Abstract
The role of water in host–ligand binding was investigated using a combination of molecular dynamics simulation and three-dimensional reference interaction site model theory. Three different hosts were selected (CB6, CB7, and CB8). Six organic molecules were used as representative ligands: dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), acetone, 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO), cyclopentanone (CPN), and pyrrole. From the binding free energy and its components, we divided the ligands into two groups: those with relatively small molecular size (DMSO, DMF, acetone, and pyrrole) and those with relatively large molecular size (DBO and CPN). We established that the solvent water in the CB6 cavity can be completely displaced by small ligands, resulting in a greater binding affinity compared with larger CBs, except in the case of the small pyrrole ligand, due to outstanding intrinsic properties such as the relatively high hydrophobicity and low dipole moment. In the case of the large ligands, the solvent water can be displaced by DBO and CPN in both CB6 and CB7; there were similar tendencies in their binding affinities, with the greatest affinity in the CB7 complexes. However, the tendencies of the binding affinity components are completely different due to the difference between the complex structure and the solvation structure when a ligand binds with a CB structure. The binding affinities suggest that the size fit between the ligand and CB cannot guarantee the greatest binding affinity gain because the binding structure and intrinsic properties of CB and ligand equally play a crucial role.