
Abstract. Maximum radius of convergence (MAXRc)
perturbation theory [(2000) Journal of Chemical Physics
112:6997] is tested on the beryllium and neon atoms
using calculations that are truncated in high orders.
Calculations are also performed on the ground-state
potential-energy curves of H2 and HF. The neon atom
calculations use the 3-21G basis set with added diffuse s
and p functions. All other calculations use the STO-3G
minimum basis set. MAXRc perturbation theory con-
sistently performs well. The Epstein–Nesbet and Møller–
Plesset perturbative expansions frequently diverge or
exhibit slow convergence compared to the expansions
obtained from MAXRc.
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1 Introduction

One of the most successful ab initio approaches is
Møller–Plesset (MP) perturbation theory, especially
when truncated after the second order [1, 2, 3].
Unfortunately, partitioning is not always effective
beyond the second order, where damping and divergent
behavior may appear [4, 5]. Recently, we have de-
veloped a new approach called maximum radius of
convergence (MAXRc) perturbation theory that is an
alternative to the MP and Epstein–Nesbet (EN) [6]
partitionings. This method will – hopefully – deliver
better convergence than traditional approaches. The
MAXRc approach is based on choosing the energy
denominators in a Rayleigh–Schrödinger perturbation
expansion in a manner that is (approximately) ‘‘opti-
mal’’. We test the MAXRc perturbation theory on the
ground states of the beryllium and neon atoms using

calculations that are truncated in high orders in Sect. 3.
High-order calculations are also performed on the
ground-state potential-energy curves of H2 and HF.
Before presenting the results, we briefly review the
MAXRc method.

2 MaxRc theory

Consider a two-state system consisting of a single
reference state, denoted by jpi, and a single orthogonal
space state, denoted by jqi. Let E0

p and E0
q be their

zeroth-order energies that define a diagonal, zeroth-
order Hamiltonian,

H0 ¼ jpiE0
phpj þ jqiE0

qhqj : ð2:1Þ

The radius of convergence Rc for the two-state Ray-
leigh–Schrödinger perturbation expansion is easily
derived [7],

R2
c ¼

DE2

ðDE � Hq
p Þ2 þ 4jhpjH jqij2

; ð2:2Þ

where

Hq
p ¼ hpjH jpi � hqjH jqi ; ð2:3Þ

and DE is the sole energy-denominator factor appearing
in the perturbation expansion,

DE ¼ E0
p � E0

q : ð2:4Þ

The perturbation expansion is convergent if Rc � 1, and
divergent if 0 � Rc < 1 (note that Rc � 0). Since H0 is
arbitrary, DE is at our disposal. The value of DE that
yields the maximum radius of convergence is given by [8]

DEðpqÞ
m ¼ Hq

p þ
4jhpjH jqij2

Hq
p

: ð2:5Þ

Now consider an N -state system involving one reference
states jpi and many orthogonal space states: jqi, jq0i,
jq00i, . . .. The Rayleigh–Schrödinger perturbative expan-
sion for the correlation energy, Ecorr, is given by
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Ecorr ¼
X

q

hpjV jqihqjV jpi
E0

p � E0
q

þ
X

q

X

q0

hpjV jqihqjV jq0ihq0jV jpi
ðE0

p � E0
qÞðE0

p � Eq0 Þ

"

�hpjV jqihqjV jpihpjV jpi
ðE0

p � E0
qÞ

2

#
þ � � � ; ð2:6Þ

where the perturbation, V , is given by (V ¼ H � H0),
and it is determined by H0:

H0 ¼ jpiE0
phpj þ

X

q

jqiE0
qhqj : ð2:7Þ

MAXRc perturbation theory makes the following
choices:

E0
p ¼ hpjH jpi ð2:8Þ

and

E0
q ¼ hqjH jqi �

4jhpjH jqij2

Hq
p

: ð2:9Þ

Therefore, the energy denominators for MAXRc are
given by

E0
p � E0

q ¼ DEðpqÞ
m ; ð2:10Þ

and Eq. (2.6) becomes

Ecorr ¼
X

q

hpjV jqihqjV jpi
DEðpqÞ

m

þ
X

q

X

q0

hpjV jqihqjV jq0ihq0jV jpi
DEðpqÞ

m DEðpq0Þ
m

"

�hpjV jqihqjV jpihpjV jpi

DEðpqÞ
m

� �2

3

75þ � � � : ð2:11Þ

A MAXRc spin-adapted formalism is also available
[8] that preserves the linked diagram theorem by using
Rayleigh–Schrödinger perturbation theory with flexible
energy denominators [9].

3 Results: calculations on Be, Ne, H2 and HF

Perturbation calculations were performed with the EN,
MP, and MAXRc perturbative methods on Be, Ne, H2

and HF, using canonical Hartree–Fock orbitals and a
configuration state function basis. The a- and b-spin
orbitals are restricted — they have a common spatial
part. The Ne calculations use the 3-21G basis set [10]
with two diffuse s functions (exponents 0.1379 and
0.03137) and a set of diffuse p functions (exponent
0.1379). All other calculations use the STO-3G mini-
mum basis set [10]. For our purposes, calculations are
considered to be convergent when estimates of the full
configuration interaction (FCI) improve as the order of
the perturbation increases. However, it is possible, that
divergence can still appear beyond the truncation order.

The order-by-order results for Be using the MP, EN,
and MAXRc partitioning methods up to the tenth order
ðN ¼ 10Þ are presented in Fig. 1. The energy axis corre-
sponds to ðEN � E1Þ, where EN is the N th-order energy
and E1 is the infinite-order result obtained from the
FCI. EN exhibits slower convergence then the other two
methods. MP and MAXRc exhibit similar behavior,
except for the second order where MAXRc is better.
We have also performed higher-order calculations
(10 < N < 100) and found nothing unusual – all three
methods appear to converge.

The order-by-order results for Ne up to the tenth
order ðN ¼ 10Þ are presented in Fig. 2. All methods yield
similar results with only small deviations: MP is a
little better from N ¼ 3 to N ¼ 6, but worse at N ¼ 2.
We have also performed higher-order calculations
(10 < N < 100). Both EN and MAXRc (apparently)

Fig. 1. The beryllium atom computed using Møller–Plesset (MP)
(squares), Epstein–Nesbet (EN) (circles), and maximum radius of
convergence (MAXRcÞ (crosses) partitioning methods up the tenth
order (N ¼ 10). The energy axis corresponds to ðEN � E1Þ, where
EN is the Nth-order energy and E1 is the infinite-order result
obtained from the full configuration interaction FCI

Fig. 2. Same as Fig. 1, but for neon
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converge, but MP diverges. The high-order (oscillatory)
divergent behavior for MP is given Fig. 3. Similar MP
results using diffuse basis sets for Ne have been previ-
ously discovered by Olsen and coworkers [4, 5].

The potential-energy curve for H2 computed through
the 200th order ðN ¼ 200Þ is presented in Fig. 4. All
methods converge in the well region. EN diverges for all
geometries greater than about 1.4 Å. MP diverges for
geometries greater than about 2.0 Å. The approximate
onsets of divergence for both curves are indicated by
lines parallel to the energy axis (labeled by EN and MP).
MAXRc exhibits no divergence behavior over the entire
range of the potential curve. However, as anticipated,
the convergence becomes very slow at large bond dis-
tances where the closed-shell reference state cannot

describe the system. At the dissociation limit the refer-
ence state becomes degenerate in first order with the
(single) orthogonal state, making the energy denomina-
tor infinite for MAXRc. Slow convergence behavior
is evident between 3.2 and 4.0 Å where the agreement
between MAXRc and the FCI is poor.

The solid line in Fig. 5 presents the weight (jCrefj2) of
the reference determinant for the (two-dimensional) FCI
wavefunction of H2 over the range of internuclear dis-
tances considered. Note that the onset of the divergent
behavior for EN and MP – indicated by � and ( in the
figure – corresponds to weights of 0.90 and 0.71,
respectively. The weight is 0.5 at the dissociation limit.

Fig. 3. Same as Fig. 2, but between (N ¼ 10) and (N ¼ 70) and
only for MP partitioning

Fig. 4. The potential energy curve of H2 computed using the MP
(squares), EN (circles), and MAXRc (crosses) partitioning methods
for N ¼ 200. The solid line denotes the exact FCI curve. EN and
MP partitioning methods yield divergent expansions for internu-
clear distances, R, greater than about 1.4 and 2.0 Å, respectively.
These values of R are indicated by vertical lines denoted by EN and
MP

Fig. 5. The weight (jCrefj2) of the reference determinant for the FCI
wavefunction of H2 (solid line) and HF (dashed line) over the range
on internuclear distances considered. The points where divergence
first appears for MP (squares) and EN (circles) partitionings are
indicated by filled and unfilled symbols for H2 and HF, respectively

Fig. 6. H2 computed using using the MP (squares), EN (circles),
and MAXRc (crosses) partitioning methods at the equilibrium
geometry for the FCI (R ¼ 0:735 Å) up to N ¼ 10. The energy axis
corresponds to ðEN � E1Þ, where EN is the N th- order energy and
E1 is the infinite-order result obtained from the FCI
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The order-by-order results for H2 at an internuclear
distance of 0.735 Å, corresponding to the equilibrium
geometry for the FCI, are given in Fig. 6. At this geome-
try, the EN and MAXRc methods converge rapidly. The
MP method performs poorly compared to the other two
methods. At an internuclear distance of 1.8 Å, given by
Fig. 7, EN yields little or no useful information: The
second order is better than the first; the third, fourth and
fifth orders offer no improvement; the sixth order marks
the onset of divergent behavior. The other two methods
perform satisfactorily at this geometry. At 2.4 Å, given by
Fig. 8, EN diverges in low orders. MP exhibits oscillatory
behavior and a divergent expansion with little useful
information. MAXRc converges, but slowly, as expected.

The potential-energy curve for HF computed through
the tenth order ðN ¼ 10Þ for geometries between 0.6 and
2.0 Å is presented in Fig. 9. All methods agree with the
FCI (the solid line) in the well region. EN exhibits a
large deviation from the FCI beyond about 1.6 Å. A
noticeable deviation from the FCI is found for the MP
and MAXRc methods in the vicinity of 2.0 Å. This

behavior is anticipated for large bond distances, where
the reference state offers a poor description of the target
state see Fig. 5. We have also performed higher-order
calculations (10 < N < 100) and found that EN and MP
partitioning methods yield divergent expansions for
internuclear distances greater than about 1.6 and 1.9 Å,
respectively. These values of R are indicated by vertical
lines, denoted by EN and MP. At these geometries
the weights (jCrefj2) of the reference determinant for the
FCI wavefunction are 0.83 and 0.71, respectively. The
weights over all geometries considered are given by
the dashed line in Fig. 5. The points where MP (() and
EN (�) first diverge are indicated in the figure.

Fig. 7. Same as Fig. 6 but at R ¼ 1:8 Å

Fig. 8. Same as Fig. 6 but at R ¼ 2:4 Å

Fig. 9. The potential energy curve of HF computed using the three
partitioning methods for N ¼ 10. The solid line denotes the exact
FCI curve. From higher-order calculation (up to N ¼ 100) it can be
shown that EN and MP partitioning methods yield divergent
expansions for internuclear distances greater than about 1.6 and
1.9 Å, respectively. These values of R are indicated by vertical lines
denoted by EN and MP

Fig. 10. HF computed using using the MP (squares), EN (circles),
and MAXRc (crosses) partitioning methods near the equilibrium
geometry (R ¼ 1:0 Å) upto N ¼ 10. The energy axis corresponds to
ðEN � E1Þ; where EN is the Nth-order energy and E1 is the infinite-
order result obtained from the FCI
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The low order results for HF at an internuclear dis-
tance of 1.0 Å, corresponding to the equilibrium geo-
metry, are presented in Fig. 10. At this geometry MP
performs poorly compared to the other two methods,
which converge rapidly. At 1.8 Å, given by Fig. 11, EN
rapidly diverges, while MP and MAXRc both perform in
a similar manner. However, MP eventually diverges in
very higher orders, given by Fig. 12.

4 Conclusion

For the systems we have examined, MP and EN
frequently perform poorly; these methods often diverge
or, compared to the MAXRc method, converge slowly.
MAXRc consistently performs well, except at very large
bond distances where convergence can be very slow; but,
this is anticipated. Such cases can be treated by
multireference perturbation theory. MAXRc is compat-
ible with multireference perturbation theory, but re-
quires some modifications when a Fock space formula-
tion is employed.

Since we have used only small basis sets – a minimum
basis set in all cases except for neon – and examined only
a few small systems, caution should be exercised when
generalizing these results to larger basis sets and for
larger systems. However, even if it is later demonstrated
that MAXRc performs poorly in these more challenging
cases, we believe that MAXRc partitioning possesses
features that are needed to obtain satisfactory conver-
gence for any ‘‘new and improved’’ partitioning method.
Consider, for example, a typical perturbation calculation
involving a reference state and, say, n orthogonal-space
states. For a ‘‘new and improved’’ partition method, a
convergent series should arise from any two-state cal-
culation involving – exclusively – the reference state
and any selected orthogonal state, i.e., any one of the
n orthogonal-space states is selected for a two-state
calculation.
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Fig. 11. Same as Fig. 10 but at R ¼ 1:8 Å

Fig. 12. The divergent behavior of MP partitioning methods for
HF at R ¼ 1:8 Å
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