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Abstract

Recent advances in electronic structure theory achieved in our group have been reviewed.
Emphasis is put on development of ab initio multireference-based perturbation theory,
exchange and correlation functionals in density functional theory, and molecular theory
including relativistic effects.

20.1 INTRODUCTION

Accurate theoretical/computational chemistry has evolved dramatically and has opened
up a world of new possibilities. It can treat real systems with predictive accuracy.
Computational chemistry is becoming an integral part of chemistry research. Our
research group, the University of Tokyo (UT) group, was founded in 1993. Since then
the UT group has continued to grow and now becomes one of the centers of
theoretical/computational chemistry. We are interested in theory development and
application calculations. We have continued our research in the following three
directions: (i) development of new ab initio theory, particularly multireference-based
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perturbation theory; (ii) development of exchange and correlation functionals in
density functional theory (DFT); and (iii) development of molecular theory including
relativistic effects. We have enjoyed good progress in each of the above areas. We are
very excited about our discoveries of new theory and algorithms, and new findings in
chemistry. We would like to share this enthusiasm with readers. The present review is
a summary of our research activities which have been achieved in the last 10 years at
the University of Tokyo.

20.2 MULTIREFERENCE PERTURBATION THEORY AND VALENCE BOND
DESCRIPTION OF ELECTRONIC STRUCTURES OF MOLECULES

The development of multireference methods represents important progress in electronic
structure theory in the last decades. The multiconfiguration self-consistent field (MCSCF)
method, and configuration interaction (CI), coupled cluster (CC), and perturbation
methods based on the MCSCEF functions play a central role in the studies of electronic
structure of molecules and chemical reaction mechanisms, especially in those concerned
with electronic excited states.

Among several types of the MCSCF method, the complete active space self-consistent
field (CASSCF) method is commonly used at present. In fact, it has many attractive
features: (1) applicable to excited state as well as the ground state in a single framework;
(2) size-consistent; (3) well defined on the whole potential energy surface if an
appropriate active space is selected. However, CASSCF takes into account only non-
dynamic electron correlation and not dynamic correlation. The accuracy in the energy
such as excitation energy and dissociation energy does not reach the chemical accuracy,
that is, within several kcal/mol. A method is necessary which takes into account both the
non-dynamic and dynamic correlations for quantitative description.

Our multireference Mgller—Plesset (MRMP) perturbation method [1-4] and MC-
QDPT quasi-degenerate perturbation theory (QDPT) with multiconfiguration self-
consistent field reference functions (MC-QDPT) [5,6] are perturbation methods of such a
type. Using these perturbation methods, we have clarified electronic structures of various
systems and demonstrated that they are powerful tools for investigating excitation spectra
and potential energy surfaces of chemical reactions [7-10]. In the present section, we
review these multireference perturbation methods as well as a method for interpreting the
electronic structure in terms of valence-bond resonance structure based on the CASSCF
wavefunction.

20.2.1 Multireference perturbation theory

Many-body perturbation theory (MBPT) has been utilized as a convenient way of taking
account of electron correlation beyond the Hartree-Fock (HF) approximation. In
particular, its single-reference version is now fully established. Mgller—Plesset
perturbation method [11], up to the fourth order, is provided as a standard tool in most
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program systems such as GAUSSIAN or GAMESS. However, the application of the single-
reference many-body perturbation theories (SR-MBPT) is limited only to the system
where the Hartree—Fock approximation is a good starting point. It cannot describe open-
shell molecules, dissociation to open-shell fragment, and transition state of chemical
reaction.

Conventional QDPT [12-21] has been developed to be applied to open-shell systems
and excited states. Although much effort has been made to develop the QDPT, it is not
widely used among chemists. The major reason is that the QDPT often provides incorrect
potential curves, since the perturbation series frequently diverges owing to the existence
of intruder states [22].

In the 1980s and 1990s, multiconfigurational self-consistent field (MCSCF) reference
perturbation theories [1-6,23—30] were proposed to overcome the defects of the single-
reference PT and the QDPT, and now they are established as reliable methods that can be
applied to wide variety of problems: potential energies surfaces of chemical reactions,
excited spectra of molecules, etc. In fact, they have many advantages:

1. Generally applicable to a wide class of problems and a wide variety of molecules
in a single framework;

2. Almost size-consistent;

Applicable to excited states and open-shells as well as the ground state;

4. Stable on the whole potential surface if reference CASSCF function is
appropriately chosen;

5. Accurate enough to provide the chemical accuracy. Although MRMP and MC-
QDPT at the lowest non-trivial order (the second order) does not yield very close
total energy to the exact one, they are well balanced and the relative energies like
dissociation energies, excitation energies, the activation energy are quite good.

6. Much more efficient and handy than MRCI and MRCC methods. The energy is
computed as a sum of the product of molecular integrals and coupling constants
between the target state and CSF divided by energy difference. The resource
required does not depend strongly on the size of the active space and basis set. This
presents a keen contrast to the case of MRCI and MRCC.

The MRMP method [1-4] and MC-QDPT [5,6] are perturbation methods in this
category. In these methods, the CASSCF wavefunction(s) is(are) first determined, and
the perturbation calculation is done with those wavefunctions used as reference (zeroth-
order wavefunction) based on Rayleigh—Schrédinger PT in MRMP and van Vleck PT in
MC-QDPT.

In the following sections, we show the formalism of the multireference perturbation
theory and some applications to potential energy surfaces and electronic excited
Spectra.

w

20.2.1.1 Multireference Mgpller—Plesset perturbation method [1-4]
Our basic problem is to find approximations to some low-lying solutions of the exact
Schrédinger equation

HY=EV¥ (H
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H is the Hamiltonian and it is decomposed into two parts, a zeroth-order Hamiltonian H,
and a perturbation V

H=Hy+V 2)

We assume that a complete set of orthonormal eigenfunctions { 1:I’,vw)} and corresponding
eigenvalues are available

O _ O g @
Hy ¥ " = EY, 3)
Then the state wavefunction ¥, is expanded in terms of basis functions ?’k(o) as

¥, = Z (o A )
X

Some of the basis functions define an active space P and the remaining part of Hilbert
space is called the orthogonal space Q = 1 — P. The active space is spanned by the basis
functions that have a filled core and the remaining active electrons distributed over a set
of active orbitals. The orthogonal complete space incorporates all other possible basis
functions that are characterized by having at least one vacancy in a core orbital. The state
wavefunction in an active space is written as

¥ =3 G, S)
K
where the sum runs over active space basis functions {®;} and C, are the coefficients

of only active space basis functions. It is convenient to use intermediate normalization,
ie.

(TP Oy = (wOlw)y = 1 (6)
We also assume that WI(O) is diagonal in P space
(PONHIP) = 8,(EQ + ED) )
with
E[® = (%" lH ¥, @®
ELY = (wOlviw,®) )

The state-specific Rayleigh—Schrodinger perturbation theory based on the unperturbed
eigenvalue equation

Hyv© = EOw© (10)
leads to the first E,(k) as
E® = (vOlVrvIw®) (11

E® = (VOIVRV — E")RVI¥,®) (12)
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E{Y = (W OWVRW — EfRV — EfRVIW®) — EL WO IVR VYO
+ (¥, O IVRH SH RV W, )] etc. (13)
The R and § are the resolvent operators
R= Q/(E” — Hp) (14)
S=P/(E - Hy) (15)

where P’ = P — W Ox ¥, O],
The zeroth-order energies E, are given in terms of orbital energies as
g I g g

E” =3 npDepe (16)
po

where €, and n,,(1) are the energy of orbital p with spin o and the occupation number of
orbital p with spin o in wavefunction @;, respectively.

We have mainly used canonical Fock orbitals, which are defined so that the
generalized Fock matrix

Fpy = hyy + > (D% + DE)l(pglrs) — L (pslrg)] 7

is partially diagonal in the core, active, and virtual orbital sub-blocks (Dj; and Dk
represent alpha and beta one-particle density matrices, respectively) and have adopted the
diagonal elements of the generalized Fock matrix, F),,, as orbital energies

Epa = Epp = My + z (D% + DP)[(pplrs) — 1 (pslrp)] (18)

rs

However, in an open-shell system involving unpaired alpha electrons, the electron
environment depends on whether the electron is in an alpha or a beta orbital. Thus, we
have also proposed that we retain canonical Fock orbitals but adopt spin-dependent
orbital energies defined by

Epa = hyp + > {D[(ppIrs) — (pslrp)] + DE(pplrs)) (19)
and
&pp = hyp + D {DE[(ppIrs) — (pslrp)] + Dy(pplrs)) (20)

for alpha- and beta-spin orbitals, respectively [31].

When CASSCF wavefunction is used as the reference, the zeroth plus first-order
energy E,(O) + E,(“ is equal to the CASSCF energy. The lowest non-trivial order is,
therefore, the second order. Let the reference function | %%y be a CASSCF wavefunction

la) = > CalA) 21
A
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The energy up to the second order in MRMP is given by

EO-2 — pCAS | Z <6;|‘(f)[)1><1£/(|0¢)1> 22)
I a T Lp

where {I)} is the set of all singly and doubly excited configurations from the reference
configurations in CAS. The first term of the RHS is the CAS-CI energy.

20.2.1.2 Multiconfigurational quasi-degenerate perturbation theory (MC-QDPT) [5,6]
We have also proposed a multistate multireference perturbation theory, the QDPT with
MCSCEF reference functions (MC-QDPT). In this PT, state-averaged CASSCEF is first
performed to set reference functions, and then an effective Hamiltonian is constructed,
which is finally diagonalized to obtain the energies of interest.

The van Vleck PT for the CASSCF reference wavefunctions gives the order-by-order
expansion of the effective Hamiltonian

(Hx(a(f)f_l))aﬁ = EEAS 0ap (23)
(H)op = $(lVRVIB) + (a = B) 24)
(Hap = 3 VRV — ESNRVIB) + (a = B), etc. (25)

where R is the resolvent operator given by Eq. (14). Thus, the effective Hamiltonian to
second order is given by

(alVII)(IlVIB) (BIVII)(IlVla)
(Hgf)f 2))043— EcASSaﬂ+ ;{ E(O) El(o) + E 050) _ El(o) (26)

Substituting the second-quantized operator into V, we obtain an explicit formula using
molecular integrals and orbital energies instead of matrix elements

0-2) _ pCAS _ ___iﬂ_____
(Heg )ap = Ea" 8o g;“] lﬁ)CB(B)Z — &, + AEg,

u ege rs
-5 (alEq,xlB)CB(B)I:Z - pe8eq

pqrs.B & + &, — & + AEp,

(27)
8persUeq 1 8parb8agbs
Y operea 4
Z g, —&,+AEg, . 2 (azﬁ) g, — €, + &, — &+ AFp,
Spers8eqtu
(@lEpg s u!BYCB(B) e + (= p)
pq%B PR B zse-—sq—l-a,—eu—i-AEBa
with
8pgrs = (qurs) (28)

doc

pq = (pg = 8pgp) — z (28pqii — 8piiq) 29

u
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and
AEg, = E5” — E” (30)

the difference between the energies of the zeroth-order state and configuration. The
orbital labels {i}, {a}, and {e} are for doubly occupied, active, and external orbitals,
respectively, and {@’, b’} run over both active and external orbitals, and the suffix of the
generator {p, g, r, s, t, u} run over only active orbitals. The terms including doubly
occupied orbitals are omitted in this equation. See Ref. [5] for the full formula.

This theory includes MRMP PT (the case that the set of reference functions reduces
to a single function). Note that MRMP energy can be also calculated with the formula
Eq. (27) by setting the number of the states to one.

20.2.1.3 Application of multireference perturbation theory to singlet—triplet

splitting of CH; and CF, [31]

Many applications of the MRMP and MC-QDPT methods to chemical reactions and
excitation spectra have been collected in our review articles [7-10]. Here we present the
singlet—triplet splitting of CH, and CF,: examples where the use of the spin-dependent
orbital energies is crucial.

Various methods have been applied to the adiabatic singlet—triplet (ST) splitting of
methylene with the same geometry, active space, and basis set given in Ref. [32]. We first
calculated it with the same condition for comparison. The active space is a full-valence
type CAS[6e,60], and the basis set used is the double zeta plus polarization (DZP) basis.
The results are listed in Table 20.1. The ST splitting by the original MRMP (MRMP with
spin-averaged orbital energies, hereafter MRMP(SA)) is 15.9 kcal/mol; the deviation
from the full CI value of 12.0 kcal/mol is 3.9 kcal/mol. This is improved by MRMP with
spin-dependent orbital energies, MRMP(SD); the splitting is 12.6 kcal/mol, the
discrepancy being only 0.6 kcal/mol.

We next carried out calculations with a larger basis set and active space to compare the
calculated and experimental results. The splitting with Dunning’s correlation consistent
polarized valence triple zeta (cc-pVTZ) basis set is 10.1 kcal/mol, which is in good
agreement with the experimental value of 9.4 kcal/mol [33]. In the calculations with
CAS[6e,60], even the reference CASSCF gives good results: 12.8 (DZP) and 10.5 (cc-
pVTZ) kcal/mol. The deviation from the full CI and experimental values are only 0.8 and
1.1 kcal/mol, respectively. However, it is known that the energy splitting at the CASSCF
level gets worse if the active space is enlarged to CAS[6e,120]. We next calculated the
splitting using CAS[6e,120] as a further check. The result of CASSCEF is 4.3 kcal/mol,
which is rather poor compared with the CAS[6e,60] value. On the contrary, the value
9.9 kcal/mol of MRMP(SD) is in much better agreement with experiment.

The geometry of CF, used in the calculations was determined with CASSCF
[6e,60)/cc-pVTZ. The active space and basis set for MRMP are CAS[12¢,90] and
€c-pVTZ, respectively. The ST splitting energy calculated with MRMP(SD) is
52.6 kcal/mol. This is a fairly good estimate of the experimental value, 56.6 kcal/mol.
[34] On the other hand, the value from MRMP(SA), 46.7 kcal/mol, is too small compared
with experiment.
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Table 20.1 Energy splitting between the 'A, and B, states in CH; and CF»

Method Energy (hartree) AFE (kcal/mol)
xAI JB]

CH,

|6e,60]CASSCF/DZP —38.94532 —38.96578 12.8
[6e,60]MRMP(SA)/DZP —39.01106 —39.03636 15.9
[6e,60]MRMP(SD)/DZP —39.01106 —39.03115 12.6
Full CI/DZP —39.02718 —39.04626 12.0
[6e,60]CASSCF/cc-pVTZ —38.95422 —38.97099 10.5
[6e,60]MRMP(SA)/cc-pVTZ —39.04461 —39.06778 14.5
[6e.60]MROPT2/cc-pVTZ —39.04461 —39.06138 10.5
[6e,60]MRMP(SD)/cc-pVTZ —39.04461 —39.06064 10.1
[6e,120]JCASSCF/cc-pVTZ —39.02090 —39.02778 43
[6e,120]MRMP(SA)/cc-pVTZ —39.06931 —39.08723 11.2
[6e.120]MROPT2/cc-pVTZ —39.06931 —39.08513 9.9
[6e,120]MRMP(SD)/cc-pVTZ —39.06931 —39.08504 9.9
Exptl" 9.4
CF,

[12e.90]CASSCF/cc-pVTZ —236.85497 —236.76085 59.1
[12¢,90]MRMP(SA)/cc-pVTZ —237.38184 —237.30738 46.7
[12¢,90]MROPT2/cc-pVTZ —237.38184 —237.30391 489
[12¢.90]MRMP(SD)/cc-pVTZ —237.38184 —237.29807 52.6
Exptl® 56.6

“Ref. [33].
"Ref. [34].

MROPT2 by Kozlowski and Davidson [29] also reproduces the splitting, 10.5
(CAS[6e,60]) and 9.9 kcal/mol (CAS[6e.120]) for CH,. These numbers are very close
to those of MRMP(SD). For CF,, however, it gives a slightly smaller splitting of
48.9 kcal/mol.

20.2.1.4 Extension of reference wavefunctions—quasi-degenerate

perturbation theory with quasi-complete active space self-consistent field

reference functions (QCAS-QDPT) [35]

In the study of chemical reaction mechanisms, CAS-SCF method is a very useful
approach and hence frequently used. However, CAS-SCF often generates far too many
configurations, and the size of the active space outgrows the capacity of present
technology. Perturbation methods using a selected reference configuration space but
retaining the advantages of the CAS-based PTs are necessary.

We have proposed an MC-SCF method with a quasi-complete active space (QCAS),
i.e. a QCAS-SCF method. In the MC-SCF method, we partition orbitals into core, active,
and virtual, then construct the CI space by distributing active electrons among the active
orbitals. Let us further divide the active electron and orbital sets into N sub-sets and fix
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the number of active electrons, m;, and orbitals, »;. in each sub-set

N

N
My = Zm,-. oo = Zn, (30
i

i

where m, and n,. denote the number of active electrons and orbitals, respectively. We
define the quasi-complete space as the product space of CAS spanned by the determinants
or CSF as follows:

QCAS({m;}, {n;}) = CAS(m,,n;)CAS(m,,ny)-- -CAS(my.ny) (32)

such that the number of electrons in each orbital group satisfies the restriction in Eq. (31).
Combining QCAS with MC-QDPT provides an effective tool for electronic structure
theory. We present MC-QDPT using QCAS-SCF reference functions. (Hereafter, we call
it QCAS-QDPT or QCAS-PT.)
Adopting (state-averaged) QCAS-SCF wave functions «() as reference functions (i),
which define P space, we obtain the effective Hamiltonian to the second order

5 A 1 (alVIIXIIVIB)

0-2 CAS

(Hygy )ap = EQN 805 + 5{ z EO o + (a=p) (33)
1€QCAs  Ep I

which corresponds to Eq. (26) in the CAS-SCF reference case. Let us define a
corresponding complete active space (CCAS) to a QCAS as the complete active space
(CAS) that has the same active orbital set and electron but does not have the limitation
(Eq. (31)). In other words, the corresponding CAS is the minimal CAS that includes the
QCAS. Then the summation for / in Eq. (33) may be divided into the summations for
determinants/CSFs outside the CAS and for the determinants/CSFs outside the QCAS but
inside the corresponding CAS

> =2 + > (34)

I1€QCAS 1€CCAS 1ECCASAIEZQCAS

and then the former second-order term in Eq. (33) may be written as

(H2)p = Z (alVIIXIIVIB) Z (alVIrXIVIg)

- E(O) _ E(()) E(O) _ E(()) 35
reccas Ep i IECCASATEQCAS £ I
The former term in Eq. (35) involves excitations from core orbitals and excitations to
virtual orbitals in the intermediate states / (the external terms), while the latter term
involves excitations where only active orbitals are involved (the internal terms).
The external term may be further written as

HDwp= > Cal@)Ca(BHS)AB (36)
ABEQCAS
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with

W= 5 o GO g &)

igccas Eg —Ep T+ (Eg” — Eg)
where (Hé)z(f)AB is the effective Hamiltonian in the determinant/CSFs basis in the
conventional QDPT except for the energy shift, E ém - EB(O), in the denominator. Since
the second-order diagrams do not depend on the denominator, the second-order effective
Hamiltonian equation (37) (hence, also Eq. (36)) is expressed by the same diagrams as
the conventional QDPT. This situation is the same as MC-QDPT: the diagrams and
the rule for translating them into mathematical expressions is described in detail in
Ref. [35]. The internal terms are also expressed by diagrams. Since QCAS is a natural
extension of CAS, computation of these diagrams can be done efficiently in a similar
manner to CAS-QDPT.

20.2.1.5 Further extension of reference wavefunctions—quasi-degenerate

perturbation theory with general-multiconfiguration space self-consistent

field reference functions (GMC-QDPT) [36]

Adopting (state-averaged) general MC-SCF (or MC-CI) wavefunctions a(f3) as reference
functions @;0) ((IDB(O) ), which define the P space, the effective Hamiltonian to the second
order becomes

_ 1 (alHIIXIHB)

(0-2) . pMC

(HSG )ap = ENC80p + 5{ > o _go T B) (38)
1¢ces  Lg 1

where / is now a determinant/CSF outside the general configuration space (GCS). The
notation (« < ) means interchange « with 8 from the first term in curly brackets. The
complementary eigenfunctions of the MC-CI Hamiltonian and the determinants/CSFs
generated by exciting electrons out of the determinants/CSFs in GCS are orthogonal to
the reference functions and define the Q space. The functions in the space complementary
to the P space in GCS, however, do not appear in Eq. (38) since the interaction between
the complementary functions and the reference functions is zero.

The GMC-QDPT computation scheme is similar to that of QCAS-QDPT [35]. We
define again the corresponding CAS (CCAS) as a CAS constructed from the same active
electrons and orbitals, that is, the minimal CAS that includes the reference GCS. The
summation over I in Eq. (38) may be divided into the summations over determinants/
CSFs outside CCAS and over the determinants/CSFs outside the GCS but inside CCAS:

>o=> + ¥ (39)

I€GCS  IECCAS  IECCASAIEGCS
then the former second-order term in Eq. (38) may be written as

(alHIIXIIHIB) i (alHIIXIIHIB)

E© (40)

(2 —
(Heff))aﬁ - Z

0 _ g © © _
I£CCAS EB E; IECCASAIZGCS Ep
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The first term in Eq. (40) represents external excitations, while the latter term represents
internal excitations.

The external terms may be computed with diagrams in the same manner as the QCAS-
QDPT case. On the other hand, for internal terms, the diagrammatic approach may not be
applied. Instead, matrix operations for the Hamiltonian matrix are used

H2)op = V() W(B) 41)
with
vil@)= > (IIHIA)Cx(a) (42)
A€EGCS
wi(B)= > (IIHIB)Cy(B)/(Es” — E5”) (43)
B&GCS

The intermediate determinants/CSFs I are constructed by exciting one or two electron(s)
from the reference determinants/CSFs within the active orbital space. In general, the
number of / is not large, and thus they may be managed in computer memory.

20.2.1.6 Application of QCAS- and GMC-QDPT

20.2.1.6.1 Transition state barrier height for the unimolecular dissociation reaction of
formaldehyde H,CO — H, 4+ CO [35]. This reaction is Woodward—Hoffmann
forbidden, and therefore, proceeds via the highly asymmetric transition structure. We
examined in a previous paper [37] the barrier height using the MRMP method. In the
present section, we show the QCAS-PT results and the comparison of them with the
MRMP results.

The CAS we used for comparison is CAS(12,10), which is the full valence active
space. We split the active orbitals into {CO(c, o™}, {CO(w, m")}, and {CH(o, ¢¥),
CH(o’, o), O(lp, Ip)}, where lp denotes a lone pair orbital, and then we distributed two,
two, and eight electrons among the above groups, respectively, to construct
QCAS[(2,2)* X (8,6)]. The dimension of the CAS is 44,100, while that of the QCAS
is 3600.

The results with cc-pVTZ and cc-pVQZ are shown in Table 20.2. First let us compare
the results at the reference function (QCAS- and CAS-SCF) level. Although differences
in the energy itself between QCAS-SCF and CAS-SCF are about 10 millihartree for both
basis sets, the differences in the barrier height are 1.65 and 1.62 millihartree (1.0 and
1.0 kcal/mol) for cc-pVTZ and cc-pVQZ, respectively. The agreement of QCAS-SCF
with CAS-SCF is very good.

Now let us compare the results at the multireference PT level. In total energy, there still
remains a difference of about 8 millihartree between the results of QCAS-PT and MRMP.
In relative energy, for the barrier height the QCAS-PT results are very close to those of
CAS-PT in both basis sets. The barrier height of QCAS-PT is 83.7 kcal/mol in both basis
sets, the differences from those of MRMP are only 0.1 and 0.3 kcal/mol for cc-pVTZ and
cc-pVQZ, respectively. Moreover, the barrier height is also close to the experimental
value, 84.6 kcal/mol [38]. The error of 0.9 kcal/mol is within twice the experimental
uncertainty 0.8 kcal/mol.
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Table 20.2 Transition state barrier height for the reaction H,CO — H, + CO

Eq. (hartree)® Tr. (hartree)® AE (kcal/mol) Error (kcal/mol)

cc-pVTZ

CAS-SCF —114.04696 —113.91381 83.6 -1.0
QCAS-SCF —114.03786 —113.90306 84.6 0.0
MRMP —114.30451 —114.17134 83.6 -1.0
QCAS-PT —114.29674 —114.16338 83.7 -0.9
cc-pVQZ

CAS-SCF —114.05624 —113.92300 83.6 -1.0
QCAS-SCF —114.04712 -113.91226 84.6 0.0
MRMP —114.33057 —114.19763 834 -12
QCAS-PT —114.32316 —114.18981 83.7 -0.9
Exptl. (classical)® 84.6 + 0.8

“Equilibrium structure.
PTransition state structure.
‘Ref. [38]. Barrier height not including zero-point energy correction.

20.2.1.6.2 Valence excitation energies for formaldehyde [36]. The second example
is the GMC-QDPT calculation of valence excitation energies for formaldehyde molecule.
Calculations on formaldehyde were carried out at the ground state experimental geometry
(i.e. (CO) = 1.203 A, r(CH) = 1.099 A, and O(HCH) = 116.5°). The basis set used was
Dunning’s cc-pVTZ.

Five reference spaces were constructed from eight electrons, 16 [(ay,a,, by, by) =
(7,1,3,5)], 18 [=(7,1,4,6)], 20 [= (8,1,5,6)], 22 [=(8,2,5,7)], and 24 orbitals
[=(,2,6,7)], by exciting one and two electrons from the following parent
configurations:

A, states:  ...n*(HF); N n—o
A, states : =T n—o"
134, states : n—m"; 1by(o)— 7"

3B, states :  5a;(0)— 7"

3B, states :  n— 6a,(c*)

All the calculations were done in each symmetry.

The results are summarized in Tables 20.3 and 20.4. The calculations with CAS-SCF
and CAS-QDPT are far too large to be done. We, therefore, compare the results with
available experimental results and some recent theoretical results, i.e. MR-CI results by
Hachey et al. [39], the second-order complete active space perturbation theory (CASPT2)
calculations by Merchan and Roos [40], and the equation of motion coupled cluster
(EOM-CC) calculations by Gwaltney and Bartlett [41].

As can be computed from Table 20.3, the maximum differences in excitation energy
for the largest three (two) numbers of active orbitals is 0.09 (0.05) eV. We can, therefore,
consider that the excitation energies at the MC-SCF level are almost converged values for
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the change of the active orbital numbers. However, the agreement with the experimental
values is not so good: the error is 0.32 eV on average and 0.80 eV at maximum.

At the GMC-QDPT level, the excitation energies are also almost converged (though
the differences are a little larger than those at MC-SCF level are). Compared to the
reference MC-SCF level, the results are somewhat improved. The error from the
experimental value was reduced to 0.11 eV on average and 0.28 eV at maximum.

20.2.1.6.3 The most stable structure of SiC; [45]. Silicon-containing carbon
clusters, Si,,C,, have recently received much attention from various fields, such as
astrophysics and nanoscience. In particular, SiC,, (n = 1—-4) molecules have been well
studied, both experimentally and theoretically. However, among the theoretical studies,
the most stable structure of SiC; was in dispute. The most stable structure of the SiCs;
molecule was investigated using second-order perturbation theory with general
multiconfiguration self-consistent field reference functions (GMC-PT).

The basis sets used were Dunning’s cc-pVXZ (X = D, T, Q) and augmented cc-pVXZ
(X =D, T, Q) basis sets. Using these basis sets, we first carried out Hartree—Fock (HF)
calculations (unrestricted HF calculations for 1t and restricted HF calculations for 2s and
3s; see Fig. 20.1). The active spaces in the reference MC-SCF calculations were
constructed from the HF configuration plus single and double excitation configurations
among valence orbitals, that is, valence configuration interaction singles and doubles
(CISD) space. The 16 electrons in the 16 orbitals were correlated in MC-SCF
calculations; hereafter, we refer to these spaces as MC(16,16) following the CAS(n, m)
notation.

Table 20.5 shows the relative stability of the 1t, 2s, and 3s isomers. The results indicate
that the 2s isomer is most stable in all the basis sets and at both the CCSD(T) and

1.3062 1.2899 1.7249
1.31 1.29 1.74

2s (Cy,) 3s (Coy)
Fig. 20.1. Three isomers of SiCs: 1t, 2s, and 3s. The numbers in roman and italic type represent the bond lengths

in dngstrom optimized by CCSD(T)/cc-pCVQZ (Refs. [47,49]) and FORS-SCF/6-31G(d) (Ref. [46]) methods,
Tespectively.
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Table 20.5 Relative energy of the It and 3s isomers measured from the energy of the 2s isomer (in
kcal/mol)

Structure cc-pVXZ sets aug-cc-pVXZ sets CCSD(T)? MC-QDPT®
(cc-pCVQZ) (aug-cc-pVDZ)

X=D X=T X=Q X=D X=T X=0Q

CCSD(T) geometry

1t (SD) 34 5.1 6.3 3.7 54 67(1.2° 75(8.0)° -
1t (SA) -1.1  -04 07 -16 —04 0914 -

2s 0.0 0.0 00 0.0 00 00 0.0 -

3s 42 49 5.3 3.4 48 53(51)° 6260 -
FORS-SCF geometry

1t (SD) 4.6 73 8.8 55 7.9  9.9(9.9) - -

1t (SA) 0.1 1.8 3.0 0.3 2.1 3.9 4.0 - —44(—43)
2s 0.0 00 00 0.0 00 00 - 0.0

3s 73 8.5 9.0 6.6 77 9.0 8.7)° - 3.4 (3.1)°

“Refs. [47,49).

"Ref. [46].

“The numbers in the parentheses are zero point corrected energies. The zero point vibrational energies are taken from
Ref. [47].

“The numbers in the parentheses are zero point corrected energies. The zero point vibrational energies are taken from
Ref. [46]).

CAS-SCF geometries except for some spin-averaged orbital energy numbers. The second
most stable isomer is the 3s isomer, although the energy difference from the 1t isomer is
quite small. The relative energy of the 3s isomer measured from the 2s isomer was 5.3
(9.0) kcal/mol in the calculations with the aug-cc-pVQZ basis and CCSD(T) (CAS-SCF)
geometry, while the relative energy of the 1t isomer was 6.7 (9.9) kcal/mol. This order of
the isomers is unchanged even though the zero-point vibrational energy (ZPVE)
correction is included. The ZPVEs for the 1t, 2s, and 3s isomers are very close to one
another: 7.41, 7.37, and 7.07 kcal/mol, respectively, at the CAS-SCF level [46]. (The
differences of ZPVEs at the CCSD level are Ezpy(1t) — Ezpy(2s) = 0.5 kcal/mol and
E7py(3s) — Ezpy(2s) = —0.2 kcal/mol at the CCSD level [47]. ZPVEs themselves were
not reported in Ref. [47]). The zero-point corrected energies are also listed in Table 20.5.

Table 20.5 also tells us a clear trend of the basis set effect, with a larger basis set giving
larger 2s—3s and 2s—1t energy separations. This implies that the most stable isomer will
not change if we use larger basis sets than those used. To check the basis set effect on the
order of the isomers, we calculated the complete basis set limits. The complete basis set
extrapolation of the CCSD energy is given by the Gaussian dependence [48] on basis set
sizes, i.e.

E(n) = E(0) + Eg exp[—(n — 1)] + E; exp[—(n — 1)*] (44)

where n is the cardinal number of the basis set (2, 3, 4 for DZ, TZ, QZ, respectively),
E(o0) is the complete basis set limit, and E, and E, are constants. By assuming the basis
set dependence of GMC-PT is the same, apart from a multiplicative factor, we
extrapolated the energy in the complete basis set. The relative energies at the complete
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basis set limit, computed through the above extrapolation, were 7.6 (11.1) and 5.6
(9.9) kcal/mol for the It and 3s isomer, respectively, in the CCSD(T) (FORS-SCF)
geometry. The relative order of the 1t and 3s isomers was unchanged which supports our
conclusion that the 2s isomer is most stable.

20.2.2 Valence bond description of complete active space self-consistent
field function

A defect of the multireference-based methods is that the wavefunction is too complicated
to extract chemical description from it. There are too many CI coefficients, cluster
amplitudes, or terms corresponding to diagrams in those methods. The information of the
chemical picture is hidden behind them and to extract it seems quite difficult.

Classical valence bond (VB) theory is very successful in providing a qualitative
explanation for many aspects. Chemists are familiar with the localized molecular orbitals
(LMO) and the classical VB resonance concepts. If modern accurate wave functions can
be represented in terms of such well-known concepts, chemists’ intuition and experiences
will give a firm theoretical basis and the role of the computational chemistry will
undoubtedly expand.

The CASVB functions [50,51] can be obtained by transforming the canonical CASSCF
functions without loss of energy. First we transform the CASSCF delocalized MO to
localized MO using the arbitrariness in the definition of the active orbitals. Then we
perform a full CI again in the active space. The CASVB method provides an alternative
tool for describing the correlated wave functions.

Similar approaches have been employed by various workers. Lam et al. [52] showed
that wave functions in FORS can be expressed in terms of localized configuration-
generating MOs which have essentially atomic character. Cundari et al. [53] extended the
idea and used it successfully to study the high-valent transition metal complexes. They
used the orthogonal spin functions generated by the Kotani—Yamanouchi branching
diagrams. Also our method has some relation to the spin-coupled valence bond (SCVB)
method of Cooper et al. [54,55], where the spin-coupled orbitals and the spin-coupling
coefficients are optimized simultaneously. Goddard et al. [56,57] have proposed the
generalized valence bond (GVB) method. GVB has the advantage of compactness, as the
wave functions are generally assumed to be formally purely covalent. However, GVB
does not offer the clear relationship between the wave function and the various Lewis
structure. Hiberty et al. [58,59] have also developed a general VB method and discussed
chemical reactivity and structure.

20.2.2.1 The CASVB method [50,51]
We have proposed two types of CASVB method. In one method the valence bond
structures are constructed over orthogonal localized orbitals, and in the other the
structures are written with non-orthogonal localized orbitals. These are henceforth
referred as orthogonal CASVB and non-orthogonal CASVB, respectively.

The idea of CASVB is based on the fact that the densities of variational wave functions
are invariant under the transformations which hold the variational space unchanged.
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In the CASSCF case, a complete active space (CAS) is invariant under the linear
transformation of active orbitals and also that of configuration state functions (CSFs).
One may re-define the active orbitals utilizing the invariance of the active orbital
space. In the orthogonal CASVB method, the LMOs constructed by Boys’ localization
procedure are used; that is, active orbitals are transformed so as to have the minimum sum
of r? expectation values. If the active orbitals are defined appropriately, the LMOs
obtained nearly always turn out to be localized on a single atomic center with small
localization tails on to neighboring atoms. In the non-orthogonal CASVB case, the
atomic-like orbitals are constructed by Ruedenberg’s projected localization procedure.
Let $CASSCF be a CASSCF wave function

q,CASSCF z C d)CSF (DCSF (I)CSF {‘Pt}) (45)

where ®@SF are the CSFs constructed by the orthogonal orbitals set {¢;} and C; are the
known CAS configuration interaction (CI) expansion coefficients. Similarly, one may
define the CASVB function in terms of spin-paired functions as

W CASVB _ Z A,D'B ' = B\ (46)

where ®)'B is are a spin-paired function constructed by LMOs. The spaces, spanned by
{ @FSF } and { (D,VB }, are identical. Since Egs. (45) and (46) are different expressions of the
identical wave function, one may write

Z A, (DVB Z c ¢CSF 7)

Multiplying Egs. (45) and (46) by @°5F and integrating the products, one has a linear
equation

ZQ" y =G with 0= (3TIP) (48)

whose dimension is equal to the dimension of CAS. Solving this linear equation, one
obtains CASVB wave function WSV In the orthogonal CASVB case, one can use the
common set of (Boys’) LMOs as {¢;} as well as {A;} since the LMOs remain CASSCF
MOs. In that case, the linear equation (48) is reduced to a set of linear equations for each
orbital configuration, and the matrix 2; for each linear equation becomes a triangular
matrix depending only on spin configurations. The linear equation (48) can, therefore, be
solved with ease, compared with the non-orthogonal CASVB case.
The occupation number (or weight) of a resonance structure is calculated with

- 4135 @

where §;; are overlaps between the structures i and j, defined by
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and satisfies the normalization
Sni=1 (51)

Note that the occupation number n; could be negative because of the non-orthogonality of
resonance structures.

20.2.2.2 Description of electronic structure of benzene

As an example, a CASVB description for benzene is given in Fig. 20.2. See Refs. [50,51]
for the computational details. The CASVB affords a clear view of the wave functions for
the various states. The excitation process is represented in VB theory in terms of the
rearrangement of spin couplings and charge transfer. The former generates the covalent
excited states and the latter gives rise to the ionic excited states, in which the covalent
bond is broken and a new ionic bond is formed. Thus, the singly, doubly, etc. polar
structures are generated from their respective parent ground state covalent (nonpolar),
singly, etc., polar structures.

1Ay l@ @ J

w00

o [0 - O smmme] [ 0.0 h.,]
w [O-00- 0] [0-0

w (0000000 D)
o0-0-0]

ERORYS @}

w9 o)

Fig. 20.2. CASVB description for the ground and 7 — =" singlet excited states of benzene.
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The ground state is represented by two covalent Kekulé structures as expected. The
lowest excited "By, state is again described by a combination of the Kekulé structure.
There are no significant contributions from the Dewar structures or the corresponding
orthopolar structures. The linear combinations of the two equivalent Kekulé structures
generate the plus and minus states. Their positive combination gives rise to the totally
symmetric ‘A{g ground state, while the negative combination yields the excited B,
state. The second and third 7 — 7" excited states are described by a number of ionic
structures. There is no contribution from the covalent structures. The ionic character of
these states can easily be found from a CASVB description. The highest valence excited
states are the covalent ‘E{g state. The state has a predominantly Dewar character with no
contribution from the Kekulé structures. Thus, the Kekulé structures dominate the ground
state and the singly excited 1B, state while the Dewar structures dominate the doubly
excited degenerate lEz_g states. The states described by Dewar structures are described by
doubly, triply, etc. excitations in an MO language.

20.2.2.3 Description of chemical reaction—hydrogen exchange reactions
H,+X— H+ HX (X=F, Cl, Br, and 1) [60]
We examine a series of reactions including ionic bonds

H, + F— H + HF (R1)
H, + Cl— H + HCl (R2)
H, + Br— H + HBr (R3)

H, +1—H+HI (R4)

The reaction for fluorine (R1) is highly exothermic, while the reactions for chlorine (R2),
bromine (R3), and iodine (R4) are endothermic. The heats of these reactions are 30.8,
—1.2, —16.7, and — 32.7 kcal/mol for reactions (R1), (R2), (R3), and (R4), respectively.
According to Hammond’s postulate, reaction (R1) should have an early TS, and reactions
(R2) and (R3) should have late TSs. What the electronic states are during these reactions,
and how the CASVB method describes the electronic structure, are our interests in this
section.

The active spaces were constructed by distributing three electrons in three orbitals
consisting of H,(1s), Hy(1s), and X(2po), i.e. CAS(3,3). The dimension of the CAS is
eight. According to this CAS, eight linearly independent VB structures

®u, ¢, (@B — Ba)exa, H, —Hp X )
on, P, @B exa,  HX "HpX (m
ou, pu,aBpxa,  Hx THp X (Im)
ou, @ py, Px(af — Ba), H, Hp — X aw
P, & Ph, PH, AP, H, H "X \2)

on, pxexaB,  HyaHE “X (VD
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ou, x-pxexaB,  Hi Hp “X (VID)
and
ou, eu, 0B en @,  Hy Hp X (VII)

were used to construct CASVB functions, where the normalization constants and
antisymmetrizers are omitted.

The contributions of the covalent HyHg bond, ionic HyHg bond, covalent HgX bond,
ionic HgX bond, and ionic HyX bond are defined by

ACovalent HyaHy = M Rlonic H,Hy = M1 + A (52)
NCovalent HgX = M1V Nionic HgX = Nv + hy (53)

and
Mionic HyX = Pvi + v 54

Furthermore, the contributions of the total HyHg and HgX bond structures are defined by
the sums of the covalent structure (I)/(IV) and ionic structures (II)/(V) and (III)/(VI)

Ny, H, = NCovalent HyHy T Mlonic HyHy s My,X = NCovalent HyX T Monic Hyx  (33)

Let us first examine the electronic structure at the TS structure of the four reactions.
Table 20.6 shows the VB structure at the TSs of H, + X — H + HX. We can see that the
covalent VB structures are dominant: the structures are well described by the
superposition of the HH and HX covalent structure with small H"H and H*X™ ionic
contributions. Using Eq. (55), these structures are further classified as the HH and HX
bonds, as shown in Table 20.6. For X = F, the contribution of the HH bond (55.5%) is
larger than that of the HX bond (39.4%). This relation is reversed for X = Cl, Br, and
I. The contribution of the HH bond increases as the halogen atom becomes heavier
(55.8 (C1), 69.8 (Br), and 76.4% (I)). This means that the TS of chemical bonds (that is,
the point where the occupation numbers of the two chemical bonds are equal) is placed in

Table 20.6 Occupation numbers of the VB structures at the TS

H+H+F H+H+Cl H+H+Cl H+H+Cl
H-HX (1) 0.485 0.328 0.217 0.172
H* "HX (1) 0.053 0.059 0.043 0.034
H™ "HX (1) 0.017 -0.022 -0.023 -0.019
HH-X (V) 0.252 0.385 0.514 0.591
HH™ *X (V) ~0.005 0.018 0.042 0.073
HH* “X (vI) 0.147 0.155 0.142 0.100
H H*X (vID) 0.006 0.013 0.011 0.010
H'H ~X (viI) 0.045 0.064 0.053 0.039
HH bond 0.555 0.365 0.237 0.187
HX bond 0.394 0.558 0.698 0.764
Others 0.051 0.077 0.064 0.049
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H,+F->H+HF H,+Cl->H +HCl
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Fig. 20.3. Changes in the occupation numbers of the total HH bond (@), total HX bond (O), and the other (X)
VB structures along IRC. The origin of the horizontal axis corresponds to the TS.

the reactant side in the X = F case and in the product side for the case of X = Cl, and it
shifts more to the product side as the halogen atom becomes heavier.

We then examine the bond nature during the reactions. Fig. 20.3 shows the changes in
the total occupation number of the HH and HX bond structures along the IRC. The
occupation numbers of the HH and HX bond structures change rapidly and the curves
cross near the TS. The crossing points are located at 0.07, —0.11, —0.25, and
—0.33 bohr(a.m.u.)”? for X = F, Cl, Br, and I, respectively, where a negative sign means
the crossing point is located before the TS and a positive sign after the TS. We can see the
trend that the crossing point shifts from the reactant side to the product side as the halogen
atom gets heavier. The changes in the contents of the HH and HX bonds are plotted in
Fig. 20.4. As expected in these reactions including ionic bonds, the contribution of ionic
bond increases as that of the covalent bond increases. However, the crossing point of
HH and HX covalent bonds are still close to that of the HH and HX bonds in Fig. 20.3.
The covalent bonds are mainly responsible for determining the crossing points.

If we re-take the TS of chemical bonds as the origin, these facts well explain the shift of
TS (from the early TS side to the late TS side) that Hammond’s postulate predicts,
indicating that the CASVB method is a powerful tool for describing the electronic
structure and chemical bond during chemical reactions.
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Fig. 20.4. Changes in the occupation numbers of the covalent HH bond (@), ionic HH bond (W), covalent HX
bond (O), ionic HX bond (OJ), and the other (X) VB structures along the IRC.

20.3 LONG-RANGE AND OTHER CORRECTIONS FOR DENSITY
FUNCTIONALS

20.3.1 Conventional correction schemes in density functional theory

In this century, the main concerns of theoretical chemistry obviously make the transition
from accurate investigations of small molecules to the designs of complicated large
molecular systems; e.g. proteins, nano-materials, environmental catalyses, and so forth.
What is necessary for approaching these systems is an accurate theory of low-
computational order. DFT [61-63] is expected to be a major candidate for such a theory
at present, because this theory gives accurate chemical properties despite its low-
computational order that may be reduced to order-N. In DFT, electronic states are usually
determined by solving the nonlinear Kohn—-Sham equation [61] with an exchange-
correlation density functional. The most remarkable characteristic of DFT is the
exchange-correlation energy part that is approximated by a one-electron potential
functional. Hence, calculated DFT results depend on the form of this exchange-
correlation functional.

In last two decades, various kinds of exchange functionals have been suggested
especially for generalized gradient approximations (GGA) [64—-67] beyond the local
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density approximation (LDA) functional [68]. Due to the requirement of order, these
GGA exchange functionals are usually expressed as a functional of x, = le‘,l/pf,“,
where p,, is the electron density of spin o and Vp,; is the gradient of the density [69].
What should be noticed is that most GGA exchange functionals have unique behaviors
only for large x, [69,70]. This is because small-x,, behaviors of functionals are restricted
by the physical condition for slowly-varying density [71], although there is no definite
conditions for rapidly varying density [67,69,70]. Hence, GGA exchange functionals are
usually characterized by the behaviors for large-x, (i.e. low-density-high-gradient)
density. Conventional exchange-correlation functionals will be discussed by Prof.
Scuseria in this book. We will give a summary account of correction schemes for
exchange functionals in this section.

Since the latter half of 1990s, hybrid functionals have appeared in DFT calculations. In
hybrid functionals, (pure) GGA functionals are combined with the Hartree—Fock (HF)
exchange integral at a constant rate. This idea may have come from an observation that
DFT calculations using pure GGA functionals often give opposite errors to those in HF
calculations. In 1993, Becke suggested hybrid B3LYP functional [72]. Based on a
concept of adiabatic connection, B3LYP exchange-correlation energy are expressed by a
combination of Becke 1988 (B88) exchange [64] and Lee—Yang—Parr (LYP) correlation
[73] GGA functionals, Slater (S) exchange [68] and Vosko—Wilk—Nusair (VWN)
correlation [74] LDA functionals, and the HF exchange integral with three parameters:

EBYP — Q0BT 4 (1 = a)ES + a EB® + (1 — a)EYYN + a ERY (56)

where E2 and EP are exchange and correlation energies of A and B. and . a,. and a are
0.2,0.72, and 0.81, respectively. Atomic units have been used (4 = ¢> = m = . energies
are in hartree, and distances are in bohr). This adiabatic connection may have some
incompatible parts; for example, parameters in B88 and LYP functionals were originally
determined to reproduce exact exchange and correlation energies. Nevertheless, BALYP
becomes the most popular DFT functional in quantum chemistry, because it gives very
accurate results for a wide variety of chemical properties. Becke 1997 (B97) [75] and
Perdew —Burke —Ernzerhof 1996 (PBE0) [76] functionals are also hybrid functionals.
Similar to B3LYP, these functionals combine GGA functionals with the HF exchange
integral at a constant rate, and give accurate results for various chemical properties of
molecules. However, inconsistencies in the adiabatic connection remains unsettled in
these functionals.

Asymptotic corrections for exchange functionals have attracted attentions especially in
time-dependent DFT (TDDFT) studies. In far regions from atomic nuclei, it is proved that

(03

exchange potential for o-spin electrons, vy, = 3E,./8p, has the asymptotic relation [77]

: (o4 1

llmR_,vaC(R) = — E (57)
where R = IR and R is the distance vector from the nearest nucleus. On the ground of
this relation, Van Leeuwen and Baerends suggested an exchange functional (LB) [78]
by adapting the B88 exchange functional to the asymptotic behavior. Tozer
and Handy suggested the asymptotic correction (AC) scheme that imposes. instead
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of Eq. (57) [79,80]

. o 1
limp o1 5 (R) = = + efOMO 4 (58)
where £'°MO s the eigenvalue of the highest occupied o-spin molecular orbital and /,; is

the ionization potential of the o-spin electron. It has been reported that underestimations
of Rydberg excitation energies in TDDFT calculations are modified by using LB and AC
schemes.

Besides, self-interaction correction (SIC) is one of the most popular correction
schemes. Perdew and Zunger suggested a scheme for the application of SIC to occupied
orbitals where the self-interaction components of the Coulomb and exchange energies are
simply subtracted from the total exchange-correlation energy [81]

1 i R i R/
E:ic[PmPB] = Exc[pu‘pB} - Z <_ J L)p(—)‘

3 Aya/
k k o 5
e 2 IR - R/ d'Rd'R + E.[pi, ()]) (59)

and potential

BE%C — 6Exc[paﬂ pB] _ Pm(RI) dBR/ _ 8Exc[pio'10]
5p;s(R) 3pia(R) R — Rl 8. (R)

VISCR) = (60)
where p,, is the ith orbital component of p,;. This SIC scheme has been frequently used in
energy band calculations of solid states for improving underestimated band gap
energies. However, this scheme essentially requires an orbital-localization process
[82] or transformation of functionals to an orbital-dependent form [83] due to the
degrees of freedom in unitary transformations of orbitals. Tsuneda, Kamiya, and Hirao
suggested a regional self-interaction correction (RSIC) scheme as a simple SIC method
requiring no additional processes [84]. On the ground that total kinetic energy density,
204l = 570c¢ |7y 12 approaches the Weizsicker kinetic energy density, 7 =
IVp, 1> /(4p,) for self-interacted electrons, an exchange functional is spatially replaced
with a self-interaction energy density only for regions, where 72! approaches 7 . in this
scheme. As the self-interaction energy density, exact exchange self-interaction energy
densities of 1s orbitals in hydrogen-like atoms, ¥/ = /o’ /7 exp(—aR). is employed
such as

gRSIC = —(&)[1 — (1 + aR)exp(—2aR)] (61)
2R

where ¢, is defined by E, = 3, [&,, @R and @ = Vp, /(2p,). By applying the RSIC

scheme to chemical reaction calculations, it was found that underestimated barrier

energies of pure functionals were clearly improved for some reactions.

As mentioned above, various correction schemes have been developed up to the
present. However, there is room for further improvement in conventional correction
schemes. Conventional hybrid functionals give poor excitation energies in TDDFT
calculations as mentioned later. Asymptotic and SICs have little (or worse) effect on
reproducibilities of molecular chemical properties. Recently, it has been proved that a
long-range correction for exchange functionals obviously brings solutions to various
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DFT problems that have never been solved by other functionals or corrections. In later
sections, we will briefly review the background of the long-range correction scheme and
will reveal the applicabilities of this scheme.

20.3.2 Long-range correction schemes for exchange functionals

Pure DFT exchange-correlation functionals have been represented by using only local
quantities at a reference point: e.g. electron density, gradient of density, and etc. (We are
now describing ‘local’ quantity as a quantity determined at a reference point for clarity,
although gradient of density is known as a ‘nonlocal’ quantity in common use.) It is,
therefore, presumed that pure functionals overestimate local contributions and under-
estimate nonlocal contributions. The most significant nonlocal contribution neglected in
pure functionals may be the long-range electron—electron exchange interaction, because
it may be impossible to represent this interaction as a functional of a one-electron
quantity.

In 1996, Savin suggested a long-range exchange correction scheme for LDA functional
[85]. In this scheme, the two-electron operator, 1/r;,, is separated into the short-range
and long-range parts naturally by using the standard error function erf such that

1 _1- erf(ury) + erf(ury,) 62)

T2 2 T2

where r, = Ir; — r,| for coordinate vectors of electrons, r; and r,, and u is a parameter
that determines the ratio of these parts. Based on Eq. (62), the long-range exchange
interaction is described by the HF exchange integral

0oCC ocCC

rf
Er= Z >3 [ [ otriioien 02 (’”‘2) Yoo (08, &'Fy (63)

where i, is the ith o-spin orthonormal molecular orbital. The LDA exchange functional
is applied to the short-range exchange interaction such that

g3 (a) E [ Sl v ()
0‘
+(2a, — 4a3) S 3 |ta?
- — 4a; Jexp 3a, + 4a;, |td°R (64)
4a,
where a, = u/(2k,). The averaged relative momentum k, is written for LDA as the

Fermi momentum, i.e. kg, = (672p,)"/>. Eq. (64) is derived by using the density matrix
form corresponding to the LDA exchange functional

LDA(R+ R- 5) ]12"&:") po(R) (65)
Fol

where j; is the first-order spherical Bessel function.
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However, Savin's scheme is inapplicable to conventional GGA exchange functionals,
because GGA functionals usually have no corresponding density matrices unlike LDA.
In 2001, likura et al. solved this problem by pushing gradient terms of GGA functionals
into the momentum k, [86]. That is, the corresponding density matrix is determined
for any GGA exchange functional by substituting kg, in Eq. (65) with

. 9 RN
kSGA:(FZ_A) pli? (66)

where KSA is defined in an exchange functional used: ES9A = fp?,"'}K,(,}GA d’R.
Eq. (66) correctly reproduces the Fermi momentum kg, for K:PA. By using kSS*| the
short-range exchange energy in Eq. (64) is substituted by

EY = — i(_%_)HZJ d3IKE6ALY §a \/*Eerf( ! )
X 2 411_ ~ p(' a 3 (83 2(1(1

) - 3a, + 4a;‘,]}d3R (67)

It is easily confirmed that Eq. (67) reproduces the original GGA exchange functional for
wu = 0. Parameter u is determined to optimize bond distances of homonuclear diatomic
molecules up to the third period as u = 0.33. This scheme is called ‘long-range correction
(LC) scheme’. The applicabilities of the LC scheme will be discussed in the later section.

Besides the LC scheme, we should mention the screened Coulomb potential hybrid
functional as an attempt to take account of the long-range exchange effect. Heyd et al.
developed this functional by dividing the exchange terms of the hybrid PBEO functional
into short- and long-range parts and by omitting a part of long-range exchange term as [87]

+Q2a, — 4af,)exp(—

a

E)(:JCPBEh — aE’l(-lF.sr(w) +( - (I)EEBE‘”(LU) + EfBEJr(w) + ESBE (68)

where a = 1/4 is a mixing coefficient and o is an adjustable parameter. The main
characteristics of this functional are the inclusion of the short-range HF exchange integral
and the exclusion of the long-range HF exchange integral. This functional gives more
accurate chemical properties than those of B3LYP for G2 and G3 set of molecules [87,88].
Itis, however, presumed that this functional may not solve DFT problems arising from the
lack of long-range exchange effects due to the exclusion of the long-range HF exchange
integral. Moreover, Leininger et al. extended the above Savin’s scheme by using the long-
range exchange integral for the multireference configuration interaction (MRCI)
wavefunction [89]. Electron correlations in long-range interactions may hardly affect
calculated properties of standard molecules. However, electron correlations may be
important for the comparison of molecules that have much different spin-multiplicity or
neardegeneracy.

20.3.3 Applicabilities of long-range correction scheme

In this section, the LC scheme are examined by illustrating its applicabilities to three DFT
problems that have never been solved: (1) poor reproducibilities of van der Waals (vdW)
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bondings, (2) underestimations of Rydberg excitation energies, oscillator strengths, and
charge transfer excitation energies in time-dependent density functional calculations, and
(3) systematic overestimations of atomization energies of transition metal dimers.

20.3.3.1 Van der Waals calculations

One of the most critical DFT problems is the poor reproducibility of vdW bondings.
Actually, conventional correlation functionals have incorporated no vdW interactions.
Since vdW bondings, however, often determine structures of large-scale molecules,
accurate calculations of vdW bondings are a pressing problem in DFT. Several DFT
studies have been made on vdW calculations by using, e.g. a perturbation theory based on
DFT [90]. The most effective and general way may be the use of a vdW functional. Up to
the present, various types of vdW functionals have been suggested [91-93]. Some of
these functionals reproduce accurate vdW Cg coefficient comparable to the results of
high-level ab initio methods [91]. However, these functionals give poor vdW bondings
of, e.g. rare gas dimmers by simply combining with a conventional exchange-correlation
functional in DFT calculations. It is presumed that this problem may be due to the lack of
long-range interactions in exchange functionals, because vdW bondings are supposed to
be in the balance between vdW attraction and long-range exchange repulsion
interactions. On this ground, Kamiya et al. applied the LC scheme with a vdW
functional to calculations of dissociation potentials of rare-gas dimmers [94].
Andersson-Langreth—Lundqvist (ALL) functional was used as the vdW functional
[91]. This functional was developed to be correct for both separated electron gas regions
and far-apart atoms. In this functional, a damping factor was used to diminish the vdW
energy for regions at a short distances.

In Fig. 20.5, calculated dissociation potential energy curves of Ar, are shown for pure
GGA functionals (BOP and PBEOP) [95] and LC functionals (LC-BOP and LC-PBEOP)
with no vdW functionals. The 6-311+ 4+ G(3df,3pd) basis functions was used [96-98].
The basis set superposition error was corrected by a counterpoise method [99]. As the
figure shows, LC functionals give very close potential curves to each other, although pure
GGA functionals provide obviously different curves. This may indicate that a long-range
correction is necessary for exchange functionals to reproduce vdW bondings.

Next, Fig. 20.6 displays calculated dissociation potentials of Ar, by LC-BOP + ALL
and conventional sophisticated functionals (mPWPW91 [100], mPW IPW91 [100], and
B3LYP + vdW [101]). The second-order Mpgller—Plesset perturbation (MP2) and
experimentally predicted (Expt) [16] potential curves are also shown for comparison.
The figure clearly shows that LC-BOP + ALL functional gives accurate vdW potential
curve in comparison with the results of MP2 and other conventional DFTs. It is,
therefore, necessary for accurate DFT calculations of vdW bondings to use both long-
range-corrected exchange and vdw-incorporated correlation functionals.

20.3.3.2 Time-dependent density functional calculations

Time-dependent density functional theory (TDDFT) becomes widely used as a simple
method for rapid and accurate calculations of molecular excitation energies. It has,
however, been reported that conventional TDDFT calculations underestimate
Rydberg excitation energies, oscillator strengths, and charge-transfer excitation energies.
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Fig. 20.5. Calculated bond energy potentials of argon dimer for long-range exchange corrected functionals
(LC-SOP, LC-BOP, and LC-PBEOP). Pure functionals are also presented for comparison. Highly accurate
potentials are also shown for comparison.

Tawada et al. supposed that this problem may also come from the lack of long-range
exchange interaction, and applied the LC scheme to TDDFT calculations [102].

Table 20.7 summarizes mean absolute errors in calculated excitation energies of five
typical molecules by TDDFT. The table also displays calculated results of asymptotically
corrected AC [79] and LB [78] (AC-BOP and LBOP) and hybrid B3LYP [72]
functionals, which are mentioned in the former section. The ab initio SAC-CI [103]
results are also shown to confirm the accuracies. The 6-311G+ + (2d,2p) basis set was
used in TDDFT calculations [104,105]. As the table indicates, the LC scheme clearly
improves Rydberg excitation energies that are underestimated for pure BOP functional,
at the same (or better) level as the AC scheme does. It should be noted that LC and AC
schemes also provide improvements on valence excitation energies for all molecules.
LC and AC results are comparable to SAC-CI results. The LB scheme clearly modifies
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Fig. 20.6. Calculated bond energy potentials of argon dimer for LC-BOP+ALL functional. For comparison,
calculated potentials of conventional sophisticated density functional schemes (nPWPW91, mPWI1PW91, and
B3LYP + vdW) and those of MP2 are also presented. Highly accurate potentials are also shown for comparison.

Rydberg excitation energies, and however brings underestimations of valence excitation
energies. B3LYP results are obviously worse than LC and AC results for both valence
and Rydberg excitation energies.

Next, calculated oscillator strengths of excited states by TDDFT are shown in
Table 20.8. As is clearly shown in the table, LC scheme drastically improves oscillator
strengths, which are underestimated for BOP as second to hundredth part of experimental
values, to the same digit. Although AC-BOP, LBOP, and B3LYP also provide closer
oscillator strengths to the experimental values than BOP do, the accuracies are
unsatisfactory in comparison with LC-BOP ones. It is, therefore, concluded that the lack
of long-range interactions in exchange functional may also cause the underestimations of
oscillator strengths in TDDFT calculations.

Finally, calculated lowest charge transfer excitation energies of ethylene—tetrafluor-
oethylene dimer are shown in Fig. 20.7. Dreuw et al. recently suggested that poor charge
transfer excitation energies of far-aparted molecules may be one of the main problems
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Table 20.7 Mean absolute errors in calculated excitation energies of five typical molecules by TDDFT
ineV

Molecule LC-BOP BOP AC-BOP LBOP B3LYP SAC-CI
N> Valence 0.36 0.40 0.27 1.48 0.54 0.33
Rydberg 0.90 2.37 0.84 043 1.30 0.25
Total 0.54 1.06 0.46 1.13 0.79 0.30
CcO Valence 0.19 0.28 0.17 1.02 0.36 0.26
Rydberg 0.75 2.06 0.79 042 1.16 0.27
Total 0.47 1.17 0.48 0.72 0.76 0.27
H,CO Valence 0.25 0.59 0.24 0.52 0.26 045
Rydberg 047 1.66 0.59 0.07 0.84 0.13
Total 0.40 1.30 0.47 0.22 0.64 0.24
C,H, Valence 0.30 0.47 0.24 1.52 0.47 0.11
Rydberg 0.18 1.41 0.58 0.69 0.92 0.17
Total 0.20 1.28 0.53 0.80 0.85 0.16
C¢He Valence 0.21 0.28 0.24 0.84 0.26 0.35
Rydberg 0.24 1.01 0.88 0.35 0.56 0.15
Total 0.23 0.74 0.64 0.53 0.44 0.22

of TDDFT [106]. They pointed out that intermolecular charge transfer excitation energies
of far-aparted molecules should have the correct asymptotic behavior for long inter-
molecular distance. That is, for long molecular—molecular distances R and Ry (R > Ry),
charge transfer energy wcr should satisfy
wer®) ~ wer(R) = ~ 1 + 7= (69)
The figure shows that LC-BOP gives the correct asymptotic behavior as is different
from AC-BOP and LBOP do. Although B3LYP recovers a part of this behavior, the
degree is in proportion to the mixing rate of the HF exchange integral. Hence, this result
may also indicate that problems in conventional TDDFT calculations come from the
lack of long-range exchange interactions in exchange functionals rather than the poor
far-nucleus asymptotic behavior of exchange functionals.

Table 20.8 Calculated oscillator strengths of excited states of typical molecules by TDDFT ( X 1072)

System State LC-BOP BOP AC-BOP LBOP B3LYP SAC-CI Exptl

N, ', 11.05 0.28 2.02 4.18 1.33 8.14 243
'sF 24.06 0.69 6.07 3.60 3.84 15.67 27.9

Cco m 19.76 8.66 6.68 5.97 11.24 9.63 17.6

H,CO 'B, 2.19 1.68 1.02 3.02 271 1.88  4.13,2.8,38,32
'A, 6.94 2.11 2.62 1.80 3.64 426  6.05,3.2,38,3.6
'B, 6.50 1.75 2.42 223 2.32 2.95 281,17, 19

CH, 'Ba, 12.85 3.49 4.77 5.08 6.75 820  4.00

‘B, 73.85 12.85 24.41 32.38 34.67 40.65 29.00
CeHg 1'E,, 134.02  49.71 48.59 53.48 58.31 103.05 120, 90.0, 95.3
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Fig. 20.7. The lowest charge transfer excitation energy of ethylene—tetrafluoroethylene dimer for the long
intermolecular distance calculated by TDDFT employing various types of functionals. For all methods, the
excitation energy at 5.0 A is set to zero.

20.3.3.3 Transition metal dimer calculations
Yanagisawa et al. calculated the equilibrium geometries and the atomization energies for
the first- to third-row transition metal dimers and concluded the following [107,108]:

1. Pure functionals tend to overstabilize electron configurations that contain orbitals
in a high-angular momentum shell that is not fully occupied. This tendency is
reduced from the first- to third-row transition metal dimers.

2. The overestimations of atomization energies of dimers are associated with the
errors in outermost s—d interconfiguration transition energies of atoms. The latter
errors may be due to the lack of long-range exchange interactions of outermost s
and d orbitals that are fairly different in distributions. Hence, this lack may also
cause the overestimations of the atomization energies.

3. B3LYP generally gives more accurate atomization energies than those of pure
functionals, even if high-angular momentum orbitals are present in the configura-
tion. However, B3LYP gives an erroneous energy gap between the configurations
of fairly different spin-multiplicity probably due to the unbalance of the exchange
and correlation functionals.

Based on this discussion, Tsuneda et al. applied the LC scheme to calculations of
transition metal dimers [109].

Errors in calculated atomization energies of transition metal dimers are displayed
in Fig. 20.8. The Wachters + f basis set was used [110—112]. The figure shows that the
LC scheme obviously improves the systematic overestimations calculated by pure
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Fig. 20.8. Errors in calculated atomization energies of the first-row transition metal dimers for LC functionals
(LC-BOP and LC-PBEOP), pure functionals (BOP and PBEOP), and B3LYP in eV. The line of no-error is also
illustrated.

BOP functional. It was, therefore, proved that these overestimations maybe due to the
lack of long-range exchange interactions in exchange functionals. It was also found that
LC-BOP fairly underestimates the atomization energies of V, and Cr,. As supposed from
the similarity to B3LYP results, this underestimation may come from the errors in the HF
exchange integral. That is, the HF exchange integral overstabilizes high-spin electronic
states, because it only incorporates parallel-spin electron—electron interactions. It is,
therefore, expected that this problem may be solved by taking well-balanced electron
correlation into account for the long-range exchange part. The figure also shows that the
LC scheme makes calculated atomization energies of different functionals much closer to
each other. That is, the uniquenesses of functionals dissappeared after the long-range
correction in this calculation. This may also support the conclusion that the lack of long-
range exchange interactions is deeply committed to the overestimated atomization
energies of dimers.

Table 20.9 Calculated barrier energies and bond distances of H, + H — H + H, reaction

Molecule functional Barrier height Optimized geometry
Classical ZPVC R(H,) R(H3)
LC-BOP 10.1 9.3 0.752 0.940
Bop 35 2.8 0.743 0.934
BLYP 29 22 0.745 0.930
B3LYP 43 3.5 0.742 0.934
Refs. - 9.6 0.741 -

Barrier energies are in kcal/mol and optimized geometries are in A. Reference values are the quantum Monte Carlo results.
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Table 20.10 Calculated static isotropic polarizabilities by time-dependent
Kohn—Sham theory in atomic unit

Molecule LC-BOP BOP B3LYP Exp.
Cl, 30.87 31.69 31.16 30.35
CO, 17.58 17.82 17.36 17.51
F, 8.83 8.87 8.69 8.38
H,O 10.03 10.49 9.95 9.64
H,S 24.72 25.64 25.11 24.71
HCl 17.74 18.33 17.90 17.39
HF 5.99 6.17 5.83 5.60
N, 11.99 12.07 11.88 11.74
SO, 25.63 26.30 25.75 25.61

20.3.3.4 Other calculations

Besides the above-mentioned calculations, Tsuneda et al. are now applying the LC
scheme to calculations of chemical reactions [113] and (hyper)polarizabilities [114].
We will exhibit some present works to show the wide applicabilities of this scheme.

First, calculated results of H + H — H + H, reaction are summarized in Table 20.9
[113]. The pV6Z basis set was used [115]. The table shows that the LC scheme
remarkably improves underestimated reaction barrier energies of BOP. As far as we
know, this result is certainly superior to results of other corrections that have ever
reported. This may indicate that underestimations of reaction barriers in DFT calculations
are also due to the lack of long-range interactions.

The LC scheme was also applied to overestimations of polarizabilities in DFT as
shown in Table 20.10 [114]. The Sadlej valence triple zeta basis set was used [116,117].
The table shows that calculated polarizabilities of LC-BOP are obviously more accurate
than those of BOP. Compared to B3LYP results, LC-BOP shows more improvements
in many cases. Similar results were found in calculations of anisotropies and S_, Cauchy
moments of polarizabilities. Hence, we may say that these overestimations also come
from the lack of long-range interactions in exchange functionals.

As mentioned above, the LC scheme was found to give better results for various
chemical properties than the results of conventional corrections including hybrid
functionals. For some properties, the LC scheme provided equivalent improvements in
comparison with B3LYP. This may indicate that accurate B3LYP results may be due to
the equivalency in the mixed HF exchange energy to the LC scheme, rather than the
validity of the constant weight hybridization of the HF exchange. This argument may
require further examination of the LC scheme.

20.4 RELATIVISTIC MOLECULAR THEORY

20.4.1 Introduction

The relativistic effect has been considered as an essential factor to figure out mol-
ecular structures, chemical activities, or various properties of heavy-element systems.
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Recently many quantum chemists have dedicated a lot of efforts to the calculation and
treatment of the electronic structures of polyatomic systems including heavy elements,
which are involved in many interesting chemical and physical phenomena. They still
present unique difficulties to the theoretical study. Until recently, the relativistic effect
had ever been thought less important for chemical properties because the relativity
appears primarily in the core electrons, which had been believed to be unlikely to affect
chemically active valence regions dramatically. Recent studies, however, have revealed
not only quantitatively but also qualitatively that the relativistic effect plays essential and
comprehensive roles in total natures of molecular electronic structures for heavy-element
systems. We are nowadays convinced that the relativistic effect is definitely important for
the accurate theoretical treatment of heavy-element systems as well as the electron
correlation effect.

To treat relativistic effects theoretically, the Dirac equation is usually solved rather
than the non-relativistic Schrodinger equation. The one-electron Dirac Hamiltonian is
written by

Hp = cap + Bc? + Vo (70)

where the constant c is the speed of light, V,,, is the external potential, and p (= —iV) is
the momentum operator. The 4 X 4 Dirac matrices a and B in Eq. (70) are given by

0, o L 0
o = ) 1= (x,y,2), B= (1m
o 0, 0, —L

with the 2 X 2 Pauli spin matrices oy,

0 1 0 —i 1 0
Ux - ( ), o-y - ( )7 O.Z - ( ) (72)
1 0 ’ i 0 0 -1

Since the Dirac equation is valid only for the one-electron system, the one-electron
Dirac Hamiltonian has to be extended to the many-electron Hamiltonian in order to treat
the chemically interesting many-electron systems. The straightforward way to construct
the relativistic many-electron Hamiltonian is to augment the one-electron Dirac operator,
Eq. (70) with the Coulomb or Breit (or its approximate Gaunt) operator as a two-electron
term. This procedure yields the Dirac—Coulomb (DC) or Dirac—Coulomb—Breit (DCB)
Hamiltonian derived from quantum electrodynamics (QED)

H=> Hpr)+> g (73)
i i>j
where
1
g == (74)
Tij

References pp. 554-557



542 ) Chapter 20

and

6= - 1((«1,--%) + (a’“m)gaj'rij)) (75)
ri 2 T ry

The DCB Hamiltonian is covariant to first order, and the presence of the Breit (or
approximate Gaunt) interaction serves to increase the accuracy of calculated spectro-
scopic splittings and core binding energies.

Historically, approaches to treat the electronic structure relativistically have split
into two camps: one is the four-component relativistic approach and another is the
two-component one. Focusing on our recent studies, in this section, we will introduce
these two types of relativistic approaches. The reader is referred to the detailed reviews
for our recent relativistic works [118—120].

20.4.2 Four-component relativistic molecular theory

20.4.2.1 Dirac—Hartree—Fock and Dirac—Kohn—Sham methods
By an application of an independent-particle approximation with the DC or DCB
Hamiltonian, the similar derivation of the non-relativistic Hartree—Fock (HF) method
and Kohn—Sham (KS) DFT yields the four-component Dirac—Hartree—Fock (DHF) and
Dirac—Kohn—Sham (DKS) methods with large- and small-component spinors.

The matrix DHF/DKS equation is generally written as

Fc = €Sc (76)

where c¢ is a matrix of molecular spinor coefficients, € a spinor energy matrix, and S an

overlap matrix
s - S;,‘qL 0 B <X15|)(f{> 0 -
12/ 0 ss | — S|, S (
Spq 0 oplxg

with two-component atomic spinors ,\/}; and ,\/S for large (L) and small (S) components,
respectively. Assuming the DC Hamiltonian, the Fock matrix F is given by

LL LS
F o= Foy Fp
rqg FSL FSS

pq Pq

LL , {LL LL LL SL SL
. (qu +Jpg — 1exKpg — txe Vicpg Cnpq ~ 1exKopg )
- LS _ LS SS _ 5 2SS | 1SS _ ss _ ss
Iy — 1 Kpg Vig = 26°Spq +Jpq — 1exKpg — Ixc Vi
(78)

Here, TEXX, VXX VXX JXX and KXY (X, Y=Lor S, L =S, and § = L) are kinetic

energy integral, electron—nuclear attraction integral, exchange-correlation potenﬁal»
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Coulomb integral, and exchange integral matrices, respectively,

X = (x Xloply (79)
Voo = v™ixy) (80)
SE,,

Vi = (0] o i) 81)
=3 SDoox i xh (82)

Y=L,S rs
K =S DX 0x X Ix D (83)

with the density matrix
XY _ NOCL' x th
D} = clicy (84)
i

The parameter ¢, is set to zero and one for the DHF and DKS approaches, respectively,
and the constant z,, is the parameter for the hybrid DFT approach, usually set to zero for
the pure DFT approach.

The four-component DHF/DKS method is a theoretically straightforward relativistic
approach. For heavy atoms four-component basis set expansion calculations are routine
and attain spectroscopic accuracy together with extant correlation methods [121,122].
Recently the molecular DHF and DKS methods have become familiar and powerful
relativistic approaches with the continuous development of efficient computational
algorithms using the basis set expansion. Several four-component ab initio molecular
orbital programs for polyatomics, e.g. MOLFDIR [123], DIRAC [124], BERTHA [125], and
others [126-128], have been developed so far. Unfortunately, however, the treatment of
more than one heavy atom within a molecule is not yet routine. The bottleneck in four-
component calculations on heavy-element systems is evaluation of the two-electron
electron repulsion integrals (ERIs). The number of relativistic integrals is greater than
that of non-relativistic ones because the kinetic balance [129] between the large- and
small-component primitive GTSs must be incorporated.

We have recently developed an efficient computational scheme for the four-component
method that employs four-component contraction for molecular basis spinors and the
hew atomic spinor (AS) integral algorithm [130—132]. In the following sections we will
briefly introduce our new relativistic scheme.

204.2.2 Generally contracted Gaussian-type spinors and kinetic balance
ACC_m'ate treatment of core spinors and of the valence spinors in the core region by a large
basis set €xpansion is necessary, because most major relativistic effects, or the kinematic
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effects, come from the region near the nuclei. Because the core changes little with
chemical environment, the extensive basis set contraction is possible. The difficulty
in introducing contracted GTSs lies in the fact that the kinetic balance condition [129]
between the large- and small-component primitive GTSs and spin—orbit splitting of
spinors must be incorporated.

In our four-component molecular approach, thus, we use spin-coupled, kinetically
balanced, generally contracted Gaussian-type spinors (GTSs) as basis functions. The

basis expansion is
Ao (et .
s | Z S 28 (85)
i I Cp,i(P;L

where @2 and ¢2° are two-component basis spinors, and ¢t and ¢S are expansion
M M © ©

coefficients. In Eq. (85), both scalar wavefunctions within a two-component basis spinor
are multiplied by a common coefficient, thus, the dimensions of both the large and small
components are »n and the total number of variational parameters is 2n. In the pioneering
four-component program package, MOLFDIR, as well as in DIRAC, four-spinors are
expanded in decoupled scalar spin-orbitals

1 0 0 0
Z La L 0 Z LB L 1 a S 0 w S S 0
= crdl [+Y Pl |+ Sk |+ D b (86)
K 0 K 0 ® 1 n 0
0 0 0 1

There are 2n" large-component and 2n° small-component basis spinors. Imposing the
kinetic balance implies that 2n5 > n = 2n*. Our scheme thus reduces the number of
functions required for the small component.

The form of the large-component primitive set y2- is chosen from large-component
spinors obtained by analytical solution of the one-electron Dirac equation. The small-
component set l/l;%s is derived so that it satisfies the accurate and rigorous kinetic balance
condition versus 2,

P =iV—E-2" " (opyi- Y
rather than the condition

B =iepyi- (88)

20.4.2.3 Efficient evaluation of electron repulsion integrals

In construction of Coulomb and exchange integral matrices (Eqs. (82) and (83)), three
types of ERIs, (LLILL), (LLISS) (or (SSILL)), and (SSISS), are required within the
Coulomb approximation to the electron—electron interaction. Evaluation of ERIs
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Table 20.11 CPU times (in hours) for computing four-component ERIs for Au,, where the basis set used
for Au is [19s14p10d5f]/(6s4p3d1f), which is commonly contracted between A = + and A = —

LLLL + LLSS + SSSS LLLL + LLSS LLLL
Present® 1.37 0.77 0.21
pirac® 2.09 0.62 0.050
MOLFDIR® 76.35 21.16 1.63

“Number of basis spinors: 160 (for the large and small components).
"Number of basis spinors: 184 (for the large component) and 424 (for the small component).
“Number of basis spinors: 160 (for the large component) and 420 (for the small component).

includes a scaling with the forth power of the number of basis functions formally and is
the most time-consuming step within the DHF/DKS calculation. To evaluate relativistic
ERIs efficiently, we have recently developed a new integral evaluation method
specialized for relativistic contracted GTSs [130,132]. The algorithm exploits the
transfer relation of Head—Gordon and Pople (HGP) [133] and the accompanying
coordinate expansion (ACE) formulas derived by Ishida [134] in the non-relativistic case.
In this method, four-component ERIs (LLILL), (LLISS), and (SSISS) reduce to several
common two-center terms using the HGP transfer relation. The common integrals are
evaluated rapidly using the ACE method.

We have performed comparative calculations of ERIs using MOLFDIR2000 and DIRAC
version 3.2 in comparison with our REL4D program. MOLFDIR and DIRAC do not
treat separately contracted REL4D-type basis sets. To make direct comparison possible,
calculations with REL4D were done with the commonly contracted basis spinors
employed in MOLFDIR and DIRAC, although the program is not optimized for such basis
sets. Table 20.11 displays CPU times for computations on Au, with the [19s14p10d5f}/
(6s4p3dif) set. REL4D proved fastest for LLLL + LLSS 4 SSSS. LLLL + LLSS
calculations with the present code were comparable to those of DIRAC. In the LLLL
calculations, the present code worked about four times slower than DIRAC. Note that the
numbers of spinors generated are different for each program: 160 for the large and small
components in REL4D; 160 for the large component and 420 for the small component
in MOLFDIR; 184 for the large component and 424 for the small component in DIRAC.
The slightly larger basis size in DIRAC is caused by the fact that it uses, not spherical
harmonic GTSs, but contracted Cartesian GTSs. This feature improves DIRAC’s perfor-
mance in some cases because the transformation from Cartesian to spherical harmonic
is omitted. The reduced size of the small component basis renders our computational
scheme efficient in storage, computation, and transformation of integrals, and in matrix
manipulations.

20.4.2.4 Relativistic pseudospectral approach

Recently we have proposed more efficient relativistic molecular theory by an application
Uf. the pseudospectral (PS) approach [135]. In the PS approach [136,137], we use the
mixed basis function between a grid representation in the physical space and spectral
Tepresentation in the function space.
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In the relativistic PS approach, the Coulomb matrix element (Eq. (82)) is given as

> 2D e xD) = Zw Axx(g)z (Z > DX @x (g))

Y=L,S rs

JXX

Il

III

Z we A (8)p(g) (89)

with the three-center one-electron integral

—r,

lx){ (1dr, (90)
8

. 1
AN () = J X
I

and p(g) is the electronic density, which is calculated in terms of the density matrix and
atomic spinors at a coordinate r,. Likewise, the exchange contribution in the relativistic
PS approach is given as

M . N N
K = ZDS, XN =S wex (g)[z (}: Dii"xs"(g))Ai;"(g)] o1

8 r K}

and

, i o M . N (N -
K = 3 D0 ) = 3wt <g>[ s (z szz‘(g))AzX(g)] ©2)
8

rs r s

for diagonal (LL and SS) and non-diagonal (LS and SL) parts in the DHF or DKS matrix,
respectively. We note that no non-diagonal three-center one-electron integral is required
in construction of both Coulomb and HF-exchange matrix elements within the DC
approximation. Only diagonal ALL(g) and Agg(g) integrals are required. The high
efficiency is hence achieved in the relativistic PS approach.

The features of the relativistic PS-DHF/DKS method are as follows:

(1) The computational scaling is reduced from O(N*) to O(N*) (N; the number of basis
sets).

(2) Since the PS evaluation of HF-exchange matrix elements as well as Coulomb ones
is efficient, post HF methods and hybrid-type DFT are applicable.

(3) It is possible to treat the large molecular systems that are compact and three-
dimensional with high-quality basis sets in contrast to the fast multipole moment
(FMM) method.

(4) The multigrid technique can powerfully save considerable CPU time in the direct
SCF procedure.

(5) The PS program code is parallelized efficiently because of adoption of the
numerical grid partition.
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(6) It is possible to obtain the numerical result with arbitrary accuracy at adequate
CPU time by careful choice of the number of grid points.

Table 20.12 shows the spectroscopic constants and total energies of the gold dimer
calculated with the relativistic PS-DFT method using three types of grids. The details of
computations are given in Ref. [135]. The results obtained by the conventional DFT
method with the analytical ERIs and the experimental data [138,139] are also listed for
comparison. The PS results for spectroscopic constants and total energies become closer
to the analytical results as the level of grids is improved. The relativistic PS-DFT method
with the ultrafine grid, the highest level of grid sets in this study, gives excellent good
agreement with the analytical result. For the equilibrium bond length and the harmonic
frequency for Au,, the deviation of the ultrafine PS result from the analytical one is
negligibly small. The discrepancies of the dissociation energy and the total energy
between ultrafine PS and analytical results are AD, = —0.4 eV and AE = 0.0098 a.u.,
respectively. It is also found that the fine grid yields satisfactory results; the difference of
the equilibrium bond length, the harmonic frequency, the dissociation energy, and the
total energy between fine PS and analytical results are AR, = 0.005 A, Aw,=1lcm™!,
AD, = 0.3 eV, and AE = 0.0376 a.u., respectively.

The multigrid technique can be used in the SCF procedure of present PS calculations.
This technique realizes the faster SCF calculation with the PS method. Average CPU
times per one cycle for the direct SCF step in the DFT calculation including the ERI
evaluation, the KS matrix construction, and the SCF diagonalization are also listed in
Table 20.12. These times are taken from each single-point calculation at R = 4.8 a.u. In
the present multigrid calculation, the coarse and medium grids are used in the first and
second SCF stages, respectively. By adoption of the multigrid approach in this system,
the PS methods with medium, fine, and ultrafine grids are 19, 13, and 9 times faster than
the traditional analytical method, respectively.

Other PS applications to molecular systems also show that the relativistic PS-
DHF/DKS approach is more efficient than the traditional approach without a loss of
accuracy.

Table 20.12 Spectroscopic constants of the Au dimer calculated by conventional DFT and PS-DFT
(B3LYP)

Analytical PS (medium)* PS (fine)® PS (ultra)® Exptl
R.(A) 2.554 2.526 2.549 2.554 2472
@, (cm™) 168 191 169 168 191
D, (ev) 1.98 2.11 2.01 1.94 2.36
Energy (a.u.)! —-0.7302 -0.8075 -0.7678 —0.7400 -
Time (s)° 17497 927 1352 1979 -

“Medium grid: 50 X 110 = 5500/atom.
ine grid: 75 x 194 = 14550/atom.
“Ultrafine grid: 96 x 302 = 28992/atom.
. otal DFT energy: — 38096 a.u.
Average CPU time per one cycle for the direct SCF step in the DFT calculation including the ERI evaluation, the KS matrix
Construction, and the SCF diagonalization.
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20.4.3 Two-component relativistic molecular theory

20.4.3.1 Approximate relativistic Hamiltonians
Despite recent implementations of an efficient algorithm for the four-component
relativistic approach, the DC(B) equation with the four-component spinors composed of
the large (upper) and small (lower) components still demands severe computational efforts
to solve, and its applications to molecules are currently limited to small- to medium-sized
systems. As an alternative approach, several two-component quasi-relativisti¢ approxi-
mations have been proposed and applied to chemically interesting systems containing
heavy elements, instead of explicitly solving the four-component relativistic equation.
An approximate relativistic Hamiltonian should include the following desirable
features:

(1) It should be accurate enough to give a close result to the one-electron Dirac or many-
electron Dirac—Coulomb(—Breit) Hamiltonian.

(2) It should be efficient and effective to apply to large molecular systems containing
heavy elements.

(3) It should be well balanced so as to describe molecular systems containing a wide
variety of atoms in the periodic table with the same quality.

(4) It should be variationally stable in order to avoid variational collapse in the sense
that at least the non-relativistic limit is obtained correctly.

(5) It should be variational and not perturbative in order to evaluate various energy
values and one-electron properties.

The Breit—Pauli (BP) approximation [140] is obtained truncating the Taylor expansion
of the Foldy—Wouthuysen (FW) transformed Dirac Hamiltonian [141] up to the (p/ mc)?
term. The BP equation has the well-known mass-velocity, Darwin, and spin—orbit
operators. Although the BP equation gives reasonable results in the first-order
perturbation calculation, it cannot be used in the variational treatment.

One of the shortcomings of the BP approach is that the expansion in (p/mc)? is not
justified in the case where the electronic momentum is too large, e.g. for a Coulomb-like
potential. The zeroth-order regular approximation (ZORA) [142,143] can avoid
this disadvantage by expanding in E/(2mc* — V) up to the first order. The ZORA
Hamiltonian is variationally stable. However, the Hamiltonian obtained by a higher order
expansion has to be treated perturbatively, similarly to the BP Hamiltonian. Other quasi-
relativistic methods have been proposed by Kutzelnigg [144,145] and Dyall [146].

We have developed two quasi-relativistic approaches. One is the RESC method
[147-149], and the other is the higher order Douglas—Kroll (DK) method [150-152].
In the following sections we will introduce RESC and higher order DK methods briefly.

20.4.3.2 RESC method
The Dirac equation is equivalent to the Schrodinger—Pauli type equation composed of
only the large component

2
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with the normalization condition
(T +xtxlvly =1 (93b)

Here the X operator is defined by
X =[2mc* — (V - E)] 'c(o-p) (94)

If Eq. (93a) could be solved with Eq. (93b), the solution to the Dirac equation can be
obtained exactly. However, Eq. (93a) has the total and potential energies in the
denominator, and an appropriate approximation is needed. In our strategy, E — V in the
denominator is replaced by the classical relativistic kinetic energy (relativistic
substitutive correction)

T = (m*c* + p*cH)"* — mc? (95)

This simple approach is referred to as the relativistic scheme by eliminating small
components (RESC). The derivation and the form of the RESC Hamiltonian are given in
Ref. [147]. The RESC approach has several advantages. It is variationally stable. It can
easily be incorporated in non-relativistic ab initio programs, and relativistic effects are
considered on the same footing with electron correlation. RESC works well for a number
of systems, and recent studies have shown it to give results similar to the Douglas—
Kroll-Hess (DKH) method for chemical properties, although very large exponents in the
basis set can lead to variational collapse in the current RESC approximation, which
includes only the lowest truncation of the kinematic operator.

20.4.3.3 Douglas—Kroll method
The Douglas—Kroll (DK) approach [153] can decouple the large and small components
of the Dirac spinors in the presence of an external potential by repeating several unitary
transformations. The DK transformation is a variant of the FW transformation [141] and
adopts the external potential V,,, as an expansion parameter instead of the speed of light,
¢, in the FW transformation. The DK transformation correct to second order in the
external potential (DK2) has been extensively studied by Hess and co-workers [154], and
has become one of the most familiar quasi-relativistic approaches. Recently, we have
proposed the higher order DK method and applied the third-order DK (DK3) method to
several systems containing heavy elements.

The first step in the DK transformation consists of a free-particle FW transformation to
the Dirac Hamiltonian with the external potential V.,

Vst + c? co-
HD=( ext p2) 96)
cop Vet — €

in momentum space. The resulting Hamiltonian yields the free-particle FW Hamiltonian
and is also referred to as the first-order DK Hamiltonian. In successive DK
transformations, in order to remove odd terms of arbitrary order in the external potential,
the unitary operator defined by Douglas and Kroll [153],

U, =1+ WH2 4w, 97)
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or the exponential-type unitary operator [150]
U, = exp(W,) (98)

is employed sequentially. Here W, is an anti-Hermitian operator of nth order in V.. The
resultant DK Hamiltonian is still a four-component formalism. Its two-component
reduction is achieved by replacing 8 by the unit matrix and « by the 2 X 2 Pauli spin
matrix o. In order to correspond to the non-relativistic limit, the resulting two-component
Hamiltonian is shifted by —2¢?.

The first-order, second-order, and third-order DK (DK1, DK2, and DK3) Hamiltonians
in the two-component form are given as

Hpg, =E, — ¢ + E, (99)
Hpks = Hpgi — 5IW, Wy, E, 1414 (100)
Hpgs = Hpgo + 3 [Wy, [W, E1] (101)
with
E, = cl(o-p)’ + 11'/? (102)
Ey = A(Vex + RVex R)A (103)
W, = A(Rv — vR)A (104)
where the kinematical A and R operators and the v operator are defined by
E 2\ 1/2
a=(22te (105)
2E,
co-p
R= —— 106
E,+c? (106)
/ Vext(p’P,)
= _extne 107
v(p,p) E,+E, (107)

and [a, b], and [a, b] denote the anti-commutator and the commutator, respectively.

20.4.3.4 Extended Douglas—Kroll transformations applied to the relativistic
many-electron Hamiltonian
The DK approach satisfies all of the criteria in Section 20.4.3.1: the DK transformation
avoids the high singularity in the FW transformation by adoption of the external potential
as an expansion parameter, and thus the DK Hamiltonian is variationally stable. The DK
Hamiltonian can be applied to the variational calculation in contrast to the Breit—Pauli
Hamiltonian. Criterion (1) is also satisfied by the higher order DK method for the
one-electron system. The DK3 Hamiltonian was shown to give excellent agreement with
the one-electron Dirac Hamiltonian [150].

By an application of the DK transformation to the relativistic many-electron
Hamiltonian, recently, we have shown that the many-electron DK Hamiltonian also
gives satisfactory results for a wide variety of atoms and molecules compared with
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the DC(B) Hamiltonian [152]. To consider the higher order DK transformation to the
two-electron interaction, the present approach adopts the effective one-electron potential
in the DHF/DKS operator as an expansion parameter in the DK transformation.

The DHF/DKS operator, Eq. (78), can be written in the same form to the one-electron
Dirac Hamiltonian, Eq. (96), by the following replacements:

Vnuc + JLL + JSS - texKXX - ’chxc - Vext (108)

t
2kXY L op (109)
C

op—

By substituting these relations into Egs. (99)-(107), we can straightforwardly obtain
the DKn-Fock operators with the DK transformation to the DHF/DKS potential in the
two-component DKn-HF/KS equation

Fokn i = & (110)

where i ; is the (orthonormalized) two-component DKr spinor and ¢; is its spinor energy.
The first-order DK (DK1) operator is given as

Fpx1 = Eo — ? + E, (111)
with
Tex LS Tex ,.SL 212
E, =c[(0'vp— =K )(c-p— =K )+c ] (112)

Ey =A(Vyy + JLL + JSS - texKLL - tchxc)A
+ AR (Voo + T + 755 — 1, K5 — 1, V,OR A (113)

where the A and R*Y operators are defined by

1/2 ,
E0+C2
A= 114
(%) a1
1
RY=_° ( : —ﬁK"Y) 115
Byt & e (115)

In this approach, the density matrix is evaluated self-consistently with both the large and
small component spinors, ¢ and ¢f, which can be reconstructed from the free-particle
FW spinors 4 ; in the Schrodinger picture

oF =AY, (116)
o) =R"AY, (117)

It is easy to verify that the DK1 operator, Eq. (111), is equivalent to the Fock operator
derived from the no-pair or free-particle FW Hamiltonian. Likewise, the higher order DK
operators are also derived straightforwardly by repeating the DK transformations, though
their formulae are omitted only because of their lengthy forms.
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As molecular applications of the extended DK approach, we have calculated the
spectroscopic constants for At,: equilibrium bond lengths (R.), harmonic frequencies
(w,), rotational constants (B, ), and dissociation energies (D). A strong spin—orbit effect
is expected for these properties because the outer p orbital participates in their molecular
bonds. Electron correlation effects were treated by the hybrid DFT approach with the
B3LYP functional. Since several approximations to both the one-electron and two-
electron parts of the DK Hamiltonian are available, we define that the DKnl + DKn2
Hamiltonian (nl, n2 = 1-3) denotes the DK Hamiltonian with DKnl and DKn2
transformations for the one-electron and two-electron parts, respectively. The
DKnl + DK1 Hamiltonian is equivalent to the no-pair DKr1 Hamiltonian. For the
two-electron part the electron—electron Coulomb operator in the non-relativistic form
can also be adopted. The DKn1 Hamiltonian with the non-relativistic Coulomb operator
is denoted by the DKnl + NR Hamiltonian.

Table 20.13 shows the results for At, obtained by approximate DK schemes in
comparison with four-component DKS results. The DK results for the spectroscopic
constants and the total energy in the equilibrium geometry (E,,) become closer to the
DKS results as the level of theory is improved. The highest level of theory, DK3-DK3, as
well as DK3-DK?2, gives fairly good agreement with the four-component result for At,.
The DK3-DK3 operator yields R, = 3.1102 A, w, = 102.3cm™, and D, = 0.546 eV,
the corresponding four-component DKS values being R, = 3.1121 A, w, = 102.0cm ™,
and D, = 0.542 eV. The discrepancy between DK3-DK3 and DKS Hamiltonians is
AR, = 0.0019 A, Aw, =03 cm™!, and AD, = 0.004 eV.

By comparison between the DK3-DK3 and DK3-NR results, it can be seen that two-
electron relativistic effects are comparatively large, especially in the dimer; the bond
length decreases by 0.06 A, the frequency increases by 7 cm™ !, the rotational constant
increases by 0.0006 cm ™', and the dissociation energy increases by 0.12 eV. Neglect of
the relativistic correction to the electron—electron interaction yields inferior results and
gives relatively large deviations from the DK3-DK3 or DKS result. It is interesting that
the importance of the two-electron DK correction for the bond length is shown, because it
has been believed so far that the bond length is scarcely affected by the relativistic

Table 20.13 Bond lengths (R.), harmonic frequencies (w,), rotational constants (B.), dissociation
energies (D,), and total energies (E,,) in the equilibrium geometry of At, with B3LYP

Hamiltonian R. (;\) w. (cm™ Y B. (cm™ ") D, (eV) E (an.)
DKS 3.1121 102.0 0.0166 0.542 —45838.2314
DK3-DK3 3.1102 102.3 0.0166 0.546 —45841.9720
DK3-DK3 3.1080 102.3 0.0166 0.552 —45849.7971
(no mod. V)"

DK3-DK2 3.1108 102.3 0.0166 0.545 —45842.2586
DK3-DK1 3.1074 102.6 0.0166 0.552 —45839.6417
DK3-NR 3.1697 95.5 0.0160 0.429 —45849.7240
DK2-DK2 3.1013 103.0 0.0167 0.561 —45773.7217

“Results without the relativistic modification to V,..
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correction to the electron—electron interaction, while the harmonic frequency and the
dissociation energy are often influenced.

The first-order DK correction to the electron—electron interaction is satisfactory also
in molecular systems, as well as the atomic case. The deviation of DK3-DK1 from
DK3-DK3 is AR, = 0.0028 A, Aw, =03 cm™', and AD, = 0.006 eV for At,.

In the DFT approach with our general DK transformation, the exchange-correlation
potential, V,, is corrected relativistically. The effect on the DK transformation to the
exchange-correlation potential was estimated by comparison with the result without the
relativistic modification to V,. ((no mod. V,.) in Table 20.13). Compared with the full
DK3-DK3 approach, neglect of the relativistic DK correction to the exchange-
correlation potential hardly affects the calculated spectroscopic values; its effect merely
contributes 0.002 A for R, and 0.006 eV for D, and does not affect w, and B, for the At
dimer. Thus, it is found that the relativistic correction to the electron—electron interaction
contributes mainly to the Coulomb potential, not to the exchange-correlation potential.

In consequence, the several numerical results including the present results show that
the third-order DK transformation to both one-electron and two-electron Hamiltonians
gives excellent agreement with the four-component relativistic approach. The first-order
DK correction to the two-electron interaction is shown to be satisfactory for both atomic
and molecular systems.

20.5 SUMMARY

The recent advances in electronic structure theory achieved in our research group have
been reviewed. New theory/algorithm has been implemented and incorporated into the
program package, UTCHEM [155]. Software forms a basis for computational chemistry.
It is not an easy task for an individual/group to develop a comprehensive new program
package in quantum chemistry from scratch. Several years ago, we decided to accept
this challenge. In view of the availability of such good programs as GAUSSIAN, GAMESS,
MOLCAS, NWCHEM, etc., one may question the relevance of a new program package. We
have three arguments for our project. (1) First, we believe that healthy competition is very
important in science. (2) Second, we can have a good harvest by doing research using
other programs, but it is an abortive flower. We could not make a true breakthrough if
we were circumscribed by current software limitations. (3) Third, in spite of the excellent
performance of other programs, there are important and powerful methods that others
cannot yet handle. We have developed new methodologies in quantum chemistry,
particularly the multireference-based perturbation theory for describing chemical
reactions and excited states, relativistic molecular theory to treat heavy elements,
parameter-free (less) and long-range corrected (LC) exchange and correlation functionals
in DFT, highly efficient algorithms for calculating molecular integrals over generally
Contracted Gaussians, etc. UTCHEM is a research product of our work to develop new and
better theoretical methods in quantum chemistry. Most of the codes have been developed
fecently by Hirao’s group at the University of Tokyo. The basic philosophy behind
UTCHEM is to develop methods that allow an accurate and efficient computational
chemistry of electronic structure problems for molecular systems in both the ground and
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excited states. UTCHEM also contains codes for well-developed methods such as MPn, CI,
CC, etc., which are standard in most quantum chemistry programs. We are aiming
ultimately at better performance than other programs. UTCHEM has been released. If you
want more information on UTCHEM, visit http://utchem.qcl.t.u-tokyo.ac.jp/.
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