Abstract
The first examples of unsymmetrical β-substituted donor–π–acceptor (D–π–A)-type 5,15-diazaporphyrin (DAP) sensitizers with both p-aminophenyl and p-carboxyphenyl groups at their peripheral 3-, 7-, 13-, and/or 17-positions have been synthesized for use in dye-sensitized solar cells (DSSCs). UV/Vis absorption and emission spectroscopy, electrochemical measurements, and DFT calculations revealed that these D–π–A dyes exhibit high light-harvesting properties over the whole visible range because of the intrinsic charge-transfer character of their electronic transitions. The cell performances of TiO2-based DSSCs fabricated with the newly prepared DAP derivatives were evaluated under standard AM1.5 conditions. Among the four dyes examined, 13,17-bis(p-carboxyphenyl)-3,7-bis[p-(N,N-dimethylamino)phenyl]-DAP showed the highest power conversion efficiency (2.0 %), which was 20 times larger than that obtained with 3-(p-carboxyphenyl)-DAP. These results show that the DAP chromophore could be used as the electron-accepting π unit in various types of functional dyes.