbation theory (RSPT) based on a
multiconfigurational reference function4,5.  The multireference Møller-Plesset perturba-
tion theory (MRMP PT)5 we proposed previously is one of the MRPTs of this form, where
CI coefficients as well as molecular orbitals (MOs) are determined first through CASSCF
and then RSPT is applied using the CASSCF wave function as reference.  The energy to
second order is given by
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where α  is a CASSCF wave function.  In this case, a single wave function that is

multi-configurational is used as reference.  Thus, this PT is classified as a multi-
configuration basis single-state PT.

We have also proposed a perturbation theory unifying the above two kinds of PTs, a
quasidegenerate perturbation theory with MCSCF reference functions (MC-QDPT)6,
which is a multi-configuration basis multi-state PT.  In this PT, state-averaged
CASSCF is first performed to set reference functions, then an effective Hamiltonian is
constructed, which finally is diagonalized to obtain the energies of interest.  The effective
Hamiltonian to second order is given by
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Differing from the conventional QDPT case, the reference functions α  and β  are

multiconfigurational.  This theory includes MRMP PT (the case that the set of reference
functions reduces to a single function) and the conventional QDPT (the case that each
multiconfigurational reference function reduces to a single CSF) as special cases.

MC-QDPT was designed to treat a relatively small number of states ( ∼ 20) while in the
conventional QDPT the number of states can reach several thousands or more.  The codes
needed for efficient computation for respective cases are quite different.  Although Eq. (3)
includes Eq. (1) as a special case, the definition of orbital energies for the conventional
QDPT is somewhat different from that of MC-QDPT and MRMP PT.  Therefore, the
gradients in the conventional QDPT are treated separately in the present article.

Our previous applications7 have been proved that MRMP PT and MC-QDPT are
powerful tools for investigating electronic structures of molecules and potential energy
surfaces of chemical reactions.  In fact, they are accurate enough to provide chemical
accuracy.  Although MRMP PT and MC-QDPT to second order do not yield a total energy
very close to the exact one, they are well balanced and relative energies like dissociation
energies, excitation energies, activation energies, etc. are quite good.  Furthermore, they
are much more efficient and accessible than MRCI and MRCC methods.  The effective
Hamiltonian is computed as sums of the product of molecular integrals and coupling
constants between a reference state and a CSF divided by energy difference, so the computer
resources required do not depend strongly on the size of the active space and basis set.  This
presents a stark contrast to the case of MRCI and MRCC.

1.2  Analytic energy derivatives of multireference perturbation theory

The analytic energy derivative method8 is an essential technique in modern electronic
structure theory.  Geometry optimization is a key step in studying chemical reaction
mechanisms and molecular structures, and normal mode vibrational analysis is utilized to
identify infrared and Raman spectra.  The required information is obtained from the first
and second derivatives with respect to nuclear coordinates of a molecule.
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Analytic gradient methods have been developed for several levels of theory beyond
Hartree-Fock.  The multiconfigurational self-consistent field (MCSCF) method is a
method analytic gradients of which was developed early in the history of the research of the
energy derivative method9.  Now CASSCF, a form of MCSCF, is often used to locate
stationary points8, since the CASSCF wave function is stable even at distorted molecular
structures.  However, as was mentioned in the previous sub-section, the CASSCF
potential surfaces do not reach chemical accuracy, so that it can predict, for example, a
fictitious transition state that disappears upon the addition of dynamic correlation.
Moreover, it is difficult to use fully optimized CASSCF wave functions for a pure excited
electronic state, that is, a state that is not the lowest of its spin and symmetry, since the
CASSCF iterative procedure for such cases frequently diverges.  There is a need for an
analytic gradient for a multireference wave function that goes beyond CASSCF and that is
efficient enough to be broadly applicable.  

There are few studies involving numerical examples on the gradient for a multirefer-
ence wave function.  Only the multireference CI energy gradient10 has been implemented.
However, as described in the previous section, the costs are generally so high that MRCI
gradients are not yet a general practical alternative of CASSCF one.

In the present article, we present a derivation of the analytic gradients for second-order
MC-QDPT.  Although we presented a derivation of the analytic gradient in a previous
publication11, a limitation was put on the derivation, that the set of reference functions be
identical to that of the (state-averaged) CASSCF wave functions.  This setting of refer-
ence functions is often not the case.  For example, we use one of the state-averaged
CASSCF functions as reference, or we use molecular orbitals obtained with a singlet
CASSCF calculation for triplet states.  In the present article, the gradient method is
extended to more general reference settings.

Several methods have been developed for the derivation of efficient formulas for the
gradient and higher-order energy derivatives for molecular wave functions.  In the mid
1980s, Handy and Schaefer proposed a method now called the Z-vector method12, designed
to avoid solving time-consuming coupled-perturbed (CP) equations, such as the CP
Hartree-Fock (CPHF) equation, in computing gradients of configuration interaction (CI)
energies.  The Lagrange multiplier method in the response function formalism13, devel-
oped by Jørgensen, Helgaker, and their co-workers, extends the applicability of the Z-vector
method to any order of energy derivatives.  This method minimizes the number of coupled
perturbed equations in a systematic way, and derives the formulas that automatically satisfy
the (2n+1) rule14 for the perturbation (nuclear displacements).  Moreover, with this
method one can also systematically treat many constraining conditions.

In the response function formalism derivation for configuration interaction, coupled
cluster, and Møller-Plesset perturbation methods, the second-quantization formalism, as
well as the unitary exponential forms for parameter relaxation in the OMO (orthonormal
molecular orbital) basis, proved to be a useful way to express the energy and the
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constraining equations for the MO and CI coefficients13,15.  This formalism avoids using
redundant parameters, and results in simple formulas for variational (and some nonvaria-
tional) wave function methods for which the energy expressions are relatively simple.
However, for the nonvariational MC-QDPT method, the energy expression is more
complex, so the second-quantization formalism for parameter relaxation complicates,
rather than simplifies, the derivation.  Therefore it is not used in our derivation.

The contents of the present article is as follows.  In Section 2, the Lagrangian
multiplier method in the response function formalism is briefly reviewed.  In Section 3
the MC-QDPT Lagrangian is defined.  In Section 4 the linear equations for determining
the Lagrangian multipliers, which are necessary for the gradient calculation used in later
sections, are derived.  In Section 5 the method used to obtain the gradients is discussed.
In Section 6 the derivation of gradients is repeated for the conventional QDPT.  Conclu-
sions are given in Section 7.

2  Lagrange multiplier method

We review very briefly the Lagrange multiplier method used in the present article.  The
details of the method have been described elsewhere13.

The Lagrangian is defined by
L X C W X C e X C( , , ) ( , ) ( , )ζ ζ= + , (4)

where X is a nuclear coordinate, C represents the molecular orbital, configuration interac-
tion coefficients and other parameters, W is the energy, e represents constraints on the
parameters C, and ζ is the Lagrangian multiplier.  The parameter C in Eq. (4) is deter-
mined by

e X C( , ) = 0. (5)
On the other hand, ζ is arbitrary since e X C( , )  is identically zero in Eq. (4).  Thus, we
may place any constraining condition on ζ .  In the response function formalism, ζ is
determined such that the first derivative of the Lagrangian with respect to the Cs is zero,
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Using Eqs. (9)-(13), the derivatives of the Lagrangian with respect to X,
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reduce to more compact forms,
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(21)
..... .

For the first derivatives, neither the first derivatives of the parameters dC
�

dX  nor those

of Lagrange multipliers d dXζ  are necessary.  The gradients of energy W may be written

in terms of only the zeroth derivative parameters C, the zeroth derivative multipliers ζ
determined by Eq. (18), and the first derivative molecular integrals.

3  MC-QDPT Lagrangian

In this section we derive the Lagrangian of second-order MC-QDPT.  Our previous
derivation11 contained a limitation that reference functions be identical to the state averaged
CASSCF functions.  This limitation is, however, too strong.  In fact, it is not the case
in some applications.  For example, in an excited state calculation, molecular orbitals are
often determined with state-averaged CASSCF to avoid the convergence difficulty with
excited states and some of the solutions are used as reference functions in perturbation
calculation, while in triplet state calculations, the molecular orbitals optimized for singlet
states are employed.  The Lagrangian in this section is more general than previous one
(reference 11): the reference functions are solutions of some CI Hamiltonian that are
independent of the state-averaged CASSCF functions.  This makes computation a little
complicated, but does not give rise to a serious difficulty.

3.1  The MC-QDPT energy expression to the second order

The effective Hamiltonian to second order in MC-QDPT is given6 by

K H
V I I V

E Eeff
II

( ) = +
−

+ ↔( )

î





∑αβ
α

α β
α β

α β1

2 0 0( ) ( ) , (22)

where I{ }  is the set of all singly and doubly excited configurations from the reference

configurations in the complete active space (CAS).  (Eq. (22) is equivalent to Eq. (3).)
The reference functions α  and β  are CAS-CI eigenfunctions, and the notation α β↔
means interchange α  with β from the first term in curly brackets.  The first term on the
right-hand side (rhs) of Eq. (22) is a diagonal matrix, diagonal elements of which are the
CAS-CI energies.  If we use the eigenvectors Dα{� }  of the effective Hamiltonian and

substitute the second-quantized operator,
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the energy expression W is given by
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In Eq. (24), B refers to a configuration state function (CSF) in the reference wave function,
RB( )β  are CAS-CI coefficients for CSF B in reference state β, Epq  is a unitary group

generator,
E a apq p q= +

=
∑ σ σ

σ α β,
, (25)

and
E E E E a a a apq rs pq rs qr ps p r s q, = − = +

′
+

′
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, (26)

E E E E E a a a a a apq rs tu pq rs ut qt pu rs st pq ru p r t u s q, , , , ,= − − = +
′

+
′′

+
′′ ′
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∑δ δ σ σ σ σ σ σ

σσ σ
. (27)

ε p  are orbital energies.  Active orbitals are indicated by the indices p, q, r, s, t, u, while

the external (virtual) orbitals are indicated by indices e, f.  The symbol (a, b) in the
summation in the third term in the curly bracket means that a and b run over both active
and external orbitals, but that a and b cannot both be external orbitals simultaneously.
∆EBα  is the difference between the energies of the zeroth-order state α and CSF B,

∆E E EB Bα α= −( ) ( )0 0 . (28)

In the present article we employ an energy formula omitting for simplicity the doubly
occupied orbitals.  While it is straightforward to include these in practice, they unneces-
sarily complicate the derivation.

3.2  The constraining conditions for determining the parameters

The calculation of MC-QDPT energies has four steps:
(i) the determination of molecular orbitals,
(ii) the determination of the reference CAS-CI wave functions,
(iii) the construction of the effective Hamiltonian, and
(iv) the diagonalization of the effective Hamiltonian.
In Steps (i), (i i), and (iv) parameters (molecular orbital coefficients, CAS-CI coefficients
and CAS-CI energies, and eigenvector of the effective Hamiltonian and the total energy) are
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defined.  The equation determining the parameters are used as constraining conditions in
the Lagrange multiplier method.  In this subsection we list these conditions.

3.2.1  Determination of molecular orbitals

The molecular orbitals are determined uniquely by (1) state-averaged CASSCF equations,
and (2) the orbital canonicalization condition with (3) the orthonormal condition assumed
implicitly.
(1) The state-averaged CASSCF equations
The variational condition for the CI coefficients is the secular equation,

H E CCD CD
CAS

D
D

− ( )( ) ( ) =∑ δ γ γ 0 and CC
C

2 1γ( ) =∑ . (29)

and that for the MO coefficients is a symmetry condition on the matrix x pq ,

x xpq qp= , (30)

where x pq  is defined by
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pq
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ijk
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γ γ

γ γ γ γ γ

γ

γ

(31)

( wCAS ( )γ : the average weight of the γ th state; γ γ= ∑C CC
C

( ) )

Note that the CI coefficients obtained through these equation as well as the following
conditions (2) and (3) are independent of the reference CI coefficients.
(2) The orbital canonicalization condition
Following the CASSCF optimization, canonicalization removes the rotational freedom of
the CASSCF orbitals within the doubly occupied, active, and external orbital subspaces.
For the doubly occupied, active, and external diagonal block (D),

F p h q D pq rs pr sqpq rs
CAS

rs

= + −[ ] =∑( | | ) ( | ) ( | ) 2 0 p q D> ∈(� ) , (32)

where Drs
CAS  is a averaged one-particle density matrix for the CASSCF states,

D w Ers
CAS CAS

rs= ( )∑ γ γ γ
γ

. (33)

(3) The orthonormalization condition for the molecular orbitals
The orthonormality condition,

( | )p q pq= δ ( )p q≥ , (34)

is assumed implicitly for the molecular orbitals.  It must be included in the Lagrangian
explicitly.

3.2.2  Determination of the reference functions

After the determination of the MOs, they are then used to set reference functions.  The CI
coefficients of the reference functions are determined by the CAS-CI equation and the
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normalization condition,

H E RAB AB
REF

B
B

− ( )( ) ( ) =∑ δ α α 0 and RA
A

2 1( )α∑ = . (35)

We do not put the limitation that the set of reference functions is not identical to that of
CASSCF functions as mentioned above.  Thus Eqs. (29) and (35) are treated as
independent conditions.

3.2.3  Definition of the orbital energies

Using the averaged one-particle density for the reference functions,
D w Ers

REF REF
rs= ∑ α α

α
, (36)

( wREF ( )α : the average weight of the α th state; α α= ∑ R AA
A

( ) )

(note that not the CASSCF density Drs
CAS), the orbital energies are computed by

ε p rs
REF

rs

p h p D pp rs pr sp= + ( ) − ( )[ ]∑( | | ) | | 2 . (37)

This definition of orbital energies is also used as the constraining condition for parameters
ε p .

3.2.4  The diagonalization condition of the effective Hamiltonian

In the last step of the MC-QDPT calculation, after the construction of the effective
Hamiltonian, we diagonalize it to obtain the energy of the target state.  This condition is
expressed by

K E Deff( ) −{ } =∑ αβ αβ β
β

δ 0 and Dα
α

2 1∑ = , (38)

The total energy E is a parameter constrained by the above equations.  Note that E is a

parameter that arises from the diagonalization condition, while W (see Eq. (24)) is a
function of the parameters and nuclear coordinates.

3.2.5  The definition of some auxiliary parameters

Now all the parameters that appear in the energy expression, Eq. (24), is defined.  We
further introduce the following auxiliary parameters:

u p h q c c h

p v q p q

pq p q= =

= ≠

∑( | | ) ( | | )

( | | ) ( ),

µ ν
µν

µ ν
(39)

g pq rs c c c cpqrs p q r s= = ∑( | ) ( | )µ ν ρ σ
µνρσ

µν ρσ . (40)

and

∆E B E B EB pp pp p
p

α α α ε= −{ }∑ . (41)

These equations may then be used as constraining conditions that determine the parame-
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ters upq , gpqrs , and ∆EBα .

3.3  The MC-QDPT Lagrangian

Using the energy expression Eq. (24) and the constraining conditions listed in the previous
subsection, we may write the Lagrangian,
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rs
CAS

rsp q D

p h q D pq rs pr sq, ( | | ) ( | ) ( | ) 2

+ −{ }
≥
∑ζ δS

pq
pq

p q

p q( | )

+ − ( )( ) ( )

�





+ −


�





∑∑ ∑∑ζ δ α α ζ αα

α

α

α
REF CI
A

AB AB
REF

B
BA

REF E A
A

H E R R, , ( )1 2

+ + −[ ] −


�





∑∑ζ εOE
p

rs
REF

rs
p

p

p h p D pp rs pr sp( | | ) ( | ) ( | ) 2

+ ( ) −[ ]

�





+ −




∑∑ ∑ζ δ ζα

αβ αβ β
βα

α
α

K eff KK E D D1 2

+ −[ ] −


�





∑∑ζ α α εα
α

α
∆ ∆E
B

pp pp p
p

B
B

B E B E E

+ −{ } + −{ }∑ ∑ζ ζu
pq

pq
pq

g
pqrs

pqrs
pqrs

p h q u pq rs g( | | ) ( | ) .

(42)
The energy expression W is now expressed only in terms of the molecular orbital coeffi-
cients, (CAS-)CI coefficients, upq , gpqrs  etc., but not explicitly in terms of the molecular

integrals.  In other words, it does not depend on the nuclear coordinates explicitly.

4  The linear equations for the Lagrange multipliers

The first step of the gradient calculation is to solve the linear equation for determining the
Lagrangian multipliers ζs,

∂
∂

∂
∂

ζ ∂
∂

W

C

W

C

e

C
= ↔ + =0 0. (43)

This may be decoupled into eight sets of equations corresponding to the step-wise wave
function determination described in Subsection. 3.2.
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4.1  The multipliers for diagonalization of the effective Hamiltonian

Since the effective Hamiltonian is diagonalized exactly, the energy is stationary with
respect to changes in all Dα ,

∂� =W D∂ α 0 and ∂� ∂ =W E 0. (44)

The solutions for these linear equations are clearly
ζ α

K = 0 and ζ� K = 0. (45)

4.2  The multipliers for the one- and two-electron integrals

The multipliers for the one- and two-electron integrals are obtained with simple partial
differentiation as

ζ ∂ ∂ α αα
α

u
ab

ab ab ab
WW u D E d= = +∑ 2 2

2( )

, (46)

ζ ∂ ∂ α αα
α

g
abcd

abcd ab cd abcd
WW g D E D= = +∑1

2
22 2

,

( )

, (47)

where the first terms on the rhs of Eqs. (46) and (47) are the one- and two-electron density

for the zeroth- plus first-order energy, respectively, and dab
W ( )2

 and Dabcd
W ( )2

 indicate the one-

and two-electron densities in the MO basis for the second-order energy,

d W u

D D E B R
u u

E

E B R
g

E

g

ab
W

ab

pq B
pa eb eq pe ea qb

e q Bepq B

pq rs
pqrs B

B
pa eb eqrs

e q r s Be

pers ea qb

( ) ( )

,

,
,

2 2

1

4

=

= −
+

− +




�

−
− + − +







+

∑ ∑∑

∑ ∑

∂ ∂

α
δ δ δ δ

ε ε

α
δ δ

ε ε ε ε

δ δ

α β
αβ

β
α

β
α

∆

∆

εε ε
α β

αe q Be E− +






+ ↔





∑ ∆

( )

(48)

and

D W g

D D E B R
u

E

u

E

g

abcd
W

abcd

pq rs
pqrs B

B
pe ea qb rc sd

e q r s Be

pa eb rc sd eq

e q Be

pa a b rc b d

( ) ( )

,
,

2 2

1

4

1

2

=

= −
− + − +











�

+
− +

+

∑ ∑ ∑

∑

′ ′ ′

∂ ∂

α
δ δ δ δ

ε ε ε ε
δ δ δ δ
ε ε

δ δ δ δ

α β
αβ

β
α

α

∆

∆

aa qb s pa rb a a qb b c sd

a q b s Ba b

pq rs tu
pqrstu B

B
pa eb rc sd eqtu pers ea qb tc ud

e q t u Be

g

E

E B R
g g

E

′ ′ ′ ′ ′

′ ′′ ′

+
− + − +







+
+

− + − +
+ ↔

∑

∑ ∑

δ δ δ δ
ε ε ε ε

α
δ δ δ δ δ δ δ δ

ε ε ε ε
α β

α

β
α

∆

∆

( , )

, ,
,

( )) ,





(49)

respectively.
To simplify subsequent equations, it is convenient to employ the symmetrized effec-
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tive densities:

d d dab
E

ab
E

ba
E( ) ( ) ( )2 2 21

2
← +( ) , (50)

D D D D D D D D Dabcd
E

abcd
E

abdc
E

bacd
E

badc
E

cdab
E

cdba
E

dcab
E

dcba
E( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 21

8
← + + + + + + +( ). (51)

4.3  The multipliers for the definition of energy shift

The equation for obtaining the multipliers for the energy shifts ∆EBα ,

∂� ∂ αL EB∆ = 0 (52)

is easily reduced to a formula that gives the multipliers directly,
ζ ∂ ∂

α β
ε ε

α β

α
α

α β
αβ α

∆ ∆

∆

E
B

B

pq B
pe eq

e q Bepq B

W E

D D E B R
u u

E

=

=
− +( )

+ ↔




�






+( )

∑ ∑∑1

2 2( ) ( )

.

,

2-  +  3- body terms

(53)
The two- and three-body terms in Eq. (53) are readily derived by analogy to the one-body
term, since ∂� ∂ α∆EB  operates only on the energy denominators in the Lagrangian.  The

structure of the creation-annihilation operators is the same as that for the energy expression
Eq. (24), so that the computation is performed using the same approach as for the effective
Hamiltonian.

4.4  The multipliers for the orbital energies

The multipliers for ∆EBα  are again given by partial differentiation of the energy expres-

sion,

∂ ∂ε ζ ζ α α ∂ ∂εα

α
L B E B E Wp OE

p
E

B
pp pp

B
p= ↔ = − −[ ] +∑0 ∆ . (54)

As noted above for the multipliers for ∆EBα , the second term in Eq. (54) has the same

creation-annihilation operator structure as the effective Hamiltonian, so that the calculation
is again straightforward,

∂ ∂ε

α β δ δ
ε ε

α β

α β
αβ

α

W D D

E B R
u u

E

m

pq B mq me
pe eq

e q Bepq B

=

× − −( )
− +( )





�

+ ↔





+ ( )

∑

∑∑

1

2

2( )

( ) .

, ∆

2-  +  3- body terms

(55)

4.5  The linear equations for the multipliers for the CI coefficients of the reference
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functions

Unlike the above multipliers, the multipliers for the CI coefficients of the reference
functions ζ α

REF CI
A

,  and the reference energies ζ α
REF E,  are determined by N independent sets of

linear equations (N is the number of the reference states),
∂ ∂ α
∂ ∂ α
L R

L E
A
REF

( )

( )

=
=



�

0

0
. α =(

�
)1 2, , ,� N (56)

Equation (56) may be written in matrix form as,
A A

A 0

x

x
b

0
REF REF REF E

E REF

REF CI

REF E

REF CI, ,

,

,

,

,�










= 





. (57)

for each α .  The nonzero parts of the coefficient matrix A and the vector b are given by
A H EREF REF

A B
BA BA

REF
,

, ( )α α δ α= − , (58)

A RREF E
A

A,
, ( )α α α= −2 , (59)

A RE REF
B

B,
, ( )α α α= − , (60)

and
b w E E A P

R E W R

REF CI
A REF

OE
p

rs sr pprs
rsp

A A E
B

B
A

,

( )

( )

( ) ( )

α

α

α ζ α

α ζ ∂ ∂ α

= − +

+ −

∑∑
∑2 0

∆

, (61)

where
∂ ∂ α α α

β
ε ε

β α

α

α β
ββ

W R D E R

D D E A
u u

E

A
REF

A

pq
pe eq

e q Aepq

( ) ( ) ( )

( )

.

=

+ −
− +

+ →
















�






+( )

∑∑∑

2 2

∆

2-  +  3- body terms

(62)
The dimension of the linear equations for each a is the dimension of the reference CAS-
CI space plus one.

4.6  The multipliers for the M O rotations in the invariant doubly occupied and exter-
nal orbital subspaces

The multipliers for the orbital rotations in the doubly occupied and external subspaces are
obtained from the following equation,

∂ ∂ ∂ ∂U U L a b doc extab ba−(	 ) = > ∈( )0 , , (63)

where
c X c X Ui m mi

m
µ µ( ) ( )= ∑ 0 . (64)

We use Umi  rather than molecular coefficients themselves as in the conventional energy

derivative methods.  Eq. (63) is written as
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ζ CAS MO
pq ab pq

p q D

abA b,
,

> ∈
∑ = a b doc ext> ∈(

�
), (65)

where

A D P a bab pq
a pa qb qa pb ib

CAS
pqia

i

a b pa qb

, ( )= +( ) + − ↔

= −( )
∑ε δ δ δ δ

ε ε δ δ

2
(66)

as the matrix elements, and

b X R D P

u ij ka a b

ab
REF CI
A

ab
AB

B
BA

OE
i

jb
REF

iija
ji

u
ib

ia
i

g
ijkb

ijk

= − +


�

+ + − ↔




∑∑ ∑∑

∑ ∑

ζ α ζ

ζ ζ

α

α
, ( )

( | ) ( )

2

2 4

(67)

as the vector elements.  Ppqrs  are the Roothaan-Bagus supermatrix integrals16

P pq rs pr qs ps rqpqrs = − −( | ) ( | ) ( | )4 4. (68)

Since the coefficient matrix is diagonal for doubly occupied and external subspaces, the
ζ CAS MO

ab
,  for the doubly occupied and external subspaces can be determined without having

to solve linear equations,
ζ ε εCAS MO

ab
ab a bb, = −( ). a b doc ext> ∈(

�
), (69)

4.7  The linear equations for the multipliers for the M O rotations and the CI coeffi-
cients of the CASSCF functions

The remaining multipliers for the orbital rotation mixing and the multipliers for the CI
coefficients are obtained by solving coupled linear equations corresponding to the state-
averaged CASSCF equation.  The dimension of these linear equations is large, so their
solution represents the most time-consuming part of the problem:

∂ ∂ ∂ ∂
∂ ∂ γ
∂ ∂ γ

U U L a b O act

L C

L E

ab ba

C
CAS

−( ) = > ∈( )
=

=





�

0

0

0

,

( )

( )

, (70)

where a b O> ∈  means that orbitals a and b are in different orbital subspaces (doubly
occupied, active, or external).  Equation (70) may be written in matrix form as,

A A 0

A A A

0 A 0

x

x

x

b

b

0

MO MO MO CI

CI MO CI CI CI E

E CI

CAS MO
O act

CAS CI

CAS E

CAS MO
O act

CAS CI

, ,

, , ,

,

,
,

,

,

,
,

,

�



























=














. (71)

The coefficient matrix A consists of six nonzero parts,

A
x Y p q a b p q O

D P D P p q actMO MO
ab pq

bp aq pqab

a b pa qb ib
CAS

pqia ia
CAS

pqib
i

,
,

( ) ( )

)
=

+ − ↔( ) − ↔ > ∈( )
−( ) + −( ) > ∈( )





�
∑

δ

ε ε δ δ 2
, (72)

A X C a bMO CI
ab C

ab
CD

D
D

,
, ( ) ( )γ γ= − ↔∑ , (73)



16

a b O act> ∈(
�

),

A
w C X X p q O

w E E C P p q act
CI MO
C pq

CAS
D pq

CD
qp
CD

D
CAS

rs sr pqrs
rs

,
,

( ) ( )

( )
γ

γ γ

γ γ
=

−( ) > ∈( )
+ > ∈( )






�


∑
∑

, (74)

A H ECI CI
C D

DC DC
CAS

,
, ( )γ δ

γδδ γ δ= −[ ] , (75)

A CCI E
C

C,
, ( )γ δ

γδγ δ= −2 , (76)

A CE CI
D

D,
, ( )γ δ

γδγ δ= − , (77)

where Xab
AB  and Ypqab  are defined by

X p h i A E B B E A

pi jk A E B B E A

pq
AB

qi qi
i

qi jk qi jk
ijk

= ( ) +[ ]
+ ( ) +[ ]
∑
∑

| |

| ,, ,

(78)

Y w Y

w p h a E pa mn E

pm an E pm an E

pqab
CAS

pqab

CAS
qb qb mn

mn

qm bn qm nb

=

= ( ) + ( )[

�

+( ) + ( ) ]


∑

∑∑

( ) ( )

( ) | | |

| | .

,

, ,

γ γ

γ γ γ γ γ

γ γ γ γ

γ

γ
(79)

The vector b on the rhs of Eq. (71) has two nonzero parts,

b F D P

F F D P

X R u ij ka

CAS MO
ab

OE
p

bp ap ib
REF

ppia
ip

CAS MO
pq

bp aq bq ap ib
CAS

pqia
ip q doc ext

REF CI
A

ab
AB

B
BA

u
ib

ia
i

g
ijkb

ijk

,

,
,

, ( ) ( | )

= − +








�

+ + +






+ + +

∑∑

∑∑
∑∑ ∑ ∑

> ∈

ζ δ

ζ δ δ

ζ α ζ ζα

α

2 2

2

2 4

 
  − ↔





( )a b

(80)

and
b w E E C PCAS CI

C CAS
CAS MO
pq

rs sr pqrs
rsp q doc ext

, ,
,

( )γ γ ζ γ= − +∑∑
> ∈

. (81)

4.8  The multipliers for the MO orthonormalization conditions

The final step in solving the linear equations for the multipliers is the computation of the
multipliers for the orthonormality conditions of the orbitals,

∂ ∂ ∂ ∂U U Lab ba+(	 ) = 0, ( )a b≥ (82)

which is written as

ζ δ ξS
ab

ab ab= − +( )− −
2 11 1

. (83)
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The ξ
 ab  are obtained by changing the sign with respect to interchange of a with b from

minus to plus in Subsections 4.6-7 and collecting them,

ξ ζ γ ζ δ

ζ δ δ

ζ δ

ζ

γ

γ
ab CAS CI

C
ab
CD

D
DC

CAS MO
pq

bp aq pqab
p q O

CAS MO
pq

bp aq bq ap ib
CAS

pqia
ip q D

OE
p

bp ap ib
CAS

ppia
ip

REF

X C x Y p q

F F D P

F D P

= + + − ↔( )

+ + +






+ +






+

∑∑∑ ∑

∑∑

∑∑

> ∈

> ∈

, ,

,

( ) ( )

2

2 2

,, ( ) ( | )

.

CI
A

ab
AB

B
BA

u
ib

ia
i

g
ijkb

ijk

X R u ij ka

a b

α

α
α ζ ζ∑∑∑ ∑ ∑+ +








+ ↔( )

2 2

(84)

5  Molecular energy gradient

The Lagrangian multipliers obtained in the previous section may now be combined with
the molecular integrals to compute the molecular energy gradients:

dL

dX

W

X

e

X

e

X
= + =∂

∂
ζ ∂

∂
ζ ∂

∂
= ( ) + ( )∑∑ ∑∑ζ ∂

∂
γ ζ ∂

∂
αγ

γ

α

α
CAS CI
C CD

D
DC

CAS CI
A AB

B
BA

H

X
C

H

X
R, ,

+ −( ) +
> ∈ > ∈
∑ ∑ζ ∂

∂
ζ

∂
∂CAS MO

pq
pq qp

p q O
CAS MO
pq pq

p q DX
x x

F

X, ,

+ + −[ ]

�





∑∑ζ ∂
∂OE

p
rs
REF

rsp X
p h p D pp rs pr sp( | | ) ( | ) ( | ) 2

+ + +
≥
∑ ∑ ∑ζ ζ ζS

pq X

p q
u
pq X

pq
g
pqrs X

pqrs

p q p v q pq rs( | ) ( | | ) ( | )

= + +∑ ∑ ∑d p h q d p q D pq rsh
pq X

pq
S
pq X

pw
g
pqrs X

pqrs

( | | ) ( | ) ( | ) ,

(85)
where ( | | )p h q X , ( | )p q X , and ( | )pq rs X  are transformed derivative integrals in the MO

basis

( | ) ( | )p q c c
d

dX
X

p q= ∑ µ ν
µν

µ ν , (86)

( | | ) ( | | )p h q c c
d

dX
hX

p q= ∑ µ ν
µν

µ ν , (87)

( | ) ( | )pq rs c c c c
d

dX
X

p q r s= ∑ µ ν ρ σ
µνρσ

µν ρσ , (88)

and dh
pq , dS

pq , and Dg
pqrs  are effective densities for the Lagrangian in the MO basis17.

These densities are given by
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d C E A E

w E i j

p q

p q D

h
pq

CAS CI
C

pq
C

REF CI
A

pq
A

CAS MO
ij CAS

pi jq
i j O

u
pq

OE
p

CAS MO
pq

= +

+ − ↔( ) +

+
=( )
> ∈( )

( )






�










∑∑ ∑∑
∑∑

> ∈

ζ γ ζ α

ζ γ δ γ γ ζ

ζ
ζ

γ

γ

α

α

γ

, ,

,

,

( ) ( )

,

0 otherwise

(89)

dS
pq

S
pq= ζ , (90)

and
D C E A E

w E i j

D D

D

g
pqrs

CAS CI
C

pq rs
C

REF CI
A

pq rs
A

CAS MO
ij CAS

pi jq rs
i j O

CAS MO
ij

pi qj rs
CAS

pi sj qr
CAS

i j D

OE
i

pi qi rs
REF

= +

+ − ↔( )
+ −( )
+

∑∑ ∑∑
∑∑

∑
> ∈

> ∈

ζ γ ζ α

ζ γ δ γ γ

ζ δ δ δ δ

ζ δ δ

γ

γ

α

α

γ

, , , ,

, ,

,

( ) ( )

2 2

2

−−( )
+

∑ δ δ

ζ

pi si pr
REF

i

g
pqrs

D 2

.

(91)
These are transformed back into the atomic orbital (AO) basis, and the energy gradients may
be obtained by multiplying the densities in the AO basis by the first-derivative integrals,

dL

dX
d

d

dX
h d

d

dX
D

d

dXh S g= + +∑ ∑ ∑µν

µν

µν

µν

µνρσ

µνρσ
µ ν µ ν µν ρσ( | | ) ( | ) ( | ).

(92)

The following is a summary of the computational steps:
Step 1  Determination of the energy of the target state
(a) Compute the (state-averaged) CASSCF wave functions.
(b) Canonicalize the CASSCF MOs and transform the integrals to the MO basis.
(c) Compute the reference functions for the canonical Fock MOs by solving CAS-CI

(The active space is not necessarily the same as (a).).
(d) Compute the MC-QDPT effective Hamiltonian and obtain the final energy by di-

agonalizing it.
Step 2  Determination of the Lagrange multipliers
(a) Compute the multipliersζ� K , ζ� u , ζ� g , ζ� ∆E , and ζ� OE  in order.  These are simply

obtained with partial differentiations.
(b) Solve linear equations for the multipliers ζ� REF CI,  and ζ� REF E,  for each reference state.

(c) Compute the multipliers ζ� CAS MO,  for the doubly occupied and external orbital sub-

space.
(d) Solve the linear equation for the ζ� CAS CI,  and the remaining part of the ζ� CAS MO, .
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(e) Compute the ζ� S .

Step 3  Evaluation of energy gradients
(a) Compute the effective densities of the Lagrangian for the overlap, one-, and two-

electron integrals on the MO basis.
(b) Transform the densities back to the AO basis.
(c) Multiply the densities and the derivative integrals to obtain the gradient, which is

looped over all the nuclear coordinates.

6  Conventional quasidegenerate perturbation theory (QDPT) case

We could extend the discussions in Sections 3 to 5 to the conventional quasidegenerate
perturbation theory (QDPT)3 case that constructs an effective Hamiltonian in the CSF basis,
with a slight modification of the MC-QDPT Lagrangian.  However, we do not adopt such
a line, since the general formulas derived in such a way are so complicated that the codes
become inefficient.  In the MC-QDPT case, the dimension of the effective Hamiltonian is
usually small ( ∼ 20) even for a large CAS, while in the conventional QDPT case, the
dimension is equal to that of CAS.  Accordingly, the algorithms of the MC- and
conventional QDPTs are quite different from each other.  Thus we present the formula for
gradients of the conventional QDPT separately in this section.

6.1  The QDPT molecular gradients

The energy expression Eq. (24) in Section 3.1 reduces to the conventional QDPT one if we
set  reference functions ( α ) as being all the CSFs in the CAS.  Some parameters take

definite values in that case,
RA ( )α = 1, (93)

∆EBα = 0. (94)

In this section we treat the case that the molecular orbitals are determined by restricted
(open- or closed-shell) Hartree-Fock equation and orbital energies are defined by the OPT1
scheme18.  In this case the CASSCF optimization of molecular orbitals and the
canonicalization scheme are applicable:

x xpq qp= p q O> ∈(� ) , (95)

( x h D pi ij Dpq pi qi
HF

i
qi ij
HF

ijk

= +∑ ∑ ( | ) , ) (96)

F p h q D pq rs pr sqpq rs
HF

rs

= + −[ ] =∑( | | ) ( | ) ( | ) 2 0 p q D> ∈(� ) (97)

where Dij
HF  and Dij kl

HF
,  indicate the one- and two-particle Hartree-Fock density matrices

defined by

D HF E HF HF E HF

i

i
i

ij
HF

ij ij ii

ij

ij= = =




�
δ

δ
δ
2

0

( : )

( : )
( : )

 doubly occupied

 singly occupied
 virtual

(98)



20

and
D D D D D D Dij kl

HF
ij
HF

kl
HF

jk il
HF

ij kl ii
HF

kk
HF

jk il ii
HF

, = − = −δ δ δ δ δ . (99)

The symbol D stands for the doubly occupied, singly occupied, and virtual diagonal blocks
and the symbol O for the off-diagonal block.  The CI equation Eqs. (29) vanishes.

Using these equations we obtain the QDPT Lagrangian,

L D D K Deff= ( )∑ ∑α β αβ
αβ

α
α

2

+ −( )
> ∈
∑ζ HF MO

pq
pq qp

p q O

x x,

+ + −[ ]

�





∑∑
> ∈

ζ HF MO
pq

rs
HF

rsp q D

p h q D pq rs pr sq, ( | | ) ( | ) ( | ) 2

+ −{ }
≥
∑ζ δS

pq
pq

p q

p q( | )

+ + −[ ] −


�





∑∑ζ εOE
p

rs
HF

rs
p

p

p h p D pp rs pr sp( | | ) ( | ) ( | ) 2

+ ( ) −[ ]

�





+ −




∑∑ ∑ζ δ ζα

αβ αβ β
βα

α
α

K eff KK E D D1 2

+ −{ } + −{ }∑ ∑ζ ζu
pq

pq
pq

g
pqrs
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The multipliers ζ� K , ζ� u , ζ� g , and ζ� OE  are determined in the same manner as the

MC-QDPT case:
ζ α

K = 0 and ζ� K = 0,   (101)

ζ ∂ ∂ α αα
α

u
ab

ab ab ab
WW u D E d= = +∑ 2 2

2( )

,   (102)

ζ ∂ ∂ α αα
α

g
abcd

abcd ab cd abcd
WW g D E D= = +∑1

2
22 2

,

( )

,   (103)

and
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α β δ δ
ε ε

α βα β
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pq mq me
pe eq

e qepq
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D D E
u u

=

= − −( )
−( )
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+( )

∑ ∑∑1

2 2 ( )

.2 -  +  3- body terms

  (104)
The multipliers for the orbital rotations in the doubly occupied, singly occupied, and

virtual subspaces are obtained from the following equation,
∂ ∂ ∂ ∂U U L a b Dab ba−(	 ) = > ∈( )0 ,   (105)

This is written as
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ζ
ε ε

ζ ζ ζHF MO
ab

a b
OE
i

jb
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iija
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u
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g
ijkb
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D P u ij ka
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, ( | )

( ) .

= −
−

+ +
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∑∑ ∑ ∑2
2

  (106)

a b D> ∈(
�

)
One difference from the MC-QDPT case is that the multipliers are given for all three
diagonal blocks (doubly occupied, singly occupied, and virtual orbital blocks, which
correspond to doubly occupied, active, and external orbital blocks, respectively, in the
CASSCF case).

The multipliers for the orbital rotation mixing among different subspaces are obtained
by solving a linear equation,

∂ − ∂(	 ) = > ∈( )∂ ∂U U L a b Oab ba 0 .   (107)

This may be written in matrix form as
A x bMO MO HF MO

O
HF MO
O

, , ,= .   (108)

The coefficient matrix A is given by

A x Y p q a bMO MO
ab pq

bp aq pqab,
, ( ) ( )= + − ↔( ) − ↔δ ,   (109)

where
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and the vector b
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Finally the multipliers for the orthonormality condition of the orbitals are obtained as

ζ δ ξS
ab

ab ab= − +( )− −
2 11 1

.   (112)

where
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  (113)
The obtained Lagrangian multipliers may now be combined with the molecular

integrals to compute the molecular energy gradients:
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dh

pq , dS
pq , and Dg

pqrs  are effective densities for the Lagrangian in the MO basis.  They are

given by
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  (115)
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pq
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pq= ζ ,   (116)
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These densities are transformed back into the atomic orbital (AO) basis, and the energy
gradients may be obtained by multiplying the densities in the AO basis by the first-
derivative integrals as in the MC-QDPT case,

dL

dX
d

d

dX
h d

d

dX
D

d

dXh S g= + +∑ ∑ ∑µν

µν

µν

µν

µνρσ

µνρσ
µ ν µ ν µν ρσ( | | ) ( | ) ( | ).

  (118)
The formulas in this section are further reducible using Eqs. (98) and (99).  However,

they are remained as they are to maintain the similarity to the formulas in the previous
sections.

6.2  An example calculation: methylene CH2

As an example application of the energy gradient method of the conventional QDPT, we
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determined the geometries of the ground (13B2 ) and two excited (11A1 and 11B2) states of
methylene CH2.  These states have the following main configurations:

11A1   ( ) ( ) ( ) ( ) ( )1 2 1 3 11
2

1
2

1
2

1
2

2
0a a b a b   HF

13B2   ( ) ( ) ( ) ( ) ( )1 2 1 3 11
2

1
2

1
2

1
1

2
1a a b a b   3 11 2a b→

11B2   ( ) ( ) ( ) ( ) ( )1 2 1 3 11
2

1
2

1
2

1
1

2
1a a b a b   3 11 2a b→ .

The basis set used are Dunning’s correlation consistent valence double zeta (cc-pVDZ)
set19.  The closed shell Hartree-Fock orbitals, corresponding to 11A1 state, were used for
all the states.  The active space was one constructed by distributing eight electrons to five
orbitals, CAS(8e,5o).

Results are shown in Table 1.  Internally contracted multireference configuration
interaction (MRCI)20 results are also given in the table for comparison. (The orbitals are
optimized with CASSCF for each state.)  The geometries using MRCI were determined
with a non-gradient numerical optimization method.  The ground and first excited state
structures of QDPT are in very good agreement with those of MRCI.  The deviations in
bond length and bond angle are within 0.01 Å and 1 degree, respectively, in both states.
The adiabatic excitation energy using QDPT is 15.31 kcal/mol, which is somewhat larger
than that using MRCI, 11.74 kcal/mol.  For 11B2 state, the structure using QDPT is also
close to that obtained using MRCI.  The deviations from the MRCI values are 0.006 Å
and 3.4 degrees.  The excitation energy using QDPT is almost equal to the MRCI value.
In Table 1 the excitation energies to the first order (reference space CI) computed at the
QDPT optimized structures are also shown.  For the 11A1 state the excitation energy
computed is too small, 0.47 kcal/mol, and for 11B2 state it is also small, 35.89 kcal/mol,
which indicates that a second-order perturbation treatment is essential for these states.

Table 1: Optimized geometries and adiabatic excitation energies in CH2.

r(C-H) (Å) ∠ HCH (degree) ∆E (kcal/mol)

 13B2

  QDPT
  MRCI

 11A1

  QDPT

  MRCI

  CI(8e,5o)
  HF

 11B2

  QDPT

  MRCI

  CI(8e,5o)

1.090
1.092

1.119

1.124

(1.119)
1.107

1.083

1.089

(1.083)

131.4
131.9

101.7

101.0

(101.7)
102.7

144.0

140.6

(144.0)

–
–

15.31

11.74

 0.47
–

38.94

38.54

35.89
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Note that the program used to compute the numbers in this section is a preliminary one,
coded in early 1990s.

7  Concluding remarks

We have derived an analytic expression for the analytic energy gradients for MC-QDPT
using the Lagrange multiplier method.  With this method, we can obtain gradients
without solving coupled perturbed equations.  Instead, it is necessary to solve eight sets
of linear equations for the multipliers.  Six of the eight equations reduces to simple partial
differential forms that directly give the multipliers, and only the remaining two are large
scale linear equations that need iterative procedure.  The gradients are given as the product
of the first derivative integrals and the effective density that depends the obtained
multipliers and the parameters.

The terms derived from the second-order energy may be expressed through diagrams.
Since we did not perform any operations that change the structure of the creation-
annihilation operators in the derivation, the diagrams do not change from those of the
second-order effective Hamiltonian.  Thus, the set of (25 Goldstone) diagrams used in the
calculation of the effective Hamiltonian is applicable to the relevant terms if we adopted
appropriate rules for transferring a diagram to an algebraic formula.  This is why we did
not adopted the second quantized form of parameter relaxation, which introduces more than
hundred (156) Goldstone diagrams for orbital relaxation.

The gradient method of the conventional QDPT and some numerical results are also
presented: these were not included in our previous paper.  At present various definition of
MOs and their energies are used.  The present Lagrangian is not applicable to such general
cases, since the orbitals are limited to the Hartree-Fock MOs.  However, the extension is
readily feasible by changing some terms in the Lagrangian.

Finally, we note that the code for the conventional QDPT gradients used in the Section
6, which is an old preliminary one, is independent of the more powerful code for MC-
QDPT gradients we are currently developing.  The new code will be released in some ab
initio program packages, GAMESS21, HONDO22, and MR2D23.
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