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Abstract

One of the authors (Kimihiko Hirao) was invited to the University of Tokyo in 1993 as the first professor of theoretical
chemistry. Since then, our quantum chemistry research group has grown larger and larger and has now become one of the
centers of theoretical chemistry in Japan. We are aiming at developing accurate molecular theory on systems containing
hundreds of atoms. We continue our research in the following three directions: (i) development of new ab initio theory,
particularly multireference-based perturbation theory; (ii) development of molecular theory including relativistic effects;
and (iii) development of exchange and correlation functionals in density functional theory. We have enjoyed good progress
in each of the above areas. We are very excited about our discoveries of new theory and new algorithms and we would like to
share this enthusiasm with readers. The present review is a summary of our research activities achieved in the last 5 years.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Multireference perturbation theory

One of the most important advances in the last
decades in electronic structure theory is the develop-
ment of the multireference technique, i.e. the multi-
configuration self-consistent field (MCSCF) method,
and configuration interaction (CI), coupled cluster
(CC), and perturbation methods based on the
MCSCEF functions. These methods now play a central
role in the study of electronic structure of molecules
and chemical reaction mechanisms, especially in
those concerned with electronic excited states.

Among the several types of MCSCF methods,

* Corresponding author. Tel.: +81-3-5841-7223; fax: +81-3-
5841-7241.
E-mail address: hirao@qcl.t.u-tokyo.ac.jp (K. Hirao).

CASSCF is commonly used at present. In fact, it
has many attractive features: (1) applicable to excited
states as well as the ground state in a single frame-
work; (2) size-consistent; and (3) well-defined on the
whole potential energy surface if an appropriate active
space is selected. However, CASSCF takes into
account only non-dynamic electron correlation and
not dynamic correlation. The accuracy in energies
such as the excitation energy and dissociation energy
does not reach chemical accuracy, that is, within
several kcal/mol. A method is necessary that takes
into account both the non-dynamic and dynamic
correlations for a quantitative description.

Our MRMP (multireference Mgller—Plesset)
perturbation method [1-4] and MC-QDPT (quasi-
degenerate perturbation theory with multiconfigura-
tion self-consistent field reference functions)
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[5,6]are perturbation methods of such a type. In these
methods, the CASSCF wavefunctions are first deter-
mined, and the perturbation calculation is done with
those wavefunctions used as reference (zeroth-order
wavefunctions) based on Rayleigh—Schrédinger
perturbation theory (PT) in MRMP and van Vleck
PT in MC-QDPT. These PTs have many attractive
features:

1. generally applicable to a wide class of problems
and a wide variety of molecules in a single frame-
work;

2. almost size-consistent;

3. applicable to excited states and open-shells as well
as the ground state;

4. stable on the whole potential surface if the refer-
ence CASSCEF function is appropriately chosen;

5. accurate enough to provide chemical accuracy.
Although MRMP and MC-QDPT at the lowest
non-trivial order (the second order) does not yield
a very close total energy to the exact one, they are
well balanced. Relative energies such as dissocia-
tion energies, excitation energies, and activation
energy are quite good.

6. Much more efficient and handy than MRCI and
MRCC methods. The energy is computed as a
sum of the product of molecular integrals and
coupling constants between the target state and
CSF divided by the energy difference. The resource
required does not depend strongly on the size of the
active space and basis set. This presents a signifi-
cant contrast to the case of MRCI and MRCC.

In this section, we show the formalism of multirefer-
ence perturbation theory and some applications to
potential energy surfaces and electronic excited spec-
tra.

1.1. The MRMP method—Multireference Mgpller—
Plesset perturbation method [1-4]

Our basic problem is to find approximations to
some low-lying solutions of the exact Schrodinger
equation:

HY =EV. (1

H is the Hamiltonian and it is decomposed into two
parts, a zeroth-order Hamiltonian H, and a

perturbation V:
H=H,+V. 2)

We assume that a complete set of orthonormal eigen-
functions { 1I’i(o)} and their corresponding eigenvalues
are available:

Hyv” = EOw?. 3)

Then the state wavefunction V¥, is expanded in terms
of basis functions W,(f)) as:

V=Y . 4)
k

Some of the basis functions define an active space P,
and the remaining part of Hilbert space is called the
orthogonal space Q=1 — P. The active space is
spanned by the basis functions that have a filled
core and the remaining active electrons are distributed
over a set of active orbitals. The orthogonal complete
space incorporates all other possible basis functions
that are characterized by having at least one vacancy
in a core orbital. The state wavefunction in an active
space is written as:

v =3y, )
k

where the sum runs over active space basis functions
{®;} and C; are the coefficients of only the active
space basis functions. It is convenient to use inter-
mediate normalization, that is:

(W) = (0w = 1. (©)
We also assume that ¥ ,(0) is diagonal in P space:
(VW) = 8,(E]” + E}), (7)
with:

Ep = (W |Ho| ), @®)
E)) = (@ |v[w”). ©

The state-specific Rayleigh—Schrodinger perturbation
theory based on the unperturbed eigenvalue equation:

HyW}” = EW}” (10)
leads to the first £\ as:

EP = (¥ |VRV|¥?), (11)
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Ef) = (W”|VR(V — E{")RV|¥"), (12)
EY = (VP|VR(V — E"R(V — E{"))RV| ()

— EP (VR VW)

+ (W |VRHoSHoRV|W/(”)], (13)

etc.

The R and S are the resolvent operators:
R = QI(E]” — Hy), (14)
S = P'I(E}” — Hy), (15)
where P = P — |7\O% ¥,

The E(O) is given in terms of orbital energies as:

EP = ZDkkek, (16)

and the orbital energies are defined as:

€ = <<Pi|F|€0i> an
with:
1
Fy = hy + ZDH[ajlkl) - 5(ikllj)], (18)
ki

where Dj; is the one-electron density matrix. The
MCSCEF orbitals are resolved to make the Fj; matrix
as diagonal as possible. This zeroth-order Hamilto-
nian is closely analogous to the closed-shell Fock
operator. The definition of an active space, the choices
of active orbitals, and the specification of the zeroth-
order Hamiltonian completely determine the perturba-
tion approximation.

When a CASSCF wavefunction is used as the refer-
ence, the zeroth plus first-order energy E;O) + E}l) is
equal to the CASSCF energy. The lowest non-trivial
order is, therefore, the second order. Let the reference
function |foo)> be a CASSCF wavefunction:

@) =D CulA). (19)
A

The energy up to the second order in MRMP is given
by:

(0-2) _ ;,CAS (| VIIXe| V|I)
EV=ES A S o (20)
1 a I

where {|I)} is the set of all singly and doubly excited

configurations from the reference configurations in
CAS. The first term on the RHS is the CAS-CI energy.

1.2. MC-QDPT—Multistate multireference
perturbation method [5,6]

We have also proposed a multistate multireference
perturbation theory, the quasi-degenerate perturbation
theory with MCSCEF reference functions (MC-QDPT).
In this PT, state-averaged CASSCEF is first performed
on a set of reference functions, and then an effective
Hamiltonian is constructed, which is finally diagona-
lized to obtain the energies of interest. This theory
includes MRMP PT (the case that the set of reference
functions reduces to a single function).

The effective Hamiltonian to second order is given
by:

(K ap = (|H|B)
1 < ((ViiXvigy | BvIDavie) @D
"2 2{ EY — EY TR

Substituting the second-quantized operator into V, we
obtain an explicit formula using molecular integrals
and orbital energies instead of matrix elements:

(K(O 2))016 — ECAS Bag

— _ Upelleg
%(cd |B>CB<B>Z Y
= D {a|Epn|BYCp(B)
pqrs,B

Upo8eoars
z: pedeqrs
X[ €, — €, +€ —€ +AE
e e q r S Ba

+ Z 8persheq
— €, — €, T AEp,

+ l gparbgaqbs
265 €€t €€ + AEg,
Z <O(| DG.TS. tu|B>CB(B)
pqrstu,B
x Z 8pers8equ + (a - B)

— € — €, 1+ € — € + AEp,
(22)
with:

Spagrs = (P4lrs) (23)
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Table 1

CASSCF and MRMP classical barrier height (kcal/mol) for the
reaction H,CO— H, + CO. Values in parentheses include the
Zero point energy correction

Method Barrier height

Basis set/Active space CASSCF MRMP
cc-pVDZ

4,4 90.5 (85.1) 83.1 (77.7)
(6, 6)/Ip 86.3 (80.9) 84.9 (79.5)
(10, 10) 86.3 (80.9) 84.3 (78.9)
cc-pVTZ

4, 4) 90.9 (85.5) 83.8 (78.4)
(6, 6)/Ip 86.9 (81.5) 87.4 (82.0)
(10, 10) 86.9 (81.5) 84.8 (79.4)
cc-pVQZ

0,0)* 100.9 (95.5) 89.9 (84.5)
4, 4) 90.9 (85.5) 83.7 (78.3)
(6, 6)/Ip 87.0 (81.6) 87.4 (82.0)
(6, 6)/m 93.4 (88.0) 84.9 (79.5)
(10, 10) 86.9 (81.5) 84.6 (79.2)
(12, 11) 80.8 (75.4) 84.5 (79.1)
Exptl.” 79.2+0.8

* MP2 results based on a single reference HF function.
" Ref. [8].

doc
Upg = (p|h - qu€p|q) - Z (ngqii - gpiiq) (24)
and:
AEp, = Eg’ — EY) (25)

as the difference between the energies of the zeroth-
order state and configuration. The orbital labels {i, j},
{a}, and {e} are for doubly occupied, active, and
external orbitals, respectively. {a’, b’} run over both
active and external orbitals, and the suffix of the
generator {p, q, r, s, t, u} runs over only the active
orbitals. The terms including doubly occupied orbitals
are omitted in this equation. See Ref. [5] for the full
formula.

The formula including doubly occupied orbitals
might look tedious. However, the energy can be calcu-
lated quite easily, as a sum of simple terms. Neither
diagonalization nor solution of a linear equation for
large-scale matrices is necessary.

The computation is done with the coupling coeffi-
cient driven method. These coupling coefficients are
sparse and can be pre-screened according to the

condition:
(ngmrs)aﬁ = <a|qu,...,rs|B>CB(B) > 69 (26)

where 8 = 1 X 10® is usually sufficient to keep the
energy accuracy better than 10 hartree. Thus, the
multiple summation for active orbitals in Eqgs. (10)—
(12), and other terms, which seemingly scales as the
power of the number of active orbitals, is actually
diminished considerably.

Note that the MRMP energy can also be calcu-
lated with Eq. (22) by setting the number of states
to one.

1.3. Application of multireference perturbation theory
to chemical reaction and excitation spectra

1.3.1. Transition state barrier height for the reaction
H,CO— H, + CO [7]

The potential energy surface of the reaction
H,CO — H, + CO has been extensively studied both
experimentally and theoretically to clarify the
mechanism of the photodissociation process:

hv

H,CO(Sp) — H,CO(S))
|
H,CO(S,) — H,+CO.

In particular, a precise estimate of the S, barrier height
of the unimolecular dissociation is important. The
experimental study by Polik et al. [8] has confirmed
the activation energy of this reaction to be
79.2 = 0.8 kcal/mol. We present here the results of
the second-order multireference Mgller—Plesset
perturbation theory.

The reaction is Woodward—Hoffmann forbidden
and the highly asymmetric transition structure is
shown in Fig. 2 of Ref. [9]. We used the geometries
determined by CCSD with TZ2p by Scuseria et al. [9].
The basis sets used in the present calculations are
Dunning’s correlation-consistent basis set: cc-pVDZ,
cc-pVTZ, and cc-pVQZ [10]. For the polarization
functions of cc-pVQZ, g functions on C and O and f
functions on H were not included.

We employed various choices of CASSCF
reference functions to examine a convergent sequence
of results. The systematic expansion of CASSCF
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reference functions adopted in this study is the
following:

CASSCEF with (4, 4); {two CH(o, o*)}

CASSCF with (6, 6)/m; {two CH(o, o%),
CO(m, 7*)}

CASSCF with (6, 6)/Ip; {two CH(o, o%),
O(lp, Ip*™)}

CASSCEF with (10, 10); {two CH(o, o*), O(lp, Ip*),
CO(o, o*), CO(, m*)}

CASSCF with (12, 11); {two CH(a, o*), O(lp, Ip*),
CO(o, o*), CO(m, 7*), O(2s)}.

The calculated barrier heights are given in Table 1.
Values in parentheses include the zero point vibra-
tional energy (ZPVE) correction, and can be directly
compared with the experimental estimate of
79.2 = 0.8 kcal/mol.

The active space is found to have a rather signifi-
cant effect on the activation energy. The HF results
(CAS(0,0)) are poor: the classical barrier (ZPVE
corrected value in parentheses) calculated with cc-
pVQZ is 100.9 (95.5) kcal/mol, which is about
15 kcal/mol larger than the experimental value.
CASSCEF represents a great improvement over the
HF approximation. CASSCF with a smaller active
space such as (4, 4), (6, 6)/Ip, and (6, 6)/7 reduces
the HF barrier height by about 10 kcal/mol, although
it is still larger than experiment. The computed barrier
height decreases with increasing size of the active
space.

The MRMP theory corrects the deficiency and
represents a great improvement over CASSCF. All
barrier heights calculated at the MRMP level are in
the range of 83.1 (77.7)-87.4 (82.0) kcal/mol. Even
MRMP with relatively small (4, 4) and (6, 6)/7 active
spaces gives good agreement with experiment. This
agreement could be fortuitous due to the overestima-
tion of the dynamical correlation. However, MRMP
starting with an adequate zeroth-order CASSCEF refer-
ence function of (10, 10) and (12, 11) with cc-pVQZ
gives almost the same results, 84.6 (79.2) and 84.5
(79.1) kcal/mol. The many-electron wavefunction
has almost converged at this level of theory. The
agreement of the results with the experimental
value, 79.2 = 0.8 kcal/mol, is also total. Based on
these convergence patterns of the one-electron func-
tion and the many-electron wavefunction, we

conclude that MRMP using the cc-pVQZ basis set
and a sufficiently large active space such as (12, 11)
and (10, 10) has reached a quantitatively correct
description for the barrier height of the reaction.

The quality of the wavefunction calculated at
different geometries can be checked by comparison
of the weight of the CASSCF reference function in
the first-order wavefunction:

W= <1Ifref|lpref>/<1pref + Ip(l)“pref + 11,(1)

=[1+(PO|phy. 27)

This weight is a measure for estimating the quality of
the perturbed wavefunction. The reference wavefunc-
tion has very good quality. Even for the single refer-
ence MP2 case, the weight is about 90%, both at the
equilibrium and transition state structures. In the case
of CASSCF with (10, 10), and (12, 11), the weight is
almost 95%, which implies that the second-order
perturbation treatment is a good approximation to
take account of the rest of the correlation energy.

1.3.2. Excitation spectra of a five-membered
compound: furan [11]

Next, we present an application of multireference
perturbation theory to the calculation of the excitation
spectrum of a five-membered ring compound, furan.
Furan and pyrrole are aromatic compounds where the
heteroatom supplies two m-electrons and the four
carbon atoms supply one mr-electron each. These
molecules are of importance in synthetic organic
chemistry and in biochemistry. Experimental work
on the electronic spectrum of these molecules has a
long history, but a full characterization is far from
complete. The spectrum shows a very complex struc-
ture with many overlapping Rydberg series. Knowl-
edge of the location and Franck—Condon profiles of
electronic excitations in these molecules is of consid-
erable importance in interpreting results of photoche-
mical experiments.

The calculations were carried out for the ground
and low-lying singlet excited states. Experimental
geometries were used. The basis sets used for first-
row atoms (C and O) are Dunning’s cc-pVTZ [10].
The polarization functions were taken from those of
cc-pVDZ. The Rydberg functions (2s2p2d) were also
placed on the charge center of the molecule. The
primitive Rydberg functions for C and O determined
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by Dunning and Hay [12] were weight-averaged and
split into two with splitting factors of 1.9 and 0.75.
The cc-pVDZ was used for hydrogen atoms (no polar-
ization on H). We first carried out the state-averaged
CASSCF calculations in each symmetry and then
performed perturbation calculations with MRMP PT
and MC-QDPT.

Calculated vertical excitation energies and oscilla-
tor strengths, along with the available experimental
data, are summarized in Table 2. The results of the
CASSCF plus second-order perturbation theory
(CASPT?2) by Serrano-Andres et al. [13], the coupled
cluster method (CC3 and CCSD) by Christiansen and
Jgrgensen [14], and the CI calculation based on the
symmetry-adapted cluster expansion method (SAC-
CI) by Wan et al. [15] and are also listed in Table 2.

First, we will discuss the valence excited states. The
first band in the absorption spectrum appears at
6.06 eV [16,17]. Flicker et al. [18,19] assigned the
optically allowed transition at 6.06eV as the
'A;— 'B, excitation from the study of electron
impact spectroscopy. Theory shows that the 'Bj
state is the lowest valence state of ionic nature.
MRMP predicts that the 'B; state lies at 5.95 eV
and MCQD at 5.99 eV, respectively. This state is
well represented by a single m— m* excitation. The
oscillator strength is computed to be 0.158, which is to
be compared with the experimental value of 0.12 [17].
The second valence excited state is 2'A; . Transition
to the A; state is pseudoparity forbidden and, thus,
there is no experimental evidence of this transition.
MRMP predicts that the 2'A[ state lies at 6.16 eV and
MCQD at 6.19 eV with weak intensity. The most
intense feature of the absorption spectrum, with a
maximum at 7.79 eV [16], is due to the transition to
the third valence excited state, 41A1+. The electron
impact investigation located the state at 7.82eV
[19]. MRMP placed the 4'A; state at 7.69 eV and
MCQD at 7.72 eV with a high intensity of 0.494.

Next, let us discuss the Rydberg transitions. The
first singlet—singlet excitation of furan is the 3s-
Rydberg series. Robin [20] assigned the weak peak
at 5.94 eV to the dipole-forbidden 'A, Rydberg tran-
sition. Roebber et al. [21] also assigned the peak at
5.91 eV to the la, — 3s Rydberg state using multi-
photon ionization spectroscopy. The computed exci-
tation energy is 5.84 eV. The second band system
observed in the absorption spectrum of furan shows

sharp bands that could be analyzed to reveal vibra-
tional frequencies of the excited molecule [16]. The
computed 3p'B; transition energy is 6.40 eV, which is
in good agreement with experiment [22,23]. Theory
predicts that another dipole-allowed 3p-Rydberg
state, 1B2, lies above 1B1. The dipole-forbidden 3p-
Rydberg transition to ' A, has not been observed expli-
citly, but theory predicts that the state exists around
6.54 eV, slightly above the 3p'B, and 3p'B; states.
The states following the three 3p-Rydberg states are
five 3d-Rydberg states. Present theory predicts five
states lying in the range of 6.98-7.29 eV with low
intensities, except for 31B2 (the oscillator strength of
the transition to 3 IBZ is computed to be 0.0103). The
3'A, state is predicted to lie at 7.26 eV (MRMP) and
at 7.29 eV (MCQD) with very weak intensity. A band
at 7.39 eV with high intensity among the third band
system of the absorption spectrum was first observed
by Pickett [16]. The calculated 2b; — 3s transition
energies are 7.31eV  (MRMP) and 7.25eV
(MCQD). The transition is predicted to have a rela-
tively high intensity of 0.015.

On the whole, the present approach leads to the
prediction of the spectrum of the molecule that
provides a consistent assignment of the experimental
data.

1.4. QCAS-SCF method and QCAS-QDPT—

extension of reference wavefunction

1.4.1. Quasi-complete active space self-consistent
field (QCAS-SCF) method [24]

In the study of chemical reaction mechanisms, the
multiconfiguration self-consistent field (MCSCF)
method is a very useful approach and, hence,
frequently used, especially in the form of the complete
active space self-consistent field (CASSCF) method.
However, CASSCF often generates far too many
configurations, and the size of the active space
outgrows the capacity of present technology. Even
today, the size of the configuration interaction (CI)
space that can be routinely used has a dimension of
about one million at most, which roughly corresponds
to 12—14 active orbitals.

We have proposed an MCSCF method with a quasi-
complete active space (QCAS), i.e. a QCAS-SCF
method. In the MCSCF method, we partition orbitals
into core, active, and virtual, then construct the CI
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Table 3

Bond length, vibrational frequency, and dissociation energy for CO molecule

Dimension Te (A) we (cm™) D, (kcal/mol)
CAS(12, 12) 48,200 1.1325 247.2
QCAS[(4, 4)°] 4096 1.1324 248.0
Exptl.* 1.128323 2169.8 255.8

* Ref. [25].

space by distributing active electrons among the
active orbitals. Let us further divide the active elec-
tron and orbital sets into N sub-sets and fix the number
of active electrons, m;, and orbitals, n;, in each sub-set:

N N
My = Zmi,nact = Znh (28)
i i

where m,. and n,, denote the number of active elec-
trons and orbitals, respectively. We define the quasi-
complete space as the product space of CAS spanned
by the determinants or CSF as follows:

QCAS({m;}, {n;}) = CAS(my,n) X CAS(m;, n,)

X -+ X CAS(my, ny) 29)

such that the number of electrons in each orbital group
satisfies the restriction in Eq. (28).

The dimension of QCAS can be much smaller than
that of CAS for the same set of active electrons and
orbitals. For example, the dimension of CAS(16, 16)
spanned by the determinants with M =0 is
165,636,900 (the dimension of an active space is
expressed by the number of determinants with

-112.5 T T

i
-112.6 |- | . i
-112.7

12,8 [ .

Energy / hartree
L 3

)
-112.9 \
'

-113.0 i i i i
0.5 1.0 1.5 2.0 25 3.0 35 4.0

r(C-O) / angstrom

Fig. 1. The QCAS-SCF (@) and CAS-SCF (O) potential curves of
the ground state (X' ) of CO.

M = 0 and no symmetry). If we divide the active elec-
trons and orbitals into five groups, (4e, 40) + (4e,
40) + (4e, 40) + (2e, 20) + (2e, 20), where 4e and
40 denote four electrons and four orbitals in the
group, respectively, the dimension of QCAS is
746,496 (= 36° X 4%).

The efficiency of the MCSCF optimization can be
improved by the use of Slater determinants. We
further split a determinant into an alpha and beta
string of each group:

Iy = L0 T I3 = L) |IDIg+ |15, (30)

where |I) are now determinants and |I7) and |I§) are
segmented alpha and beta strings of group G, respec-
tively. The characteristic feature to be noted is that, if
we use the determinants in Eq. (30), both the o-vector
and density formulas are written only with one-elec-
tron coupling constants between strings in a group,
and no intergroup coupling constants appear. This fact
makes the QCAS-CI eigenvector computation very
efficient. Note that by using CSF we cannot reach a
similar decoupling.

We have calculated some spectroscopic constants
and a potential energy curve of CO with QCAS-SCF,
and compared the results with those of CASSCF with
corresponding active spaces. The basis set used is the cc-
pVTZ basis set of Dunning [10]. The active spaces were
constructed from six electrons and 12 (50—8c, 1m—41r,
and 17'—4x') orbitals. CAS was used for comparison
and was constructed by distributing these six electrons
among all 12 orbitals. QCAS was constructed by first
dividing the orbitals into three groups, {So—8c}, { 17—
4m}, and {1m'—47'}, and then distributing two elec-
trons among each group. Henceforth, we call this active
space QCAS[(2, 4)°]. The dimension of QCAS[(2, 4)*]
is 4096, while that of CAS(6, 12) is 48,200.

Table 3 summarizes the results for some spectro-
scopic constants. All the constants, r., w., and D,, of
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QCAS-SCF are in very good agreement with those of
CASSCEF. The differences from CASSCF in r, and w,
are less than 0.001 A and 1cm ™', respectively, and
that in D is only 0.8 kcal/mol. Fig. 1 shows the poten-
tial curves of the ground state, X I3+, calculated with
the QCAS-SCF and CASSCF methods. Although the
QCAS-SCF curve is about 10 millihartree above the
CASSCEF curve, QCAS-SCF reproduces the shape of
the CASSCEF potential curve very well. The difference
is almost constant (maximum deviation in energy
difference is about 5 millihartree) for the entire bond
length. It is the shape of a potential curve that is
important in chemical reaction studies, not the abso-
lute energy. Thus, it can be said that QCAS-SCF exhi-
bits high performance.

1.4.2. Quasi-degenerate perturbation theory with
quasi-complete active space self-consistent field
reference functions (QCAS-QDPT) [26]

So far, the implementation of these MRPTs is only
for the CASSCEF reference functions. The dimension
of the CAS grows very rapidly as the number of active
orbitals increases, which sometimes makes imple-
mentation of a perturbation computation impossible.
Perturbation methods using a selected reference
configuration space, but retaining the advantages of
the CAS based PTs, are necessary. Combining QCAS
with MC-QDPT provides an effective tool for electro-
nic structure theory. We present MC-QDPT using
QCAS-SCF reference functions. (Hereafter, we call
it QCAS-QDPT, while we call MC-QDPT with
CAS reference CAS-QDPT.)

Adopting (state-averaged) QCAS-SCF wavefunc-
tions « (B) as reference functions that define P space,
we obtain the effective Hamiltonian to the second order:

0-2 CAS
(Ke(ff ))aﬁ = EaQ SaB

[ aviavp &
" 2 {IQ%AS Eg)) — E;O) tla=pr.

which corresponds to Eq. (21) in the CASSCF reference
case. Let us define a corresponding complete active
space (CCAS) to a QCAS as the complete active
space that has the same active orbital set and electron
set but does not have the limitation, Eq. (28). In other
words, the corresponding CAS is the minimal CAS that
includes the QCAS. Then the summation for / in Eq.

(31) may be divided into the summations for determi-
nants/CSFs outside the CAS and for the determinants/
CSFs outside the QCAS, but inside the corresponding
CAS:

, (32)
IECCAS A IEQCAS

:Z+

I€QCAS IE£CCAS

and then the first second-order term in Eq. (31) may be
written as:

@y _ (AVIIXIIVIB)
(Keff)aﬁ - Z EO _ g0
I¢CCAS B 1

(alVInIvie)

J’_
0 _
IECCAS ATEQCAS EB EI

(33)

The first term in Eq. (33) involves excitations from core
orbitals and excitations to virtual orbitals in the inter-
mediate states I (the external terms), while the second
term involves excitations where only active orbitals are
involved (the internal terms). The second-order effec-
tive Hamiltonian (33) is expressed by 25 external term
and nine internal term diagrams. Since QCAS is a
natural extension of CAS, computation of these
diagrams can be done efficiently in a similar manner
to CAS-QDPT.

The ground state and triplet and singlet Rydberg
excited states of furan were calculated as an example.
The geometry and basis set used are the same as those in
Section 1.3.2. We carried out the nine-state-averaged
QCAS-SCEF calculations for all 3s, 3p, and 3d Rydberg
states. The active orbital set consists of five valence m
and 7* orbitals and nine Rydberg orbitals. This orbital
set was divided into two groups, five valence orbitals
and nine Rydberg orbitals. For triplet Rydberg states,
QCAS was constructed by distributing five electrons
(three alpha and two beta electrons) to five valence orbi-
tals and one alpha electron to nine Rydberg orbitals,
QCAS[(Ba28,5) X (1a,9)]. For singlet Rydberg states,
the active space was constructed from the QCASs that
were made in a similar way to the triplet case,
QCAS[(3a2B, 5) X (18, 9)] and QCAS[(2a3, 5) X
(1a, 9)]. Since both of them are necessary for the active
space to take into account proper spin-coupling, we use
their direct sum, QCAS[(3« 23,5) X (18,9) + 2a 38,
5) X (1, 9)]. These QCASs are applicable to the single
excitations from a 7 valence orbital to a 3spd Rydberg
orbital. The dimensions of the triplet and singlet QCASs
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Table 4
Rydberg excitation energies of furan (eV)

State Singlet

Triplet

QCAS-SCF QCAS-QDPT CAS-SCF* CAS-QDPT* Exptl.” QCAS-SCF QCAS-QDPT CAS-SCF CAS-QDPT

Ay(la,—3s)  5.62 5.84 5.67 5.84 591 5.56 5.76 5.61 5.78
B(la,— 3pb,) 6.03 6.37 6.10 6.40 6.48 5.99 6.31 6.08 6.37
B,(la,— 3pb;) 6.21 6.41 6.42 6.51 6.48 6.16 6.49 6.34 6.57
Ay(la,— 3pa;) 6.19 6.53 6.20 6.54 6.61 6.18 6.50 6.19 6.52
Ay(la,—3da;) 6.61 6.96 6.64 6.98 - 6.55 6.86 6.58 6.88
B(la,— 3db,) 6.69 7.09 6.71 7.12 - 6.67 7.05 6.69 7.09
Ay(la,—3da;) 6.77 7.19 6.77 7.19 - 6.75 7.15 6.75 7.16
By(la,— 3db;) 6.87 7.10 7.05 7.21 - 6.87 7.16 7.06 7.40
Aj(la,— 3da,) 6.82 7.30 7.34 7.29 7.28 6.77 7.23 7.11 7.28
* Ref. [35].

® See references in Ref. [35].

are 900 and 1800, respectively. For the ground state, we
used QCASI[(6, 5)X (0, 9)], which is equivalent to
CAS(6, 9).

Perturbation calculations were performed for the
nine triplet and nine singlet 3spd Rydberg states and
the ground state. The results are summarized in Table
4, as well as the experimental and previous results.
Singlet QCAS-SCF results are in good agreement
with the CASSCF results (<0.1 eV) except for the
3p 'B,, 3d 'B,, and 3d 'A, Rydberg states. For these
states, the CASSCEF values are 0.21 (3p IBZ), 0.18 (3d
'B,), and 0.52 eV (3d 'A,) higher than the QCAS-SCF
values, since the CASSCF optimizations also included
valence states of the same symmetry. On the other
hand, the QCAS-QDPT results are very close to the
CAS-QDPT results in all the states. The average and
maximum differences are only 0.03 and 0.11eV,
respectively. Moreover, the QCAS-QDPT excitation
energies also reproduce the available experimental
results well. The error is at most 0.11 eV. Most triplet
states are slightly lower than the corresponding singlet
states (by 0.8 eV at maximum) in both the reference
and QCAS-QDPT levels. Also, in the triplet states the
QCAS-QDPT results are very close to the CAS-
QDPT results, except for the 3d °B, state. The average
and maximum differences are only 0.06 and 0.24 eV,
respectively.

1.4.3. Energy gradient of multireference perturbation
theory [27,28]
The analytic energy derivative method is an essen-

tial technique in modern electronic structure theory.
Geometry optimization is a key step in studying
chemical reaction mechanisms and molecular struc-
tures, and normal mode vibrational analysis is utilized
to predict infrared and Raman spectra. The required
information is obtained from the first and second deri-
vatives with respect to nuclear coordinates of a mole-
cule. A derivation of the analytic gradients for second-
order MC-QDPT is done from a basis of the response
function formalism [29,30].
The Lagrangian is defined by:

LX,{,C) = WX,C) + le(X,C) (34)

where X is a nuclear coordinate, C represents the
molecular orbital, configuration interaction coeffi-
cients of the reference functions and other parameters,
W is the energy, e represents constraints on the para-
meters C, and { is the Lagrangian multiplier. The
energy expression W is given by:

W = D.Dg(KS?) up. (35)
oB

where D, is the element of the eigenvector of the
effective Hamiltonian, and the constraints e(X,C) are
(i) the (state-averaged) CASSCF equation, (ii) the
orbital canonicalization condition, (iii) the orthonor-
malization condition of the orbitals, (iv) the diagona-
lization condition of the effective Hamiltonian, and
some auxiliary conditions.

The parameters { are determined such that the first
derivative of the Lagrangian with respect to the Cs is
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Zero:

oL oL de

—_— = — + —_— = .

aC aC g(?C 0 (36)

Using the parameter determined by Eq. (36), the
molecular gradients are simply given by:

oL d

— = — (W + {e). 37
%= Wt (37)
The explicit expressions of Egs. (36) and (37) are
actually very long. See Refs. [27,28] for details.

2. Valence bond description of complete active
space self-consistent field function

A defect of the multireference-based methods is
that the wavefunction is too complicated to extract a
chemical description from it. There are too many CI
coefficients, cluster amplitudes, or terms correspond-
ing to diagrams in those methods. The information of
the chemical picture is hidden behind them and to
extract it seems quite difficult.

The classical valence bond (VB) theory is very
successful in providing qualitative explanation for
many aspects. Chemists are familiar with the loca-
lized molecular orbitals (LMO) and the classical VB
resonance concepts. If modern accurate wavefunc-
tions can be represented in terms of such well-
known concepts, chemists’ intuition and experiences
will give a firm theoretical basis and the role of
computational chemistry will undoubtedly expand.
In the CASVB method, reference CASSCF wavefunc-
tions are transformed into valence bond functions
without any loss of CASSCF quality.

2.1. CASVB method [31,32]

We have proposed two different CASVB methods
[31,32]. In one method, the valence bond structures
are constructed over orthogonal localized orbitals; in
the other method, the structures are written with non-
orthogonal localized orbitals. These are henceforth
referred to as orthogonal CASVB and non-orthogonal
CASVB, respectively.

The idea of CASVB is based on the fact that the
densities of variational wavefunctions are invariant
under the transformations that hold the variational
space unchanged. In the CASSCF case, a complete

active space (CAS) is invariant under the linear trans-
formation of active orbitals and also that of configura-
tion state functions (CSFs).

One may redefine the active orbitals utilizing the
invariance of the active orbital space. In the orthogo-
nal CASVB method, the localized molecular orbitals
(LMOs) constructed by Boys’ localization procedure
are used; that is, active orbitals are transformed so as
to have the minimum sum of r* expectation values
[33]. If the active orbitals are defined appropriately,
the LMOs obtained nearly always turn out to be loca-
lized on a single atomic center with small localization
tails onto neighboring atoms. In the non-orthogonal
CASVB case, the atomic-like orbitals are constructed
by Ruedenberg’s projected localization procedure
[34-36].

Let WS be a CASSCF wavefunction:

PEASE =N 0, ofF = 0 ((g)),  (39)

where @5F are the configuration state functions
constructed by the orthogonal orbitals set {¢;} and
C; are the known CAS configuration interaction
expansion coefficients. Similarly, one may define the
CASVB function in terms of spin-paired functions as:

POASVE = 5 4B, @Y = YE((A)), (39)

where cDiv Bisa spin-paired function constructed by
LMOs. The spaces, spanned by {(®PF5FY and { DB,
are identical. Since Eqs. (38) and (39) are different
expressions of the identical wavefunction, one may
write:

> ad) = ot (40)
J J

Multiplying Eqs. (38) and (39) by ®°F and integrat-
ing the products, one has a linear equation:

> 0,A; = C; wiih 02; = (D |D'P), (41)
J

which has a dimension equal to the dimension of the
CAS. Solving this linear equation, one obtains the
CASVB wavefunction W**B_ In the orthogonal
CASVB case, one can use the common set of
(Boys’) LMOs as {¢;} as well as {A;}, since the
LMOs remain CASSCF MOs. In that case, the linear
equation (41) is reduced to a set of linear equations for
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Table 5
The occupation numbers of the ground and excited state CASVB wavefunctions of butadiene

Structure Occupation numbers

Orthogonal MO  Non-orthogonal MO

1 lAg’ (ground state)

[C=C-C=C] 0.3960 0.4789
[C-C=C—C] 0.0525 0.0633
[CT—C" —C=C]+[C=C-C" —C] 0.1970 0.1746
[C"—C —C=C]+[C=C-C” —C"] 0.1812 0.1565
[C-CT—C —-C]+[C-C —C" - (] 0.0436 0.0312
[CT —C-Cf-C]+[C-C” —C-C"] 0.0194 0.0185
[Ct —C-C” —C]+[C-C” —C-C"] 0.0152 0.0126
[CT —C=CC"]+[CT — C=C-C] 0.0102 0.0102
[CC-C'-C —-C']+[C"-C -C"-CT] 0.0506 0.0369
[C—-C'-C'-C] 0.0182 0.0100
[Cf—-C —-C -CY] 0.0155 0.0078
[C-C -Cc'-Cc'1+[ct-C"-C —-C] 0.0002 - 0.0002
2]Ag_ (covalent)

[c-c=C-C] 0.6059 0.6439
[C=C-C=C] 0.0789 0.0809
[C-CT —C -C]+[C-C” —C* - (] 0.2330 0.1967
[Ct —C-C” —C]+[C-C” —C-C"] 0.0219 0.0249
[CT —C-C' —C]+[C-C” —C-C"] 0.0118 0.0166
[CT—C"—C=C]+[C=C-C*' -C] 0.0188 0.0169
[CtT —C —C=C]+[C=C-C~ —C"] 0.0154 0.0142
[CT —C=CC"]+[C" —C=C-C] 0.0040 0.0040
[C"—C —C —C"] 0.0037 0.0026
[CC-C"—-C"-C] 0.0028 0.0017
[C-C'-C —-C']+[Ct-C —-C"-C] 0.0038 0.0024
[CT-C -C"-C]+[Cf-C*-C™ —-CT] 0.0002 0.0000
1'By (ionic)

[CT —C"—C=C]-[C=C-C*' -C] 0.1940 0.2157
[Ct —C —C=C]-[C=C-C~ —C"] 0.1488 0.1655
[C —C=C-C']—-[C" - C=C-C"] 0.1362 0.1367
[C —C-Cf-C]-[C-C —C-C"] 0.1322 0.1278
[CT —C-C” —C]-[C-C —C-C"] 0.1006 0.0942
[C-CT—C —-C]-[C-C —C' - (] 0.0948 0.1038
[CC-C"-C -C']—-[C"-C —-C"-CT] 0.1900 0.1576

[CT-C —-Cc"-CcY1-[cCT-C"-C —-CT) 0.0034 —0.0014
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each orbital configuration, and the matrix (2 i for each
linear equation becomes a triangular matrix depend-
ing only on spin configurations. The linear equation
(41) can, therefore, be solved with ease, compared
with the non-orthogonal CASVB case.

The occupation number (or weight) of a resonance
structure is calculated with:

n,=A; Z SiA;, 42)
J

where S;; are overlap integrals between the structures i
and j, defined by:

Sy = (@"%|@P). 43)
and satisfies the normalization:

dm=1 (44)

Note that the occupation number #n; could be negative
because of the non-orthogonality of resonance struc-
tures.

2.2. Description of electronic structure

Butadiene is a good molecule to show the useful-
ness of CASVB. CASSCEF functions were computed
with an active space of four m-electrons in four -
orbitals. The calculations were performed using the
experimental geometry with the (3s2pld/2s) basis.
Both the orthogonal and non-orthogonal m LMOs of
trans-butadiene were used. The m LMOs are well
localized on a single atomic center with small locali-
zation tails onto the neighboring carbons. Each
LMO resembles an atomic-like 2p function. The over-
lap between the terminal (center) m LMO and an
atomic 2p of the free atom is 0.9912 (0.9883).

The occupation numbers for trans-butadiene are
summarized in Table 5. The ground state is of cova-
lent nature and mainly comprised of the Kekule-type
structure:

[C=C-C=C]

with a small contribution from the Dewar-type struc-
ture:

[C-C=C-C].

The ZlA; state is also of covalent nature. In an MO
treatment, the state is described by a significant contri-

bution from the singly excited configurations of
(HOMO) — (LUMO + 1) and (HOMO — 1)—(
LUMO), and the doubly excited configuration of
(HOMO)?> — (LUMO)% In the CASVB treatment,
this state is expressed predominantly by a Dewar-
type structure with small mixing from the Kekule-
type structure. We can see from Table 5 that
CASVB with non-orthogonal orbitals makes the
weights of the covalent structures increase relative
to those of the ionic structures in both covalent states.
The dipole-allowed 1'B; state is well described by a
singly excited configuration, (HOMO) — (LUMO) in
an MO description. The state has an ionic nature that
can be readily interpreted in terms of the VB reso-
nance structures. The 1'B, state is a mixture of a
large number of ionic structures. The covalent struc-
tures are strictly excluded from the ionic states. The
leading terms are the singly and doubly polar struc-
tures, for example:

[CT-C*—C=C]-[C=C-C"-C]
and:
[C-C*—C —CT]-[CT-C—C"-C].

Although singly and doubly ionic structures have
nearly the same occupation numbers when orthogonal
orbitals are used, use of non-orthogonal orbitals
enhances the weight of singly ionic structures and
diminishes the weight of more polar doubly ionic
structures.

2.3. Description of chemical reaction [37]

We present the application of CASVB to chemical
reactions. The main purpose is to propose a quantita-
tive measure of the chemical picture at the transition
state (TS) and along the chemical reaction paths.

The example used here is the dissociation reaction
of formaldehyde into a hydrogen molecule and carbon
monoxide. A qualitatively correct description of the
dissociation process requires at least four active elec-
trons in the two CH bonds of H,CO. During the disso-
ciation process, two electrons, one from each CH
bond, pair up to form the HH bond while the other
two form a lone pair on C in CO. The dominant non-
dynamical correlation of the reaction is described by a
CASSCF wavefunction including all configurations
generated by distributing these four electrons in four
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Ocr

Fig. 2. The non-orthogonal localized orbitals at the equilibrium structure of H,CO determined with Ruedenberg’s projected localization

procedure.

active orbitals, two CH bonding and antibonding
pairs.

The CASSCF wavefunction was obtained with
CAS(4, 4). The basis set used was Dunning’s correla-
tion-consistent valence double zeta plus polarization
basis set (cc-pVDZ) [10]. The equilibrium structure
and the transition state were determined by these
calculations.

There are 20 linearly independent spin-paired func-
tions corresponding to the dimension of CAS(4, 4):
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Fig. 3. The non-orthogonal localized orbitals at the transition state structure of the H,CO — H,

+ CO reaction.

1.0 - »
8 o * * .‘*\o\‘
-g 0.8 \
; : BV
Z 0.6 o
5 X
= 0.4 '\
2 g /
30.2 e
0 2] <
o A e T
0.0 €=
-3.0 -2.0 -1.0 0.0 1.0
172 -3.0 -2.0 -1.0 0.0 1

IRC / bohr(amu)

IRC / bohr(amu)

Fig. 4. Changes in the occupation numbers of the covalent CH

bonds (@), ionic CH bonds (), covalent HH bond (O), ionic HH
bond (0), and the other (doubly ionic) ( X ) VB structures of H,CO

along IRC.

structures of H,CO along the IRC.

172

.0

105

Fig. 5. Changes in the occupation numbers of the total CH bonds
(@), total HH bond (O), and the other (doubly ionic) (X) VB



106 H. Nakano et al. / Journal of Molecular Structure (Theochem) 573 (2001) 91—128

O @ 1.2089 A

iy,
"
it
Iy,
i,

i

$ i, m

o
e ‘
\\\\‘\\‘
\\\“\\\
o o

40.9 o

!
aw
=
\ e
at
e
o

Fig. 6. The structure where the total occupation numbers of the CH
bonds and HH bond valence bond structures are equal. The hydro-
gen atoms not bonded to the carbon atom represent the position at
the transition state.
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where ¢ci, @2, @11, and @y, are non-orthogonal loca-
lized orbitals illustrated in Figs. 2 and 3.

Structures (I)—(IX) are classified as CH bond struc-
tures, and structures (X)—(XIV) as HH bond struc-
tures. Structures (XV)—(XX) are classified as neither
of the above, since these structures can be regarded
both as structures polarized further from one of (II)—
(IX) and (XD)—(XIV).

Fig. 4 shows the changes in the occupation numbers
of the covalent CH bonds, ionic CH bonds, covalent
HH bond, ionic HH bond, and doubly ionic structures
along the intrinsic reaction coordinate (IRC) in the

non-orthogonal CASVB case. (Only the results of
the non-orthogonal CASVB calculations are
presented hereafter.) These are defined by:

X
Ncovalent CH = 15 Monic CH = Z ng, 45)
§=II
XII
RCovalent HH — Z N, Mionic HH = Mxn + 7Aix1vs (46)
§=X
and:
XX
NDoubly Pol. = Z ng. (47)
5=XV

The origin of the horizontal axis corresponds to the
transition state structure, and the left end of each
curve to the equilibrium structure. The occupation
numbers of CH and HH covalent bond structures
change rapidly near the transition state and the curves
cross immediately after the transition state
(0.1 bohr(amu)?), while the occupation numbers of
the CH and HH ionic bond structures change slowly.

Fig. 5 shows the changes in the total occupation
numbers of the CH and HH bond structures along
the IRC:

NcH = Ncovalent CH + Nionic CH> "HH

= Ncovalent HH + Monic HH- (48)

The crossing point is located at the same point after
the TS, 0.42 bohr(amu)'? in both graphs. The struc-
ture corresponding to this point is shown in Fig. 6.
Compared with the TS, the longer and shorter CH
bonds have stretched by 0.14 and 0.06 A, respec-
tively, and the HH bond has shrunk by 0.18 A.
These bond lengths are 1.03, 1.62, and 1.80 times
the equilibrium CH length, the other CH bonds of
H,CO, and the HH bond of H,, respectively. That
point is the structure where the bonds switch; in
other words, the point is the transition state between
the CH bonds and HH bond.
The observation described in this subsection
implies that the total occupation number defined in
(48) is useful for providing a quantitative
description of chemical bonds at transition states
and along reaction paths.
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3. Relativistic effect

It is well known that the relativistic effect is impor-
tant in the study of systems including heavy atoms
[38]. The Dirac equation is solved instead of the
non-relativistic Schrodinger equation in order to
treat the relativistic effect theoretically. The Dirac
equation with the four-component spinors composed
of the large (upper) and small (lower) components
demands severe computational efforts to solve, and
its applications to molecules are limited to small- to
medium-size systems. Thus, several quasi-relativistic
approximations have been proposed instead of expli-
citly solving the four-component relativistic Dirac
equation.

The Breit—Pauli (BP) approximation [39] is
obtained truncating the Taylor expansion of the
Foldy—Wouthuysen transformed Dirac Hamiltonian
[40] up to the (p/mc)* term. The BP equation has the
well-known mass—velocity, Darwin, and spin—orbit
operators. Although the BP equation gives reasonable
results in the first-order perturbation calculation, it
cannot be used in the variational treatment.

One of the shortcomings of the BP approach is that
the expansion in (p/me)* is not justified in the case
where the electronic momentum is too large, e.g. for a
Coulomb-like potential. The zeroth-order regular
approximation (ZORA) [41,42] can avoid this disad-
vantage by expanding in E/Q2mc* — V) up to the first
order. The ZORA Hamiltonian is variationally stable.
However, the Hamiltonian obtained by a higher-order
expansion has to be treated perturbatively, similarly to
the BP Hamiltonian.

Recently, we have developed two quasi-relativistic
approaches; one is the RESC method [43,44] and
another is the higher-order Douglas—Kroll method
[45,46]. In this section, we will review these theories
and show their applications to the heavy-element
systems.

3.1. RESC method

The Dirac equation has the four-component
spinors,

11'/L
)

where W™ and ¥ are the large (upper) and small

(lower) components, respectively. Dirac spinor ¥ is
normalized as

(W) = (PH¥h) + (P3| Pd)y =1, (50)

while neither ¥ nor ¥ is normalized. The Dirac
equation can be written as coupled equations,

VU + c(op) VS =E ¥ (51a)

c(op) Pt + (V- E—2mAHVS =0, (51b)

where o stands for the 2X2 Pauli spin matrix vector.
From Eq. (51b), the small component is expressed as

VS = 2mc* — (V — E)] 'c(op) PF =XV (52)

By substitution of this equation into Eq. (51a), the
Schrodinger—Pauli type equation composed of only
the large component is obtained as

2

[V + (trp)2

I L _ gl
o _(V_E)((rp)]?f EV*-,

(53a)
and the normalization condition, Eq. (50), becomes
(PH1 + XTX|wh) = 1. (53b)

Note that no approximation has been made so far. If
we can solve Eq. (53a) with Eq. (53b), the Dirac solu-
tion can be obtained exactly.

However, it is difficult to solve this equation since
Eq. (53a) has the energy and the potential in the
denominator. An appropriate approximation has to
be introduced. In our strategy, E — V in the denomi-
nator is replaced by the classical relativistic kinetic
energy (relativistic substitutive correction),

T= (mzc4 + 172c2)”2 — mc?. 54)

The idea is simple and straightforward. This approach
is referred to as the relativistic scheme by eliminating
small components (RESC) [43,44]. The derivation of
this approach is given in Ref. [43]. The resulting
RESC Hamiltonian Hygge can be separated into the
spin-free (sf) and spin-dependent (sd) parts as

Hggsc = Higsc + Hiksc, (59)
where

sf _
Hggsc =T
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Table 6

Equilibrium internuclear distances (r,), vibrational frequencies (w.),
dissociation energies (D,), and the dipole moments (w) of AgH in
the ground state

Method re (A) w, (cm ™) D, (eV) w (D)
Non-relativistic

SCF 1.782 1521 1.09 -
MP2 1.705 1620 1.95 -
QCISD(T) 1716 1504 2.15 -
MRMP 1.701 1617 1.99 -
BOP 1.710 1576 2.19 3.021
BLYP 1.704 1589 2.18 2915
B3LYP 1.709 1598 2.24 3.322
Relativistic

SCF 1.704 1635 1.19 -
MP2 1.622 1768 2.15 -
QCISD(T) 1.628 1720 2.35 -
MRMP 1.615 1794 2.19 -
BOP 1.632 1746 241 2.463
BLYP 1.628 1757 2.40 2373
B3LYP 1.631 1761 2.44 2.760
Exptl. 1.618 1760 2.39 -
+00p-VpO~' + 2mc00"*vo"? 07!, (56)
and

Hygsc = i0Qo-(pV) X pQO . (57)
Table 7

Equilibrium internuclear distances (r.), vibrational frequencies (w.),
dissociation energies (D,), and the dipole moments (w) of AuH in
the ground state

Method re (A) we (cm™) D, (eV) w (D)
Non-relativistic

SCF 1.800 1602 1.14 -
MP2 1.679 1823 2.11 -
QCISD(T) 1.704 1683 2.26 -
MRMP 1.682 1847 2.75 -
BOP 1.724 1663 2.23 2.524
BLYP 1.719 1674 2.21 2.453
B3LYP 1.723 1689 2.27 2.821
Relativistic

SCF 1.569 2145 1.95 -
MP2 1.479 2509 3.48 -
QCISD(T) 1.494 2440 3.57 -
MRMP 1.517 2337 3.32 -
BOP 1.533 2294 342 1.004
BLYP 1.531 2312 3.40 0.964
B3LYP 1.527 2328 3.40 1.238
Exptl. 1.524 2305 3.36 -

Here, O and Q operators are defined by

1 2(,‘2 172
0= o pEa— (58)
E, + mc (E, + mc*)
and
c
Q= E, + mc?’ (59
where
Ep — (p26‘2 + C4)1/2. (60)

Although we have so far treated one-electron equa-
tion, the resulting equation can easily be extended to
the many-electron case. For a practical calculation,
the Hamiltonian matrix elements are evaluated in
the space spanned by the eigenfunctions of the square
momentum p2 following Buenker and Hess [47,48], as
well as the Douglas—Kroll-Hess (DKH) approach
[48—50]. Hgrgsc is symmetrized to be Hermitian for
mathematical convenience, instead of the physical
significance.

The RESC approach has several advantages. It is
variationally stable. This method can easily be imple-
mented in various non-relativistic ab initio programs,
and the relativistic effect is considered on the same
footing with the electron correlation effect.

The RESC method was applied to the calculation of
the spectroscopic constants of the ground state of AgH
and AuH, which gives a good benchmark test, since
the relativistic effect is very important for these mole-
cules [43,44,51,52]. The electron correlation effect at
various levels were treated: MP2 and QCISD(T)
methods were used as the single-reference (SR) ab
initio theory. The MRMP method [1-5] was
employed as the multi-reference (MR)-based theory.
For DFT, we employed the following exchange-corre-
lation functionals; B88 [53] +OP [54] (BOP),
B88 + LYP [55] (BLYP), and hybrid B3LYP [56].

The calculated equilibrium internuclear distances
(r.), harmonic vibrational frequencies (w.), dissocia-
tion energies (D.), and the dipole moments (u) of
AgH and AuH are presented in Tables 6 and 7, respec-
tively, together with the experimental data [25]. The
non-relativistic results are poor even if electron corre-
lation is included. Relativistic effect provides an
obvious improvement of the results. The RESC



H. Nakano et al. / Journal of Molecular Structure (Theochem) 573 (2001) 91—128

109

3
-

)
>

oo 00000
N Wbk OO N O
Intensity

.
° o
2

19 18 17 16

15

14 13 12

lonization energy/ eV

Fig. 7. The theoretical ionization spectrum of OsO, calculated by non-relativistic CASPT2.

approach gives a good agreement with experimental
findings.

The calculated results of AgH are given in Table 6.
The non-relativistic SCF computes 7, to be 1.782 A,
which is 0.16 A longer than the experimental value,
1.618 A. MP2, QCISD(T), and DFT reduce r, by
0.06 A, but it is still longer than the experimental
value. The w. is computed to be smaller and the
potential near the equilibrium geometry is too shal-
low. This situation is not improved even by a shift
from the SR-based theory to the MR theory without
the relativistic effect. The relativistic effect represents
a great improvement over the non-relativistic theory.
The r, decreases by 0.08—0.09 A from that of the non-
relativistic theory, and the potential becomes much
deeper. The D, is also improved.

The AuH results are summarized in Table 7. The
general trend for AuH is similar to that for AgH, but

the relativistic effect is much more significant than the
case of AgH. Non-relativistic SCF r, is 0.276 A longer
than the experimental value, and the correlation
effects remedy this by shortening r, by 0.12 A.
However, r. is still overestimated in the non-relativis-
tic theory. The w,. is again much smaller than the
experimental value. The relativistic correction
reduces 7, by 0.17-0.30 A. Surprisingly, the relativis-
tic effect increases w, by 490760 cm™'. The relati-
vistic MRMP and DFT agree particularly well with
the experimental value. Although the relativistic
correction overwhelms the correlation effect in the
r. and w, for AuH, both effects are comparable as to
D.. In the case of AuH, as well as AgH, the relativistic
effect is parallel to the electron correlation effect; both
effects reduce r, and increase w. and D..

The tetrahedral osmium oxide OsO, has been
extensively studied by the photoelectron spectroscopy

o)
Intensity

17 16

15

14 13

lonization energy/ eV

Fig. 8. The theoretical ionization spectrum of OsO, calculated by spin-orbit RESC-CASPT2.
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Fig. 9. E/Z* versus Z (nuclear charge) for 1s eigenvalues of hydrogen-like atoms.

(PES). The spectrum consists of five distinct band
systems, called peaks A, B, C, D, and E. Unfortu-
nately, the band assignments proposed differ in each
of these PES studies. Furthermore, numerous ab initio
computational and DFT approaches have been applied
to this molecule with the aim of assigning the upper
five valence ionization bands. However, some uncer-
tainties still remain for assigning these bands mainly
due to the occurrence of significant relativistic and
correlation effects. There is no theoretical work
studied by the method fully including both relativistic
and correlation effects.

In this study, we clarify the whole range of the
observed PES of OsO, by all-electron RESC-
CASPT2 theory [57]. For the spin—orbit splitting,
we used RESC-modified one-electron spin—orbit inte-
grals, in which the charge of Os was scaled in order to
compensate for the lack of two-electron spin—orbit
integrals. The spin—orbit Hamiltonian, Hgo, derived
from Eq. (5§7) was treated perturbatively. The spin—
orbit eigenstates were obtained by diagonalizing
Hy+ Hgo in a basis of eigenfunctions of the

unperturbed spin-free Hamiltonian Hy. In the present
calculations, the diagonal elements of Hy + Hgo were
substituted with CASPT?2 energies, while the off-diag-
onal elements were calculated by CASSCF wave
functions.

Figs. 7 and 8 show the non-relativistic and relati-
vistic CASPT?2 results, respectively. RESC-CASPT2
gives values for the peak positions and intensities in
reasonable agreement with the resolved photoelectron
spectrum data [58]. The Os valence 6s and Sp orbitals
are expected to be stabilized while Os 5d orbitals are
destabilized due to the relativistic effect. This change
can be attributed to the change of the orbital (radial)
part of the wave function, as is known well. The A
band originating from O 2p MOs remains almost
unchanged with the relativity. We can see that the
peak C cannot be obtained without the relativity.
This study confirms that the peak C arises from the
spin—orbit coupling in the ionic T,(3t,) states origi-
nated from the Os 5p orbitals. The observed intensity
ratio of the B and C peaks is approximately 2: 1. This
is fully supported by the present calculations. Peak
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positions and intensities suggest that there is no doubt
that this splitting could be associated with the bands B
and C observed in PES. The peak D moves by 0.8 eV
to the high energy side by the spin-free relativistic
effects due to the stabilization of Os 6s orbital. The
band D is originated from Os 6s and the peak position
and intensity are rather insensitive to the spin—orbit
effects. As shown in Ref. [57], the nondynamical
relaxation effect is overestimated in the non-relativis-
tic treatment, giving the weaker intensity, particularly
to the satellite bands. This defect is improved by the
spin-free relativistic RESC treatment. Under the E
band, there are many two-electron shake-up peaks
commencing at ca. 16.0 eV in addition to the two
one-electron ionization peaks. The broad feature of
the E band is due to these satellite peaks.

The RESC approach has been applied to various
other systems in ground and excited states [52,59—
63]. Since the energy gradient of the RESC method
[64] is also available currently, we can study the
chemical reaction in the heavy element systems.

3.2. Higher-order Douglas—Kroll method

The Douglas—Kroll (DK) transformation [49] can
decouple the large and small components of the Dirac
spinors in the presence of an external potential by
repeating several unitary transformations. The DK
transformation is a variant of the Foldy—Wouthuysen
(FW) transformation [40], with an alternative natural
expansion parameter, the external potential V,, (or
the coupling strength Ze?), and avoids the high singu-
larity in the FW transformation.

The first step in the DK transformation consists of a
free-particle FW transformation in momentum space.
Using the free-particle eigensolutions of the Dirac
Hamiltonian associated with the positive energy
eigenvalues, the unitary operator in the free-particle
FW transformation is given as

Uy = A(1 + BR), (61)
where A and R are operators defined by
E, +c? 12
A=|-2 , 62
( 2E, ) ©
cop
R =
E,+ c? (63)

Application of this unitary operator to the Dirac
Hamiltonian in the external field, Hy", gives

H, = UyH3'Uy ' = BE, + E| + O, (64)

where E; and O, are the even and odd operators of
first order in the external potential, respectively,

Ey = A(Vexe T RVex R)A, (65)

01 = BARVex = VexRA. (66)

Douglas and Kroll suggested that it is possible to
remove odd terms of arbitrary orders in the external
potential through successive unitary transformations

U,=0+WwH"?+w, (67)

where W, is an anti-Hermitian operator of order V¢,,.
The DK transformation correct to second order in the
external potential has been extensively studied by
Hess and co-workers [48,50], and has become one
of the most familiar quasi-relativistic approaches. A
numerical analysis by Molzberger and Schwarz [65]
shows that the second-order DK (DK2) method
recovers the energy up to the order of 7% to a
large extent and includes also a significant part of
the higher-order terms. However, the DK2 approach
does not completely recover the stabilizing higher-
order energy contributions, as shown in Fig. 9. The
straightforward way to include higher-order relativis-
tic effects is to repeat further unitary transformations.
However, as far as we know, no higher-order DK
Hamiltonians have explicitly appeared in the litera-
ture.

One reason for no appearance of higher-order DK
Hamiltonians is that the derivation of the DK Hamil-
tonians of higher order in V is too complicated, and
it has been believed that the higher-order DK trans-
formation appears to be impractical. Although
Douglas and Kroll adopted Eq. (67) as a unitary
operator in their formulation, the essence of the DK
transformation is to remove odd terms by repeating
arbitrary unitary transformations. Thus, in this study
we adopt an exponential-type unitary operator of the
form

U, = exp(W,), (68)

where W, is anti-Hermitian. Expanding Eqgs. (67) and
(68) in a power series of W,,, we note that both expan-
sions are common up to second order. One should
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Table 8
SCF total and orbital energies (in au) for element 118 ('Sp)

NR DK2 DK3 DFC?
Total energy —46,324.2882 —54,347.2659 —54,587.2760 —55,026.3317
Is —6222.6933 —8181.9300 —8279.9061 —8286.7260
2s —1144.7046 —1728.6771 —1743.6418 —1742.6659
3s —318.4622 —474.3213 —477.7972 —477.1589
4s —95.3213 —142.0118 —143.0143 —142.7422
Ss —26.4226 —40.2208 —40.5232 —40.4269
6s —5.7351 —9.0736 —9.1567 —9.1380
7s —0.7740 —1.2969 —1.3136 —1.3279
2p —1115.3498 —1263.2698 —1262.9243 —1313.6815
3p —303.3611 —350.1415 —350.0165 —361.1473
4p —87.6954 —101.5415 —101.4972 —104.5299
5p —22.9045 —26.5021 —26.4859 —27.3553
6p —4.3685 —4.9007 —4.8952 —5.1310
Tp —0.3944 —0.3917 —0.3905 —0.4436
3d —275.4582 —274.2818 —274.2008 —274.0512
4d —73.4531 —72.8418 —72.8127 —72.7125
5d —16.4535 —15.7639 —15.7536 —15.7070
6d —2.0211 —1.6153 —1.6126 —1.6021
4f —53.3681 —48.9865 —48.9629 —48.7899
5f —17.8674 —6.3582 —6.3510 —6.2995
* Averaged over fine structure components.
note that an exponential-type unitary operator, instead where
of a conventional form, is used in order to derive the /
higher-order DK Hamiltonians easily, since the expo- n_ 2010,p)
. Wip.p) =B———F% (73)
nential-type operator can take full advantage of the E, +E,
Hausdorft expansion.
Generally, the anti-Hermitian W, of order V¢ W E
determines the DK Hamiltonian (or its energy) to W,(p,p') = BM. (74)
order 2n + 1 (referred to as the 2n + 1 rule) [45]. E, +E,

This 2n + 1 rule also simplifies the formulations of
the high-order DK Hamiltonians significantly.
The resulting DK Hamiltonians are given as

HDK2 = BEp + El - %[Wh [WbBEp]]’ (69)
Hpgs = Hpga + S [Wi, [Wy, Ef ], (70)

Hpks = Hpgs — 5 [W1, [W, [Wy, [Wy, BE, 1]

+ [Wo, [W, Eq 1, (71)

Hpgs = Hpga + 57 (Wi, WL WL WL ETT

- %[WZ’ [Wl’ [Wl7 [WI’BEp]]]]’ (72)

Note that W, is not included in the expression of the
DK3 Hamiltonian as well as the DK2 Hamiltonian.
This can simplify the practical calculation since the
evaluation of the terms including the higher order W,
becomes complicated.

Although the DK formulas for the one-electron
system are represented so far, the resulting formulas
can easily be extended to the many-electron systems
with the no-pair theory [66]. With the help of the no-
pair projection, the two-component DK Hamiltonians
including the two-electron terms are given by

. 1 .
HYK! = ZEi - mc* + Z Verr (D) + B Z Vet (7)),
- ; i#

(75)
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1
HYS = HYS! = = S W@, Wi, B s, (T76)

1

1
HYS = HYS 4 5 3 W@, Wi (), Ver D], (77)

with

E; = (pic® + m*chH'"?, (78)

Verr (@) = Aj[Vex (D) + (0, R) Vi (D (0 R)]A,;, (79)
.. 1 1

Vege(i,7) = AiAj[ - + (o'iRi)F(o'iRi)

g g

1

Tij
1
X (U'jR/')7 (o:R))(oR)) ]AiAja (30)
ij
A _(El'+mC2)1/2 (8])
L0 2E ’
CPi
R=——t 82
" E;, + mc? (82)

where m is the mass, ¢ the speed of light, p; the
momentum operator, and o; denotes the vector of
three Pauli 2 X2 spin matrices. Here, W;(i) is an
integral operator with kernel

Vext(pia pli)

Wi (p.,p') = AR, — R')HA!
l(pl pl) l( i l) i Ei_Eﬁ

, (83)
and [a, b], and [a, b] denote the anti-commutator and
the commutator, respectively. In Eq. (80), we omit the
two-electron terms derived from the Breit operator,
which are given explicitly in Ref. [66].

The DK approach has several advantages. It is
variationally stable and can avoid the Coulomb singu-
larity. The DK method can easily be incorporated into
any kind of ab initio and DFT theory, as well as the
RESC method [43,44]. Thus, one can handle the rela-
tivistic effect on the same footing with the electron
correlation effect. We stress that modification of the
one-electron integrals for the third-order relativistic
correction with the DK3 Hamiltonian is not expensive
in comparison with the DK2 Hamiltonian.

In order to illustrate the numerical performance of
the DK3 approach, the result for one-electron systems
is first presented [45]. The 1s eigenvalues of hydro-
gen-like atoms calculated by DK2 and DK3 methods
are shown in Fig. 9 compared with the Dirac one in the
same primitive Gaussian basis sets. The DK2
approach does not completely recover the stabilizing
higher-order energy contributions. The DK3 method
yields the excellent result. The third-order DK result
improves on the second-order DK approximation and
shows the DK3 Hamiltonian works well.

In Table 8, the SCF orbital energies of the 150
ground state of element 118 (7s27p6) calculated with
the DK3 Hamiltonian are shown in comparison with
the DK2 Hamiltonian [45]. The SCF total energies of
element 118 are also listed in Table 8. The non-rela-
tivistic (NR) Hartree—Fock (HF) and relativistic
Dirac—Fock—Coulomb (DFC) results using the
common primitive Gaussian set are also listed for
comparison. In this calculation, the spin-dependent
part in the DK Hamiltonian is neglected, resulting in
a scalar relativistic variant of the method. The
relativistic kinematics correction to the two-elec-
tron integrals is also ignored. This effect on the
valence properties of molecules including the
third-row transition metal has been shown to be
small [67].

For the s orbital energies, where spin—orbit
effect is not contributed, the DK3 result is in
better agreement with the DFC result than the
DK2 result. The total energy of element 118 is
stabilized largely by 240 hartree with the third-
order relativistic correction. This deviation is
attributed mainly to the inner core s orbitals. It
is also shown that the most significant improve-
ment with the third-order scalar relativistic correc-
tion is achieved for the s orbitals. The third-order
DK term in Eq. (77) is the correction to V (i),
which includes the operator, p-V.p, as shown in
Ref. [45]. The p-V.p operator may be reduced to
the operator including the delta function when V.
is a Coulomb potential. Thus, the third-order DK
term affects the s orbitals, since the s orbitals have
no node at the nucleus. The present results suggest
that the third-order DK method is superior to the
second-order DK method for the core-shell proper-
ties. The deviation between the DK3 and DFC
total energies is about 440 hartree. This difference
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Spectroscopic constants of (112)H and its ions. (NR: non-relativistic, R: relativistic, re: equilibrium internuclear distances in f\, w.: vibrational
frequencies in cm™ B.: rotational constants in cm™ !, D,: dissociation energies in eV)

112)H" (112)H (112)H™
Method Te W, B. Te W, B. D, Te W, B.
HF
NR-PP? 1.945 1663 - - - - - - - -
NR 1.951 1653 4.408 2.031 1435 4.069 0.740 2212 999 3.432
R-PP* 1.522 2687 - - - - - - - -
DK2 1.525 2667 7.221 -0 _b b b -0 _b b
DK3 1.526 2677 7.208 -t -t _b _b -t -t _b
MP2
NR-PP? 1.883 1676 - - - - - - - -
NR 1.894 1680 4.679 1.967 1495 4337 0.438 2.174 974 3.552
R-PP* 1.507 2686 - - - - - - - -
DK2 1.521 2617 7.254 1.816 1542 5.092 0.010 2.106 696 3.784
DK3 1.524 2615 7.225 1.812 1564 5.111 0.002 2.111 693 3.766
CCSD
NR 1.936 1560 4.480 2.018 1346 4.121 0.860 2.203 954 3.458
DK2 1.525 2616 7.218 1.816 986 5.088 0.049 2.259 546 3.288
DK3 1.528 2621 7.186 1.823 991 5.052 0.036 2273 533 3.250
CCSD(T)
NR-PP? 1.929 1509 - - - - - - - -
NR 1.941 1513 4.453 2.021 1318 4.109 0.804 2.204 945 3.457
R-PP* 1.515 2640 - - - - - - - -
DK2 1.528 2584 7.186 1.824 999 5.043 0.068 2.224 591 3.394
DK3 1.532 2595 7.151 1.829 1007 5.017 0.057 2.234 582 3.364

* Pseudopotential calculation in Ref. [68].
® This state is totally repulsive.

is due to the energy stabilization by the spin—orbit
effect for the p orbitals, as in the case of element
112[46].

Table 9 shows the spectroscopic constants of
(112)H and its ions calculated with the DK2 and
DK3 Hamiltonians compared to the non-relativistic
results [46]. Among these molecules, only (112)H™
has been studied so far using the pseudopotential
(PP) approach [68], as also listed in Table 9.

On the whole, the third-order (scalar) relativistic
corrections with the DK3 Hamiltonian are small
compared with the second-order ones. The bonds are
stretched by about 0.01 A and the rotational constants
are decreased by 0.01-0.03 cm™'. The harmonic
vibrational frequencies are changed by a few wave-
numbers. The dissociation energies of (112)H are
decreased by about 0.01 eV.

Relativistic effects are significant for (1 12)H+ and
(112)H. The relativity decreases the bond lengths of
(112)H" by 0.4 A and those of (112)H by 0.2 A with

electron correlation effects. The vibrational frequen-
cies of (112)H™ are increased by 900—1000 cm !, and
those of (112)H decreased by 300-350 cm ! at the
CCSD and CCSD(T) levels. The scalar relativistic
effect on the properties of (112)H™ is much smaller
than those of (112)H" and (112)H. This is analogous
to the behavior of isoelectronic (113)H studied
previously by Seth et al. [69].

Electron correlation effects are important for
(112)H and (112)H". While their potential energy
curves are totally repulsive at the HF level, they
have a minimum by a van der Waals or a dispersion
interaction when electron correlation effects are
included. For (112)H, the MP2 method seems to be
inadequate and gives a large deviation in w,. by inclu-
sion of relativistic effects, compared to CCSD and
CCSD(T).

The present findings suggest that the effect of
the third-order (scalar) relativistic correction with
the DK3 Hamiltonian is relatively small at least in
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the valence-shell properties of the ground states of
element 112, (112)H, and its ions. On the other
hand, the improvement with the third-order relativis-
tic correction is significant for the inner core shells, as
shown by the atomic 118 and 112 results. Thus, a
further investigation is needed on the influence of
the third-order relativistic correction on other atomic
and molecular systems in ground and excited states
and other properties (especially, core-shell properties
such as the NMR magnetic shielding constant) of
systems including superheavy elements.

4. Density functional theory

Density functional theory (DFT) is a widely-used
methodology in computational chemistry that solves a
nonlinear equation—the Kohn—Sham equation—
with an average-field potential of density functional.
Because this methodology can incorporate electron
correlation as a potential, it requires much less
computational power to give equivalent chemical
properties of molecules compared to high-level ab
initio molecular orbital theories. The Kohn—Sham
equation is given by [70,71]

/
[—%V2+v+J PR) 5o OEulp] ]w,:e,-w,-,

(84)
Noooooq, 3
E=Y J‘!’i(_iv +V)id’R
L[ pR)PR) 50 PR’ + E..[pl, (85)

2) R-R

where v is an external field, and p is the density calcu-
lated by the molecular orbital ¢ p=3 2 |y;[*.
Atomic units are used (h = el=m= 1, energies are
in hartree and distances in bohr). In Egs. (84) and (85),
the exchange integral operator in the Hartree—Fock
(HF) equation is substituted by an exchange-correla-
tion density functional E,. and the potential 6 E,./dp.
Hence, the reliability of DFT depends on the func-
tional used.

The functional should be tested by examining
whether they

1. satisfy the fundamental conditions of the exact

functional,

2. are applicable to a wide class of problems and a
wide variety of systems,

3. have a simple form with a minimum number of
parameters (including fundamental constants),

4. contain no additional parts for obtaining specific
properties, and

5. have a progressive form that can be updated.

Almost all conventional development of correlation
functionals has concentrated on satisfying criteria (1)
and (2), while criteria (3)—(5) have received much less
attention. In consequence, many semi-empirical para-
meters have been introduced to give accurate energies
and exact functional properties, several functionals have
been adjoined in order to reproduce a few properties,
and the form has lacked in flexibility for the develop-
ment of DFT [72]. These may lead to the lack of physical
meaning and a poor reliability of DFT.

Recently, we developed exchange and correlation
functionals: the parameter-free (Pfree) exchange [73]
and the one-parameter progressive correlation (OP)
[74] functionals. They have been shown to satisfy signif-
icant and strict fundamental conditions and give practi-
cal atomic exchange and correlation energies. By
combining these functionals, we obtain an exchange-
correlation functional that has only one parameter and
no additional parts for obtaining specific properties.
Surprisingly, it was found that the fundamental condi-
tions of the exact kinetic, exchange, and correlation
functionals are transversely connected with each other
through this exchange-correlation functional called the
‘POP’ functional [75].

In this section, we introduce the OP correlation and
the Pfree exchange functionals, and then describe the
transversing connection between the fundamental
conditions of the exact kinetic, exchange, and correla-
tion functionals. The numerical investigations of these
functionals are also presented for the exchange and
correlation energies of atoms [75], the chemical prop-
erties of the G2 set of molecules [54,74], and the
atomization energies of the first- to third-row transi-
tion metal dimers [75,76].

4.1. The one-parameter progressive correlation
functional

We developed a simple Colle—Salvetti (CS)-type
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correlation functional called the one-parameter
progressive (OP) correlation functional [54,77]. The
functional contains only one parameter and is adapted
to any kind of exchange functional through the corre-
lation length.

First, the spin-polarized CS-type correlation wave-
function is defined for opposite-spin electron pairs
(o1 # 0,) as [78]

WU’[O'Z(XI,XZ»-~7XN)

= q/gfa'z(xl’xzw'"XN)l—[[l - qba'laz(rl’rj)]’ (86)

i>j

where r; indicates the spatial part of the spatial—spin-
coordinates x; of the i-th electron, and o| and o, are
opposite spin indices having possible values a or 3.
The function Wl;fgz is defined as a spin-polarized HF
wavefunction that is multiplied by itself to obtain a
spin-polarized HF second-order reduced density
matrix for spin o0, pairs, Py}°. The function
¢o, o, satisfies the spin-polarized correlation cusp
conditions [79,80] by

¢a']o'2 (rlv 1'2)

= exp(— 5,0, 1 = (1 + A2) Dy, (R)],  (87)

where r=|r; —rj,R=(r; +1)/2 and A is the
coupling strength. Under the assumption that the HF
first-order density matrix is a good approximation to
the exact one, the function @, ., (R) can be described
approximately by

@ = ﬁﬁ(fllfz
N B, A

In Eq. (86), no correlation contribution is given for
adiabatically  unconnected independent-electron
systems, because V¥, , is Wﬂfaz for A =0.

To obtain the parameter B, ,,, we used Becke’s
definition of correlation length [81]. Becke suggested

that the correlation length Z, ,, can be defined as

(88)

1 1
Zoig, = const.(m + —), (89)

(ry,
for the exchange energy in the form

1 _
E==33 | pr R (90)

where p,, is the electron density of spin . { r; ') is the
mean inverse radius of a Fermi hole. Now, we assume
that the exchange energy is written as a usual general-
ized-gradient-approximation (GGA) form,

_ 1 4B B
EX——EZJpU K,d°R, 1)
where x,, = |[Vp,|/ps”. We then obtain the correlation
length Z,,

102
Zg,o, = const.(py "Ks" + py 1P KLD. (92)

Because the volume of the exchange potential V,,
should be proportional to a sphere with radius half the
correlation length, we obtain [77]

At (Zy 0\
Voo, = const.?ﬂ (T‘z) . (93)
Following Colle and Salvetti, we assume that V. ., is
proportional to the volume of the region where the
correlation energy differs appreciably from zero,

3/2
™
[ expt-20. 0 = . ©4)

g0,

The spin-polarized exponent coefficient B, is then
given by

1/3 1/3
Po, Po, Ko Ko,

o, Fop

o Ky, + PyiKs,

Btrla'z = q0'10'2 (95)
where ¢, is a parameter that determines the corre-
lation length.

By using Eq. (86) and the correlated spin-polarized
second-order density matrix Py'"* = |¥, . %, the
spin-polarized CS-type correlation functional is
obtained for opposite-spin pairs,

0o = J(P;“"Z(rl,rz) — PO e P

= JP(ZTILI(;Z(I'I’rz)"_l(d’zzrloz(rl, ry)
— 2¢4,0,(r, 1)1 d’r,. (96)

Then, we used the angle-averaged Taylor expansion
of P3;+*. Based on the assumption that electron corre-
lation acts only between two opposite-spin electrons
that come close to each other, the expansion was
limited to the first-order in order to keep the balance
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with GGA-type exchange functionals:
0' (o) r - 3
J Pz (R +5.R- §>r 'exp(— B, o, )d’r

= 4m P72 (R,R)J rexp(— B, o, 1 )dr, 97)
. )

where r = [r| = |r; — r;| and R = (r; + r,)/2 for each
electron-pair, (i, j). The first-order term disappears
due to the angle-averaged integration. We should
notice that the angle-averaged Taylor expansion of
the diagonal term of the HF second-order reduced
density matrix for parallel-spin pairs [ Pgg up to
the first-order is zero in the angle-averaged integration
due to the Pauli exclusion principle:

JP‘{ZF<R + = X ,R— E)rflexp(—ngrz)d*}r = 0.
(98)

Hence, the correlation energy for parallel-spin pairs
can be neglected, because it is also described by using
Eq. (96) as o = 0,. By using Egs. (97) and (98), the
correlation energy is written as

E} = E*P + EPe
_ 2 2
= —4ﬂJpapﬁ[ZJeXp(—Baﬁr )
Ar o) 2
X (1= @1 + 7))rdr — | exp(—2B557")
)\r 2 3
X (1 = Dop(l + 7)) rdr |d°R, (99)

In the derivation, we used PzHF(R,R) =p.(R)pg(R)/2.
Substituting Egs. (88) and (95) into Eq. (99) gives

1. 5214Baﬁ +0.5764 X
Ec Jpapﬁ d
Big + 1128485, + 0318382,

3

(100)

where the coupling strength A is replaced by 1 for
simplicity. The only semi-empirical parameter g,g
is determined for each exchange functional.

4.2. The parameter-free exchange functional

We also developed a simple analytic exchange
functional called the parameter-free (Pfree) exchange

functional that contains no parameter [73]. The Pfree
exchange functional is based on a density matrix
expansion (DME) derived from a spin-polarized HF
first-order density matrix by using spherical Bessel
functions (j,) up to the second-order [82]

DME r r 3j1(kr) 35j3(ky1)
+-,R— =)= 2ol
Pig (R >R 2) ko PR,
2
x (V”"(R) — L (R) + Skﬁp(xm) +
1 5
(101)

The kinetic energy density, 7, is defined in the form
of the HF non-interacting kinetic energy,
oce

_1 25 1 3
= 2§JZIV%I d’R = 2ZU:JTUd R. (102)

By using Eq. (101), the DME of the HF exchange
energy becomes as [83]

EXM[py ko 7,]
=—_ pPME R+ ~ R— ~ )3 PR
Z |
_om 9 , 35
= _E Z JI:k_(zrprr + Epo
v? 3
x( 4‘”" — 7, + Skgpg) ]d3R. (103)

By a partial integration [84], the Laplacian term V?p,,
can be eliminated from Eq. (103):

EXM [py. kg, 7,]

2
— 2 8/3 3
- Z JI: k2 po’ 3k4 Po ( 12 )]d R»
(104)

where x,, and z,; are dimensionless parameters that can
be expressed as  x, = |Vpolpd® and z, =
(7o = 3kapulSp3”.

The momentum, k,, has been substituted by the
Fermi momentum, kg, = (6 p(,)l/ 3 or the correction
[83—85]. By getting back to the original of DME [82],
we regard k, as the averaged relative momentum at
each center-of-mass coordinate R, and express it as a
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Table 10

Some strict physical conditions for K,, in the exact exchange functional, £, — (1/2) Y, [ 3K, d°R, and for H in the exact correlation
functional, E, = — | papBHd3R. In conditions (B)—(D), A is a coordinate-scaling parameter. In condition (G), p; is the density for a one-

electron system

Conditions LSDA PWI1 PBE B88 LYP POP
(A) K,>0 Yes Yes Yes Yes - Yes
H=0 Yes No Yes - No Yes
B) K;[p)] = const. Yes Yes Yes Yes - Yes
Hlp,\]1> AH[p] (A < 1) Yes Yes Yes - No Yes
limA_,w)\‘%H[p)\] = const. # 0 No No Yes - Yes Yes
lim)ﬁo)\zH[pA] = const. # 0 Yes Yes Yes - Yes Yes
(©) lim,_o A K, [p}] = const. # No No No No - -
0
limy_o A *H[p§] = const. # 0 No Yes No - No Yes
(D) limy_gA” K, 0] = No No No No - -
const. # 0
limy_ A’ HIp\ ] = const. # 0 No Yes No - No Yes
lim,_oA*H[py,] = const. # 0 No Yes No - No Yes
(E) K, =33/4m)" for const.p Yes Yes Yes Yes - Yes
lim,,_..H = 0 for const. p Yes Yes Yes - No Yes
lim,ﬁopmH = const. # 0 for No No No - No Yes
const. p
F) Exact GGA of K,, for slowly - Yes? Yes? No - Yes?
varying p
Exact GGA of H for slowly - Yes Yes - No Yes
varying p
(G) K,= O(qm) for p, = qp;(0 < No No No No - Yes
g=1
H=0forp,=¢gp(0<g=1) No No No - Yes Yes
(H) limg_wK, = py 'R No No No Yes? - No
K, <4231 Yes Yes Yes No - -

functional of the kinetic energy density, 7,(R). There
is a natural relation between 7, and k,:

VA'S KR KKk
T(R) = 2< ? >Pa(R) = m

3
= ke R)p,(R).

p(R)

(105)

In Eq. (105), the distribution function, f,(R,K), for the
spin-polarized first-order density matrix in Eq. (101),
is approximated by wusing the step function,
Ok, — |k ), in the momentum space, such that

1 r r .
) JPB,ME(R+ 575 )exp(—zk'r)d3r

fo(R,K)

U

const.p(R)O(k . — [K|). (106)

The averaged relative momentum is thought to be

identical with the center-of-mass one that is calculated
by the kinetic energy density at the position. From Eq.
(105), k,, is written inversely as

k, = /Sj
3ps

Substituting Eq. (107) into Eq. (104) gives a simple
T,-dependent DME exchange functional,

Elpg, VDo 7o)

1 27 7 2 5/3
:_fzji,f 1+ ZXePe PR (108)
p To 1087‘0

(107)

This functional contains no adjusted parameter and no
additional parts for obtaining specific properties. If 7,
equals the Thomas—Fermi (TF) Xkinetic energy
density, 7F = (3/5)(6m*)*?p2”, k, becomes identi-
cal to kp, = (6*rrzp(,)” > for the non-interacting
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system, and therefore, EX™ in Eq. (108) perfectly
reproduces the local spin density approximation
(LSDA) for exchange energy for Vp, = 0. The
higher-order terms are neglected in Eq. (108) [85],
because it may be hard to obtain the stable values of
(xi/ra)" for n = 2 in the numerical computation.

4.3. A transversing connection between kinetic,
exchange, and correlation functionals

By using the Pfree exchange and OP correlation
functionals, the fundamental conditions for exact
kinetic, exchange, and correlation functionals are
shown to be transversely connected from each
other, despite they have been independently
suggested[74]. For simplicity, we introduce three
parameters, T, Kg, and H. T, is defined using a
GGA form of non-interacting kinetic energy:

— 1 5/3 3
T, = g Jp(, T,d’R. (109)

Substituting T, into Eq. (108) gives K, in Eq. (91) for
the Pfree exchange functional:

27 Tx2
KPx,, T,] = T[l—k o ] (110)

5T, 1087,

For K%, the fractional part of the OP correlation func-
tional in Eq. (100), H" is given by

1.5214855 + 0.5764

HOPLGP 1 _ , (111
[Bagl }0);;3 T 1-1284:3};?3 + 0.3183B§B (b
where
1/3 _1/3 1P P
pa p Kﬂf
BoslPos Pp: Koo K1 = qag T (2

pol K + pgP Ky

We make clear the relationship between these para-
meters. Table 10 shows which of the fundamental
conditions for K, and H are met by the POP functional
and conventional famous functionals; LSDA [86,87],
Perdew—Wang 1991 (PWO91) exchange-correlation
[88], Perdew—Burke—Ernzerhof (PBE) exchange-
correlation [72], Becke 1988 (B88) exchange [53],
and Lee—Yang—Parr (LYP) correlation [55] func-
tionals.

(A) Kinetic energy is positive for any non-zero

density, T, > 0. Hence, K&, in Eq. (110) is definitely
positive for any non-zero density, K- > 0 [73,89].
H® is positive or zero (only if p g 1s zero) for any
density [54,89], H® =0 because Bap is always
positive for a positive K,,.

(B) Under uniform scaling of all coordinates

(P(R, Ry, R) = py = X’p(AR, AR, AR,)), T, is
scaled as [90]
T,Ip)\] = const. # 0. (113)

For a constant 7,, it has been shown that K is
scaled as

KE[p\1 = const. # 0. (114)

This is one of the fundamental conditions of the
exact exchange functional [89]. For a constant
K,’:, it has been shown that H°® has the following
scaling properties:

H[p] > AH[pl(A < 1), (115)

H%[p,] < AH"[pl(A > 1), (116)

and in the high- and low-density limits,

lim N HO(p,\] = const. # 0, 117)

lim NHO(p,\] = const. # 0, (118)

respectively. Eqgs. (115)—(118) correspond to the
fundamental conditions of the exact correlation
functional [89].

(C) For non-uniform scaling of the x coordinate
(p(R, R, R,) — py = Ap(AR,, AR, AR,)), there is
no equéllity for the non-uniform scaling of T,
[90]. Hence, we cannot determine the A-depen-
dency of K% from that of T,. The exact A-depen-
dency of K, itself is given as [91,92]

Jim A Bk [pi] = const. # 0. (119)

Note that the A-dependency of T, cannot be deter-
mined from K(};. These conditions may, therefore,
be essential for electron—electron interactions. If
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K, satisfies Eq. (119), H°® reproduces the non-
uniform scaling condition [93,94],

Jlim HOP[pi] = const. # 0. (120)

(D) Under non-uniform scaling of x and y coordi-
nates (p(R,, Ry, R.) = pyy = A’p(AR,, AR, R.)), no
relation also exists for thls scaling of T, [90], and,
therefore, the A-dependency of K cannot be deter-
mined from that of 7,,. The exact A-dependency of
K, itself is given as [91,92]

AEI(}}W AR [P0 = const. # 0. (121)

The A-dependency of K|, is also intrinsic for this
scaling, because the A-dependency of T, cannot be
determined from K,I;. For the exact K, HOP satisfies
[93,94]

lim M HO [P ] = const. # 0, (122)
lim NH[p2] = const. # 0. (123)

(E) For a constant density (x, =0), 7, has an
LSDA limit that corresponds to that of the
Thomas—Fermi kinetic energy [71]

T,=T,"" = %(6172)2/3. (124)

For 7552 and x, = 0, K? reduces to the K, of the
LSDA exchange functional, K(L,SDA [71,73],

KPP = KkSPA = 3( 3 )m (125)
~\4m ’

As far as we know, all conventional GGA-type
exchange functions give K=°* for constant density.
For closed-shell systems of constant density
(pa = pg = p/2), H”" is given as [54]

2.4103,pp"" + 0.5764
62990450 + 5.1053¢2 5p + 0.79887¢25p
(126)

H[p] =

By the quantum Monte Carlo method, the exact
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correlation energies were calculated for a spin-
compensated uniform electron gas [95]. In agree-
ment with the results, H® approaches zero as
O(p_]) would in the high-density limit and scales
as 0(p72/3) would in the low-density limit for a
constant density.

(F) In a slowly varying limit (x, — 0), T, is exactly
expanded as [96]

. 3. 2 23 4
==

xljmo T, 5 61°) 36 + O(x(,) (127)

Surprisingly, it is proved that K. can be expanded

for this T, as

lim KJ*V "

x,—0

= 3(1)1/3(1 P B 0(x4))
"\ 4nw 81(6m2)2R "7 o)
(128)

which gives exactly twice the conventional exact
gradient expansion coefficient, 5/ 162(6*11'2)2/3 [97].
However, we suspect that the conventional coeffi-
cient is incorrectly halved because empirical obser-
vations [71] and conventional exchange functionals
have given larger coefficients that are close to 5/
81(67%)** =0.004063, e.g. 0.004514 in B88 and
0.003612 in PBR. This remains to be proven. In
any case, H° can be expanded for closed-shell
systems in this limit as [98]

lim H[p] = c[p] + calplx* + OGH), (129)

where c,[p] (p =1, 2) are functionals of only the
electron density and x = |Vp|/p*3. Dimensional
analysis [54] showed that both ¢; and ¢, of HP
properly scale as O(p~ ') would in the high-density
limit and as O(p_m) would in the low-density
limit.

(G) For density p, = gp; of a q -electron system
O<g=1), T, scales as O(p ) because of Eq.
(102), where p; is the density for a one-electron
system. Since K? scales as O(p_m) for this T,
the Pfree exchange functional in Eq. (108) satisfies
the necessary condition for being self-interaction
free[99],

E.lgp] = ¢E.lp]. (130)
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Deviations of calculated Pfree exchange energies in hartree and calculated OP correlation energies in mhartree for the ground states of atoms.
Mean A and MAE indicate mean deviation and mean absolute deviation respectively

TFW LLP Thakker TFAW NLLP
Pfree exchange energies
Mean Ay—xe 0.109 0.056 0.099 0.038 0.006
Mean Ax,—a, 0.211 0.262 0.280 0.005 —0.013
Total mean A 0.154 0.147 0.182 0.024 0.015
MAEy—xe 0.109 0.056 0.099 0.040 0.016
MAEy—ye 0.211 0.262 0.280 0.006 0.013
Total MAE 0.154 0.147 0.179 0.023 —0.002
OP correlation energies
Mean Ag—ye -11.13 —3.74 —7.80 —8.54 —4.71
Mean Ax,—ar —7.81 —3.64 —6.78 —6.05 —3.95
Total mean A —9.65 —3.69 —7.35 —7.43 —4.41
MAEy—ye 12.41 6.44 9.40 10.21 7.38
MAEy—xe 7.82 3.04 6.78 6.05 3.96
Total MAE 10.37 5.20 8.24 8.36 5.86

As far as we know, no other functional obeys this
condition [100]. In addition, the OP correlation
functional in Eq. (100) is definitely self-interaction
free because it approaches zero as O(p};/ 3) would for
(H) In a rapidly varying limit (x, — o), T,
increases as [96]

2

X,
lim T, = -Z. 131
Jim 7, = (131)

K" reduces asymptotically to zero for this T, as

136
5x2°
and H°" rapidly dilates as O(x2). The Lieb—Oxford
bound [100,101], KE < 4.231, may be satisfied by a
natural K, that obeys Eqgs. (128) and (132).
However, we indicated that K, must not approach
zero for any x, [100] in order to obey the empirical
rule that exchange energy is dominant in the
exchange-correlation contribution for a rapidly
varying density [72]. In the density tail (R — 00),
the density changes rapidly, and, therefore, x, is
large [96]. K, must satisfy the asymptotic relation
for an exponentially decaying density in this region
(102],

lim Kf = (132)

x(T
3lnx,,

K, — (R — o), (133)

to reproduce the asymptotic behaviour of the

exchange energy density, €, [102-106]:

1
€& " op (R — 00), (134)
where €, is defined as E, = | p(R)e (R)d’R. The
B88 exchange functional was developed to satisfy
this asymptotic condition. In contrast with K. in
Eq. (132), K, in Eq. (133) increases as x, — 0.
What causes this discrepancy? We should notice
that a functional in the form of Eq. (91) has been
shown to disobey the asymptotic relation of the
exchange potential [103],
OE,

1
= — —— (R— s
n=SE g R

(135)

provided it obeys Eq. (134) [102]. Hence, we
suspect that GGA-type exchange functionals do
not inherently reproduce the nature of a rapidly
varying density, including its long-range asympto-
tic behavior.

In conclusion, the fundamental conditions of

kinetic, exchange, and correlation functionals are

connected through T,, Kg, and H°" in Egs. (109)-
(111) with the exception of the rapidly-varying
density limit (H). A study of the long-range exchange
interaction might show the indicator how to satisfy
condition (H), because the rapidly-varying limit is

mostly dominated by this type of interaction. In any
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Deviations of calculated equilibrium geometries, atomization energies in kcal/mol, adiabatic electron affinities in eV, and ionization potentials
in eV, for the G2-1 set of molecules by POP, BOP, and B3LYP functionals and the MP2 method. r, is the atomic distance in A and a is the bond
angle in degree, respectively. All values were calculated with the 6-311++G(2p, 2d) basis set. MAE, mean A and max A indicate mean absolute

deviation, mean deviation, and max deviation, respectively

POP BOP B3LYP MP2
TFW LLP Thakker TFAW NLLP
Equilibrium geometries
MAE r, 0.014 0.024 0.014 0.015 0.017 0.019 0.011 0.016
a 0.9 1.0 1.0 1.0 0.9 0.9 0.9 0.9
Max A r, 0.152 0.098 0.065 0.129 0.074 0.072 0.078 0.101
a 5.1 53 59 4.9 4.6 4.7 6.4 5.1
Atomization energies
MAE 22.6 4.1 9.5 18.3 7.7 3.1 3.0 10.5
Max A 55.0 15.7 222 459 19.6 12.3 20.2 29.5
Electron affinities
MAE 0.21 0.18 0.12 0.22 0.11 0.12 0.11 0.26
Max A 0.52 0.29 0.24 0.55 0.47 0.36 0.55 0.74
Tonization potentials
MAE 0.21 0.26 0.19 0.24 0.17 0.18 0.17 0.74
Max A 0.72 0.56 0.47 1.31 0.55 0.44 0.54 4.00

case, a general statement has not yet been given for
the behavior of exchange functionals at this limit [96].
Hence, we can say that the remaining question is how
to construct a kinetic energy functional that produces
all these properties.

4.4. Calculations

4.4.1. Exchange and correlation energies of atoms
First, we calculated exchange and correlation ener-

gies of the ground states of 18 atoms, hydrogen

through argon, using the Clementi HF Slater-type

orbitals [106]. The 50-point Euler—Maclaurin quadra-
ture [107,108] and the 194-point Lebedev quadrature
[109,110] are used for radial and angle grids, respec-
tively, in the numerical integrations. For the exact
values, we used the numerical HF exchange energies
[111] and the non-relativistic correlation energies of
the exact great nuclear charge limits [112,113]. In the
Pfree exchange energy calculations, we examined
several types of conventional kinetic energy func-
tionals, TFW, LLP, Thakker, TFAW, and NLLP,
that are detailed in the Appendix. The Pfree exchange
functional, Eq. (105), has a progressive part that can

10

Fig.
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10. The dependency of K, for a dimensionless parameter x,.
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Atomization energies of the dimers of the first-row transitions metals in eV. The relativistic correction and the zero-point vibration correction
are incorporated. The underlined results correspond to those of the ground states of each dimer. Conventional high-level ab initio MO results are
also given for comparison

Dimer State  Dissociation limit  Exp. BOP B3LYP B88 MP2 High-level ab initio MO
Sc, ’S. DR 104022 192 1.36 1.35 2.00 0.59 (MRSDQCI)
Ti, A, F-F 1.54 0.19  2.79 1.77 0. unbound® -
sF FSF - 2.03 0.55 143 noconv.’  0.94 (ACPF)
v, 'S °D-°D 2.75 3.38 145 0.26  unbound® -
Cr 'so 7SS 153 +0.06 156 - 1.53 —24 unbound®  1.58 (CASPT2)
Mn, ) ; bs_5s 0.3+0.3 unbound® unbound® unbound® unbound® -
Fe, A,  °F-°F 1.15+0.09 249 0.98 1.49 0.31 3.17 (FE-CI)
sHSFOSF - no conv.” 1.38 no conv.© 1.09 -
Co, A, F-F - 2.45 0.42 1.30 123 -
P - 1.60 1.49 0.66 1.33 0.81 (SDCI)
Ni, 3. ‘DD 2.04 2.67 1.48 1.86 —2.28 1.78 (CASPT2)
S DD - 2.13 1.96 1.56 1.87 1.80 (CASPT2)
Cu, DI 2.06+0.03 2.16 2.03 161 1.99 1.97 (CASPT2)
Mean absolute A° - 0.65 0.69 1.02 0.92 (0.947)
Max A - 1.34 - 3.06 —-3.99 - 275 (1.93)

* The ground states of these dimers are not bound for the method of calculation.
 We cannot get a convergent result for these states in the Kohn—Sham calculation.
¢ The deviations are taken for the ground states that are predicted for each method. The atomization energies of the unbound states are

incorporated as zero.

be updated for kinetic energy density 7,. For the
calculations of the OP correlation energies, we deter-
mined the parameter g, g to reproduce the exact corre-
lation energy of the Ar atom: 2.3897 for TFW, 2.3924
for LLP, 2.3895 for Thakker, 2.3665 for TFAW, and
2.3653 for NLLP.

Table 11 shows the deviations of calculated
exchange energies for the ground state of the atoms
[74]. The mean deviations show that the Pfree
exchange energies are somewhat underestimated
especially for the TFW, LLP, and Thakker
functionals. The errors may be attributed to the
omitted higher order terms, ()C?,/’Tg.)n for n =2 that
may cause instability in practical evaluation. From
the numerical point of view, we therefore have to
develop an approach for evaluating the stable higher
order values in order to connect conventional kinetic
energy functionals with the Pfree exchange func-
tional. The NLLP functional gives much more accu-
rate exchange energies comparable to those of the B88
exchange functional [100]. On the other hand, the
TFAW functional comparatively underestimates the
Pfree energies, although it provides accurate energies
within a margin of a few percent despite the para-

meter-free form. Since the shape of the TFAW and
NLLP functionals are different especially for large x,,
the underestimation may be due to the behavior of K%,
for large x,.

Table 11 also shows the deviations of calculated OP
correlation energies [74]. We can see from the devia-
tions that the LLP and NLLP functionals gave accu-
rate OP correlation energies. Since these functionals
give a sufficiently large K, for 5 < x, < 15, T, in Eq.
(109) for large x, (x, > 5) is essential to reproducing
the well-balanced POP exchange-correlation energies
of atoms, despite barely contributing to the kinetic
energies themselves. In addition, these calculated
OP correlation energies are much better than those
of conventional other correlation functionals, e.g.
LYP, PWO91, PBE, and Filatov—Thiel (FT) correlation
functionals [54]. The accurate energies mean that
correlation contributions can be approximated by the
interaction between two opposite-spin electrons that
come close to each other.

4.4.2. Chemical properties of the G2 set
We applied the POP functional [74] to the calcula-
tions of equilibrium geometries, atomization energies,
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electron affinities and ionization potentials of the G2-
1 set of molecules [114] by the Kohn—Sham method
using 6-311++G(2p, 2d) basis functions [115-117].
Zero-point vibrational frequencies were taken into
account in the calculated energies. Table 12 shows
the deviations of the calculated POP results for the
TFW, LLP, Thakker, TFAW, and NLLP kinetic
energy functionals. For comparison, we also present
the calculated results of the B88 exchange + OP
correlation (BOP) functional, the hybrid B3LYP func-
tional, and the ab initio second-order Moller—Plesset
perturbation method [54]. In Fig. 10, the x,-depen-
dencies of K,l; in Eq. (110) are shown for these kinetic
energy functionals.

For equilibrium geometries, almost equivalent
results were obtained for all kinetic energy functionals
in the POP functional. Even the TFW kinetic energy
functional gives accurate POP results comparable to
the B3LYP functional, despite the POP functional has
only one parameter for this functional. It was, there-
fore, presumed that the accuracy of the calculated
equilibrium geometries is determined by K, for the
relatively small x,, similar to that of the exchange
energies.

On the contrary, atomization energies were highly
affected by the functional used [100]. In the POP
functionals, the LLP functional provides the most
accurate atomization energies followed by NLLP
and Thakker. From Fig. 10, it was revealed that calcu-
lated atomization energies may have been influenced
especially affected by K, in the region 12 < x, < 20.

The calculated adiabatic electron affinities and ioni-
zation potentials were also highly affected by the
shape of the functional used. In both calculations,
NLLP and Thakker give accurate energies, while
TFW, LLP, and TFAW estimate worse energies. We
can see from Fig. 10 that the K,s for a large x,
affected on the affinities and the ionization potentials,
because the major difference between the former and
the latter seem to be in this region of x,,. Hence, it was
shown that K, for large x, is important for reprodu-
cing these properties.

4.4.3. Transition metal dimers

In order to explore the applicabilities of various
kinds of density functionals, we calculated the atomi-
zation energies for the first- to third-row transition
metal dimers [75,76]. Despite the very simple struc-

tures of dimers, it is difficult to reproduce these
values, because the dimers have a different character-
istic electron configuration for each ground state.

The calculation reported here were carried out by
the unrestricted Kohn—Sham method [70]. The Wach-
ters [118,119] +f [120] [14s11p6d3f]/(8s6p4dlf)
Gaussian basis functions were employed for the
first-row transition metals. For the second- and
third-row metals, we used the generally-contracted
well-tempered (23s18p15d4f/9s5p6d2f) basis set
[121] [(23s516-13d41/9s6p5d2f) only for Zr atoml],
and the non-relativistically optimized Gropen
(19s16p11d7£/9s6p6d3f) basis set [122], respectively.
In Tables 13 and 14, we present the calculated results
of the BOP, B3LYP, and B88 functionals, and the
MP2 method for comparison. The 94-point Euler—
Maclaurin quadrature [118,119] and the 16 X 32-
point Gauss—Legendre quadrature were used in the
numerical integrations for radial and angular grids,
respectively. Relativistic corrections (RC) were
included by ‘a relativistic scheme by eliminating
small components (RESC) [43]. Calculated atomiza-
tion energies were also corrected for zero-point vibra-
tional frequencies.

The following features were evident from the
calculated results for the dimers;

1. The BOP functional overestimates the atomization
energies, and the errors tend to decrease as the
number of outermost d electrons increases (from
Sc, to Cr,, from Fe, to Cu,, from Y, to Mo,, and
from Ru, to Ag,). This overestimation is related to
the problem that density functionals tend to over-
stabilize the electron configurations that contain
high-angular-momentum  open-shell  orbitals.
However, the errors clearly decrease until they
are less than those of high-level ab initio molecular
orbital calculations.

2. The hybrid B3LYP functional considerably under-
estimates the atomization energy of V,, Cr,, Nb,,
and Mo,, because it gives an erroneous energy gap
between the configurations of fairly different spin
multiplicity.

3. Dynamical electron correlations from the OP func-
tional similarly shorten the bond lengths and raise
the atomization energies for all dimers.

After all, we found that the lack of the long-range
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exchange interaction between the outermost s and d
orbitals may be responsible for the overstabilization
problem of density functionals for electron configura-
tions containing high-angular-momentum open-shell
orbitals in transition metals. This problem seems to be
partly corrected by combining the Hartree—Fock
exchange integral with the exchange functional, just
like in the hybrid B3LYP functional. However, this
combination was found to cause a new problem that
the hybrid functional provides poor energy gaps
between states whose spin multiplicities are quite
different. The question to consider now is how to
incorporate the long-range exchange interaction into
exchange functionals while maintaining a balance
between exchange and correlation contributions.

Appendix A. Kinetic energy functionals

Conventional kinetic energy functionals are mostly
described in a GGA form [123,124]

_1 3 _1 5/3 3
TS—EgjrodR—Egjpg T,d°R, (A1)

where 7, is usually a dimensionless functional of x,.
The local spin density approximations (LSDA) of T,
is that of the Thomas—Fermi kinetic energy func-
tional,

3
TLSPA — §(6w2)2/3. (A2)
The Thomas—Fermi—Weizsicker second-order gradi-
ent correction (TFW) is given as [71]

2
X
TIFW — TLspA | Yo

7 36 (A3)

A Kkinetic energy functional was suggested by Lee,
Lee and Parr [125] (LLP) from an analogy to the
Becke exchange functional [53] (B88):

0.0044188x2
o . (A4
1+ 0.0253x(,sinh_1x(,) (A9

TUI.‘LP — TOI:SDA<1 4

Thakker [123] added the Ou-Yang—Levy term [126]

to the LLP functional with an empirical fit:

Tl;_l'hakker — TOI__SDA

0.0055x 0.072x,,
|1+ T~
1+ 0.0253x,sinh~'x, 1+ 2%3x,

(A5)

We suggested two types of kinetic energy functionals
as techniques for recovering the numerical accuracy
of the Pfree exchange functional. One is the Thomas—
Fermi-A Weizsdcker (TFAW) functional [71],

T TEAW _ 7 LSDA )\x_ﬁ (A6)
7 7 36 °

where parameter \ is set to 0.8945, and the other is the

LLP-type (NLLP) functional, which meets the funda-

mental conditions of the exact kinetic energy func-

tional except for rapidly-varying density and self-

interaction-free ones,

2

TNLLP _ pLSDA | Xo (A7)
7 7 36(1 + CNLpr(,Sinh_ lx(,) ’

where parameter cyppp is set to 0.0075, so as to repro-
duce the exact exchange energy of the Ar atom by the
Pfree functional.
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